Astrofotografie: Überblick

Gehört zu: Astronomie

Siehe auch: Aufnahmeverfahren – Image Capturing

Astrofotografie

Bei den Astros kann man zwei “Lager” unterscheiden:

  • visuelle
  • fotografische

Ich persönlich möchte meine astronomischen Beobachtungen unbedingt festhalten, sprich als Foto dokumentieren.

Bei der Astrofotografie benötigt man deutlich mehr Technik als für die “nur” visuelle Astronomie.
Technik bedeutet hier: Gerätschaften (meine Geräteliste), Computer-Software (meine Softwareliste) und die zweckmäßige Vorgehensweise (Image Capturung).

Welche Websites können helfen?

Im Internet gibt es viele Quellen, die bei der Astrofotografie helfen können z.B.

Welche Objekte will ich fotografieren?

Da gibt es ganz unterschiedliche Motive/Beobachtungsobjekte:

  • Weitwinkel: Sternbilder, Milchstraße, Strichspuren, Zodikallicht, Erdschattenbogen, Halo-Erscheinungen, Leuchtende Nachtwolken,…
  • Objekte im Sonnensystem, wie Planeten/Kleinplaneten/Mond/Sonne
  • Deep Sky Objekte (“DSO”) Galaxien
  • Deep Sky Objekte: Sternhaufen, Asterismen
  • Deep Sky Objekte: Planetarische Nebel
  • Deep Sky Objekte: Emmissionsnebel, Absoptionsnebel

Wie ziele ich auf mein Beobachtungsobjekt?

Um das Beobachtungsobjekt in das Gesichtsfeld zu bekommen (“Framing”) gibt es verschiedene Methoden:

Wie hell ist das Beobachtungsobjekt?

Wenn es hell ist, kann man sehr kurz belichen

Wenn es dunkel ist, muss man sehr lange belichten

Wenn man lange belichtet, muss man evtl. nachführen, um die Erdrotation zu kompensieren.

Wie groß ist das Beobachtungsobjekt?

Das Beobachtungsobjekt muss in das Gesichtsfeld (Field of View = FoV) passen.

Bei der Astrofotografie macht es keinen Sinn von “Vergrößerung” zu sprechen. Das Bild entsteht auf dem elektronischen Sensor und kann dann in verschiedener Größe angezeigt werden. Wir haben ja kein Okular, mit dem wir das Bild betrachten (visuelle Astronomie). Bei Betrachtung durch ein Okular kann man von einer Vergrößerung sprechen und diese berechnen als f1/f2.

Womit kann ich fotografieren?

Zum Fotografieren benötigt man eine bildgebende Optik (Fotoobjektiv oder Teleskop) und einen bildaufnehmenden Sensor (DSLR oder Astro-Kamera CCD/CMOS).

Als Optiken für die Astrofotografie kommen infrage:

Bei Fotografieren entseht das Bild auf einem sog. Sensor:

  • Fotoapparate (DSLR)
  • Astro-Kameras (CCD/CMOS)

Linse und Sensor müssen zusammenpassen, um die beste Auflösung zu erzielen.

Aufnahmeverfahren (Image Capturing)

Wie gehe ich nun konkret vor beim Fotografieren von astronomischen Objekten? Das habe ich in diesem gesonderten Artikel beschrieben.

Astrofotografie – Überblick und Begriffe

Gehört zu: Astronomie

Mein Einstieg in die Astrofotografie

Als Amateurastronom möchte ich nicht nur visuell beobachten, sondern meine Beobachtungen auch gerne fotografisch festhalten.
Besonders interessant finde ich die Tatsache, dass ich auf einem Foto mehr sehen kann als mit bloßem Auge (dunklere Objekte, Farben,…).

Im Einzelnen habe ich für die Astrofotografie folgendes beschrieben:

  • Liste meiner Geräte (Equipment)
    • Montierung (Stativ etc.)
    • Kamera / Sensor
    • Fernauslöser (Remote Control,…)
    • Optik / Objektiv

 


Astrofotografie: Begriffe – Jargon

Wie häufig bei Spezialgebieten werden auch bei den erfahrenen Amatuerastronomen viele schöne Spezalbegriffe und Abkürzungen verwendet, die ein Einsteiger vielleicht nicht immmer gleich richtig versteht.

  • Lucky Imaging: Um der Luftunruhe ein Schnäppchen zu schlagen, macht man viele sehr kurz belichtete Aufnahmen (etwa 1/100 sec) und verwendet dann die wenigen Aufnahmen mit gutem “Seeing” zum Stacken…
  • Pretty Pictures: Leicht abwerted für “der macht keine wissenschftlichen Fotos”, sondern “nur” etwas, was schön aussieht
  • Tracking: Nachführung
  • Guiding
  • Pointing-Modell
  • DMK
  • ASI: USB-Kameras von der Firma ZW Optical
  • LX200
  • Seeing
  • fokal / afokal
  • xyz

———————

Kamera bzw. Sensoren für Astrofotografie

Astrofotografie kann man heutzutage ganz einfach mit “normalen” digitalen Kameras (z.B. Canon, Nikon, Sony, Panasonic u.a.) machen.

Eine sehr niedrige Einstiegschwelle bietet die sog. afokale Fotografie, wo eine Kamera mit ihrem Objektiv direkt hinter das Okular eines Fernrohrs gehalten wird. Klassischerweise verwenden die “Profis” aber die sog. fokale Fotografie, wo der Sensor einer Kamera in die (primäre) Fokalebene eines Fernrohrs plaziert wird.

Weiterhin werden seid einiger Zeit auch kleine Video-Kameras eingesetzt, die aber keinen Bildspeicher haben, sondern ihr Bild immer an einen PC liefern müssen.
hatte ich mir (als “Sensoren“) angeschafft:

Optiken

Als Optiken für die Sony habe ich verschiedene Möglichkeiten (Festbrennweiten mit Adapter auf E-Mount) –> DLSR-Objektive

  • Olympus G.ZUIKO AUTO-S  f=50mm, 1:1,4  (leichtes Tele z.B. für die Große Magellansche Wolke)
  • Vivitar AUTO WIDE-ANGLE f=24mm, 1:2 (Weitwinkel, z.B. für Polarlichter, die Milchstraße etc.)
  • MC Zenitar-M f=16mm, 1:2,8 (Überweitwinkel “FISH-EYE” z.B. für die Perseiden)
  • Asahi Optics Takumar f=135, 1:3,5
  • LidlScope 70/700 “SkyLux”  (z.B. für Sonnenbeobachtung)
  • Russentonne Rubinar f=500, 1:5.6   —> schlechte Qualität –> verkauft
  • und seit dem 1.11.2016 auch noch die sog. “Wundertüte” Beroflex, aber mit f=300mm, 1:4,0

Als Optiken für die Altair GP-CAM habe ich erst einmal:

  • Die mitgelieferte sog. “Meteorlinse”: This is a CS lens f=2.1mm    f/1.6   FOV 150 Grad
  • Eine zusätzlich als Sucher gekaufte f=12mm  f/1.2  FOV 17 x 22 Grad

Fernauslöser – Remote Control – für die Sony NEX-5R

In der Astrofotografie ist es erforderlich die Kamera erschütterungsfrei auszulösen.Das kann mit Hilfe spezieller Gerate (Fernauslöser) oder auch per Software von einem Computer erfolgen.

Außerdem kann es sinnvoll sein auch weitere Funktionen der Kamera per Software “Remote Control” zusteuern.

Fokussierung

Wir müssen das Teleskop bzw. das Foto-Objektiv so einstellen, das der Fokus genau in der Bildebene liegt und die astronomischen Beobachtungsobjekte “scharf” sind.

Astrofotografie für Einsteiger: Wie fokussiere ich mein Bild?

Montierungen – Stative – Nachführung

Zur Nachführung bei der Astrofotografie gibt es viele Möglichkeiten

Auffinden von Beobachtungsobjekten – Sucher

Oft ist es garnicht so einfach das gewünsche Beobachtungsobjekt im Gesichtsfeld von Kamera oder Teleskop einzustellen.

Beobachtungsorte – Lichtverschmutzung

Beobachtungsplanung

Welche Beobachtungsobjekte mit welchem Gerät zu welcher Zeit an welchem Ort?

Astrofotografie für Einsteiger: Welche Objekte kann ich fotografieren?

Bildbearbeitung

  • Stacken
  • Stretchen
  • Farbstich
  • Vignettierung
  • Farbrauschen
  • Gradienten
  • xyz

Meine Artikel zum Thema Astronomie

xxx

Astronomie: Themen im Überblick

Gehört zu: Astronomie
Siehe auch: Liste meiner astronomischen Geräte

Astronomische Themen im Überblick

Es gibt vieles Astronomisches, was man im Internet findet. Ausserdem habe ich als Amateur, der sich ein wenig mit der Astronomie beschäftigt,  einige Informationen in meinem Blog zusammengestellt

Links im Internet

Links von Hans:

Links von Prof. Dr. Stefan Jordan auf dem ATT 2018

Meine Blog-Artikel

Zu astronomischen Themen habe ich einiges aufgeschrieben:

Vereine und Institutionen für Amateurastronomie

Links im Internet

Computer: Cloud-Speicher – Google Drive

Gehört zu: Cloud-Speicher
Siehe auch: Google Mail, Google Fotos

Google Konto

Bei Google muss man zuerst ein Google-Konto einrichten.

Mit diesem Google-Konto kann man sich bei Google anmelden und dann die vielfältigen Dienste von Google benutzen.

Die Benutzer von Android-SmartPhones haben meistens schon ein Google-Konto für ihr SmartPhone eingerichtet.

Für so ein Google Konto gewährt Google einen kostenlosen Speicher im Internet (sog. Cloud-Speicher) von 15 GB.

Diese 15 GB Speicher wird verwendet für:

  • Google Mail
  • Google Fotos
  • Google Drive
  • Google Docs / Sheets / … ???

Auf dem PC kann man sich dann mit seinem Google-Konto bei Google anmelden:

Auf dem SmartPhone kann man sein Google-Konto in den Einstellungen (Settings) angeben und dazu gleich festlegen, was synchronisiert werden soll z.B. Drive, Kalender und Kontakte…

Google Dienste

Nachdem die Google-Suchmaschine ein grandioser Erfolg wurde, hat über die Jahre alle möglichen Dienste aufgekauft und ausprobiert. Angefangen hatte das mit Google Mail.

  • Suche
  • Maps
  • YouTube
  • Play
  • News
  • Gmail
  • Drive
  • Kalender
  • Übersetzer
  • Search Console
  • Duo
  • Shopping
  • Docs
  • Books
  • Blogger
  • Kontakte
  • Hangouts
  • Tabellen
  • Präsentationen
  • Notizen
  • Jamboard
  • Classroom
  • Google Collections

Man kann “seine” Google Apps verwalten (also auch löschen) in: https://gsuite.google.com/marketplace/myapps

Google Drive

Google Drive ist einer der Dienste, die ich bei Google auswählen kann.  Wichtige Aktionen in Google Drive sind:

  • Hochladen von Dateien…
  • Freigeben von Dateien auf Google Drive…
  • Speicherplatz von Google Drive verwalten
  • Google Drive synchronisieren mit Windows-Computer und Android-Telefon…

Synchronisieren

Man kann die Daten, die sich auf Goggle Drive befinden mit verschienenen Geräten “synchronisieren”.

Auf dem Windows-Computer gabe es dazu die Software “Google Drive”. Diese wurde 2017 abgelöst durch die Software “Backup & Sync”.

Diese kann man bei Google herunterladen: https://www.google.com/intl/de_ALL/drive/download/

Das neue “Backup & Sync” kann alles, was das klasische “Google Drive” gemacht hat, nämlich einen extra Orner (z.B. Google Drive”) mit der “Ablage” genannten Google Drive Cloud zu synchronisieren. Zusatzlich kann die “Backup-Funktion” eine Reihe von lokalen Ordnern auf Google Drive “sichern”.

Installation und Konfiguration von “Backup & Sync”

Ausführen der heruntergeladene EXE-Datei. Das ist so eine Art “Installer”, der die eigentliche Installationsdatei erst einmal aus dem Internet herunterlädt und dann die Installation startet. Die Installation läuft dann in drei Schritten:

  1. Auf dem Desktop werden die ShortCuts “Google Docs”, “Google Slides” und “Google Sheets”
  2. Anmelden mit einem Google-Konto. Daturch wird eine Verbindung dieser lokalen “Google Bauckup & Sync” mit dem Google-Konto hergestellt.
  3. Lokaler Computer: Welche lokalen Ordner sollen in die Google Cloud gesichert werden?
  4. GoogleDrive: Wohin soll die Google Cloud (Drive) (genannt “Meine Ablage”) lokal auf dem Computer synchronisiert werden? Das wäre der klassische GoogleDrive Ordner auf dem lokalen Computer. Dabei muss nicht immer die ganze Cloud mit dem lokelen Computer synchronisiert werden (reicht der Speicherplatz?), sondern es kann auch nur eine Auswahl von Ordnern der Cloud (Drive) zur Synchronisation ausgewählt werden.

Foto: Als Beispiel will ich von meinem ganzen Google Drive (genannt “Meine Ablage”) nur den Ordner “Drawings” mit meinem Computer synchronisieren.

GoogleDrive-03

Google Cloud Console

Um Dateien von Google Drive in WordPress-Artikel einzubinden gibt es WordPress-Plugins. Diese setzen allerdings voraus, das bestimmte Berechtigungen in der Google Cloud dafür eingerichtet sind.

Aufruf: https://console.cloud.google.com/

Erster Schritt:  Ein neues Projekt einrichten

Dazu klicken wir auf das kleine Dreieck neben dem Named des aktuellen Projekts.
Dann öffnet sich eine Dialog “Projekt auswählen”, wo wir recht oben auf “NEUES PROJEKT” klicken.

Google-Cloud-01

Danach öffnet sich eine neue Seite, wo wir den neuen Projektnamen eingeben und dann auf die Schaltfläche “ERSTELLEN” klicken.

Google-Cloud-02

Computer Software: Libre Office

Gehört zu: Office Paket
Siehe auch: Microsoft Office

LibreOffice ist eine Open-Source-Software (OSS), also kostenfrei, und deckt in etwa die Funktionen des kostenpflichtigen Microsoft Office ab.

Installation von Libre Office

Bestandteile des Pakets Libre Office

Das Office Paket Libre Office besteht aus:

  • Textverarbeitung “Writer”
  • Tabellenkalkulation “Calc”
  • Präsentation “Impress”
  • Zeicnungen “Draw”
  • Formel-Editor “Math”
  • Datenbank “Base”

Zeichnungen mit LibreOffice Draw

Da ich viel mit so einer Art von “technischer Zeichnungen” (Diagramm, Grafik) arbeite und dort das Format SVG bevorzuge, bin ich so allmählig eine Freund des Moduls “Draw” geworden.

Diese Art von bildlichen Darstellungen zeichnet sich aus durch gerade Linien, Pfeile, Kurven, Kreise, Rechtecke, Text u.v.a.m. und wird Vektorgrafik genannt im Gegensatz zu Pixel-Bildern.

Bei Microsoft sind solche Zeichnungen als Teil anderer Dokumente z.B. PowerPoint etc. möglich – allerding mit relativ einfachen Möglichkeiten. Microsoft hat im Januar 2000 das Paket Visio erworben, was solche Vektorgrafiken in sehr ausgefeilter Form unterstützt. Microsoft Visio gehört nicht “direkt” zur Microsoft Office Suite und muss einzeln erworben werden.

Eine Zeichnung in LibreOffice Draw kann aus mehreren Seiten bestehen und wird standardmäßig im Format ODG gespeichert.

Funktionen von Libre Office Draw

Generell ist LibreOffice kompatibel zu den Formaten von Microsoft Office.

  • Eine Zeichnung kann mehrere Seiten umfassen (sehen kann man Seite 2 ff. allerdings nur, wenn man Menüleiste -> Ansicht -> Folienbereich anschaltet oder wenn man mit den Tasten PageDown/PageUp navigiert)
  • Speicherung als ODG-Datei
  • Import: Adobe PDF, Visio VSD, Microsoft PUB
  • Export: SVG-Datei u.a.  (bei SVG scheint allerdings nur die erste Seite exportiert zu werden)

 

Astronomie: Sphärische Trigonometrie

Gehört zu: Mathematik
Siehe auch: Tägliche Bewegung der Gestirne, Diagramm

Was ist Sphärische Trigonometrie?

Die Ebene Trigonometrie ist die Lehre von den Dreiecken in der Ebene.

Die Sphärische Trigonometrie ist die Lehre von den Dreiecken auf einer Kugeloberfläche. Solche Dreiecke werden durch Abschnitte von Großkreisen gebildet.

Das Polar-Dreieck auf der Himmelskugel

Zur Umrechnung eines Koordinatensystems in ein anderes zeichnet man sich ein sog. Polar-Dreieck, in dem die “Pole” (“Drehpunkte”) beider Koordinatensysteme vorkommen.

Zur Umrechnung der äquatorialen Koordinaten Deklination (δ) und Stundenwinkel (t) in die horizontalen Koordinaten Höhe (h) und Azimuth (A) wird das sog. Polar-Dreieck wird gebildet durch den Himmelspol (N), den Zenit (Z) und ein Himmelsobjekt (O).

Im Polardreieck sind die Abstände (Bogenlängen):

  • vom Himmelspol zum Zenit: 90° – φ
  • vom Himmelspol zum Himmelsobjekt: 90° – δ
  • vom Zenit zum HImmelsobjekt: z = 90° – h

Im Polardreieck sind die Winkel an den Ecken des Dreiecks:

  • Winkel am Himmelspol: Stundenwinkel t (oder τ)
  • Winkel am Zenith: 180°  – A   (A = Azimuth von Süden)

Das Polardreieck

Link: https://de.wikibooks.org/wiki/Astronomische_Berechnungen_f%C3%BCr_Amateure/_Druckversion#Koordinatentransformationen

MIt dem Seiten-Cosinussatz errechnet man den Cosinus der Länge einer Seite aus den Längen der beiden anderen Seiten und dem gegenüberliegenden Winkel:
\(\cos z = \cos (90° – \phi) \cos (90° – \delta) + \sin (90° – \phi) \sin (90° – \delta) \cos t\)

Was schließlich heisst:
\(\sin h = \sin \phi \sin \delta + \cos \phi \cos \delta \cos t \)

Der Cotangens-Satz im Polardreieck sagt:

\(   \cos (90° – \phi)  \cos t = \sin(90° – \phi) \cot (90° – \delta) – \sin t \cot(180° – A)  \)

Trigonometrisch umgeformt ergibt das:
\(  \sin \phi \cos t = \cos \phi \tan \delta – \Large\frac{\sin t}{\tan A}  \)

Aufgelöst nach A ergibt sich:

\(   \tan A = \Large\frac{\sin t}{\sin \phi \cos t – \cos \phi \tan \delta} \)

MIt Hilfe dieser Koordinatentransformation kann man für jedes bekannte Himmelsobjekt (Deklination und Rektaszension) die scheinbare tägliche Bewegung am Himmel berechnen – siehe dazu: Die scheinbare tägliche Bewegung der Gestirne.

 

https://drive.google.com/file/d/1KsWze0RuemuXoe755Z_glIkhA2pTGilH/view?usp=drive_web

Astronomie: Tägliche Bewegung der Himmelsobjekte

Gehört zu: Sonnensystem
Siehe auch: Tageslänge, Sphärische Trigonometrie
Benötigt: WordPress Latex-Plugin

Tägliche scheinbare Bewegung der Gestirne

Wenn wir wissen wollen, wie sich ein Himmelobjekt mit bekannter Rektaszension und Deklination im Laufe des Tages über den Himmel bewegt, so ist die einfache Formel:

  • Stundenwinkel = Sternzeit – Rektaszension
  • Deklination = const.

Damit haben wir die äquatorialen Koordinaten Stundenwinkel (t) und Deklination (δ) als Funktion der Sternzeit.

Wenn wir die azmutalen Koordinaten Höhe (h) und Azimuth (A) haben wollen, so müssen wir das wie folgt umrechnen:

(Quelle: https://de.wikibooks.org/wiki/Astronomische_Berechnungen_f%C3%BCr_Amateure/_Druckversion#Koordinatentransformationen )

\( \sin h = \sin \phi \cdot \sin \delta + \cos \phi \cdot \cos \delta \cdot \cos t \)

und

\( \tan A = \Large \frac{\sin t}{\sin \phi \cdot \cos t – \cos \phi \cdot \tan \delta}  \)

Beispiel Wega in Hamburg:

Astrofotografie: Deep Sky Objekte

Gehört zu: Welche Objekte?
Siehe auch M31

Deep Sky Objekte

Was ich mit meiner Ausrüstung ganz gut fotografieren kann, sind sog. DSO’s also Deep Sky Objekte.
Als Gegensatz zu DSO wird gerne “planetary” genannt. Da würde man mit Videos arbeiten.

Dazu gehören:

  • Galaxien
  • Emissionsnebel / Reflexionsnebel
  • Planetarische Nebel

Galaxien

Die beliebtesten Galaxien für den Hamburger Raum sind hier aufgeführt.

Datum von/bis bedeuted eine Höhe von mehr als 70 Grad um 23 Uhr.

Objekt Name Flächenhelligkeit Datum ab Datum bis Neumond-1 Neumond-2
M31 Andromeda 13,35 12.10. 20.11. 16.10.2020 14.11.2020
M51 Whirlpool 12,56 18.4. 17.6. 20.4.2020 22.5.2020
M81 Bode 13,13 10.2. 6.4. 24.2.2020 24.3.2020
M101 Feuerrad 14,82 21.4. 28.6. 20.4.2020 Welche Objekte?
NGC891 Edge-on Andromeda 13,1
NGC7606 10,8
NGC2146 Dusty Hand 12,1
NGC4449 Box Gaklaxy 12,8
NGC5005 Virgo 12,6
NGC6951 Face-on 13.5
NGC157 Cet 12,4
NGC908 Cet 13,0
NGC936 Cet 13,2
M64 Black Eye 12,4
M85 Com 13,0
M88 Com 12,6
M99 Com 13,0
M100 Com 13,0
NGC4274 Com 13,4
NGC4278 Com 13,1
NGC4314 Com 13,3
NGC4565 Needle 12,9
M102 Dra 11,9
NGC5907 Dra 13,4
M83 Southern Pinwheel 13,2
M65 Leo 12,4
M66 Leo 12,5
M96 Leo 12,9
M105 Leo 12,1

 

Astrofotografie: M31 Andromeda Galaxis

Gehört zu: Welche Objekte?
Siehe auch: Galaxien, Deep Sky Objekte

Die Andromeda Galaxis

M31 ist die uns am nächsten gelegene “große” Galaxie (d.h. abgesehen von Zwerggalaxien wie z.B. LMC).

M31 gehört zur sog. “lokalen Gruppe”.

M31 ist das klassische “Anfängerobjekt” für die Deep-Sky-Fotografie.

Edwin Hubble konnte 1933/1934 am Mount Wilson Observatorium M31 in teilweise einzelne Sterne auflösen und dabei auch sog. Delta-Cephei-Sterne finden. Die scheinbare Helligkeit des “H1” genannten Cepheiden in M31 schwankte zwischen 18,3 und 19,7 mag. Mit Hilfe der bekannten Periode-Leuchtkraft-Beziehung konnte er die absolute Helligkeit und damit die Entfernung von M31 bestimmen. Die Entfernungsbestimmung ergab seinerzeit zunächst knapp 1 Million Lichtjahre.

Bis damals war die allgemeine Überzeugung, dass es ausser unserer Galaxis, der “Milchstraße”, keine anderen Galaxien geben würde und die allerseits zu beobachtenden “Nebel” (wie M31) wohl zur Milchstraße gehören müssten.

Als Walter Baade Anfang der 1950er Jahre am gerade fertiggestellten 5m-Spiegel auf dem Mount Palomar zwei verschiedene Typen von Cepheiden nachweisen konnte (mit zwei verschiedenen Periode-Leuchtkraft-Beziehungen), musste die Entfernung auf 2,5 Mio Lichtjahre korrigiert werden.

Generelle Vorbereitungen für das Fotografieren von M31

Wann ist der günstigste Zeitpunkt; d.h. wann steht M31 schön hoch am Himmel?

  • In 2018 in Hamburg:  12. Oktober – 20. November  (h>70°)

Dann brauchen wir noch eine günstige Mondphase z.B. Neumond und gutes Wetter. Als Neumond-Daten haben wir:

  • 2018:   08. Okt.
  • 2019:   27. Okt.
  • 2020:   16. Okt.
  • 2021:   4. Nov.

Als günstigen Standort für die Beobachtung habe ich Handeloh gewählt.

  • geringere Lichtverschmutzung  (Bortle 4 /  SQM 21,0)
  • freies Sichtfeld
  • gute Erreichbarkeit per Auto

Welche Ausrüstung soll eingesetzt werden?

Mit welchen Einstellungen sollen die Fotos geschossen werden?

  • Geplante Belichtungszeit: 10 x 300 Sekunden bei ISO 800
  • Probefotos ergaben, dass bei dieser Belichtung das Histogramm der Einzelfotos “gut” aussah; d.h. deutlich vom linken Rand abgesetzt und von rechten Rand noch sehr weit entfernt
  • Aufnahmeformat: Raw d.h. CR2
  • Auto Guiding mit PHD2 Guiding

Das Foto am 14.10.2018

Im Jahre 2018 war ich mit meinen astrofotografischen Übungen dann so weit und konnte folgende Aufnahme gewinnen:

Ergebnis: M31 in der Andromeda

Autosave_0239-0248_16_CI_RGb

Die Bildbearbeitung (Post Processing)

Als all die schönen Bilder “im Kasten” waren ging es erst einmal nach Hause, wo dann in den nächsten Tagen, Wochen und Monaten die Bildbearbeitung begann.

  • Stacking mit Deep Sky Stacker. Dabei erwies sich eines der zehn Lights als verwackelt und wurde ausgeschieden. Zehn Darks wurden ebenfalls gemacht. Mit Deep Sky Stacker entstand dann das kalibrierte Summenbild im TIFF-Format.
  • Mit Regim erfolgte dann die Background Extraktion (auch Gradient Removal ganannt).
  • Weiterhin wurde mit Regim eine B-V-Farbkalibrierung vorgenommen.
  • Schließlich erfolgte mit Adobe Photoshop das Stretching durch “Tonwertkorrektur” und “Gradationskurven”.
  • Mit Noel Carboni’s Action Set “Astronomy Tools” in Photoshop wurden dann noch die Actions  “Local Contrast Enhancedment”, “Increase Star Color” ausprobiert.
  • Zum Schluss wurde der sehr helle Kern von M31 noch mit “Bild -> Korrekturen -> Tiefen/Lichter” 10% dunkler gemacht.

 

 

 

 

Computer: 3D-Druckverfahren

Gehört zu: Computer
Siehe auch: Bahtinov-Maske, FreeCAD

3D-Drucker

So einem 3D-Drucker muss man sagen welches Material er zum “Drucken” verwenden soll z.B. PLA-Pulver.

Eine Eingabedatei sagt dem 3D-Drucker dann genau, was er da “drucken” soll.

Software für den 3D-Druck

Zum Design eines Bauteils für den 3D-Drucker braucht man eine spezielle CAD-Software, mit der man das Bauteil in 3D interaktiv maßgerecht zeichnen kann und die das für 3D-Drucker erforderliche Datei-Format (z.B. STL) erzeugen kann.

Beispiel: TinkerCAD

  • Beispiel: http://www.tinkercad.com
  • Mit TinkerCAD kann man im Internet schöne 3D-Modelle entwerfen und diese dann z.B. als STL-Datei ausgeben (“Export”).
  • MIt TinkerCAD kann man auch fertige Zeichnungen von Bauteilen (z.B. als SVG-Datei) inportieren.

Beispiel: FreeCAD

3D-Drucker als Hardware

Ein Astro-Kollege von der GvA berichtete einmal über seine Erfahrungen mit kostengünstigen 3D-Druckern.

Ausserdem fiel der Begriff “Ulti Maker“, das ist eine Firma, die 3D-Drucker herstellt:   https://ultimaker.com/

Dienstleister zum 3D-Druck

Es gibt viele Dienstleister, bei denen man eine STL-Datei einreichen kann, die dann dort “ausgedruckt” wird.

z.B. im Internet: Thingiverse

z.B.  Universitäten und Bibliotheken

Web-Links

NIco Carver:   https://www.youtube.com/watch?v=a0Qk5jzsZfc

Astrofotografie: ZWO ASI294MC Pro

Gehört zu: Astrofotografie
Siehe auch: Liste meiner Geräte

Ich wollte nun (Jan. 2020) meine Astrofotografie auf eine neue Ebene heben und statt mit meiner DSLR Canon EOS 600D nun mit einer gekühlten Astro-Kamera arbeiten.

Da das in meinen Augen schon recht teuer wird, habe ich mich nach etwas Gebrauchtem umgesehen.
Anfang Januar 2020 wurde ich fündig auf forum.astronomie.de und habe mit eine ZWO ASI294MC Pro gegönnt.

Angeregt durch das Youtube-Video von Trevor Jones (AstroBackyard https://www.youtube.com/watch?v=TwDoKpvajoo ) spielte ich damals auch mit dem Gedanken dazu eine ASIair zu kaufen; das habe ich aber später verworfen, weil es nur noch die viel teuere ASIair Pro (EUR 359,– statt EUR 199,–) gab, welche auch erst irgendwann in der Zukunft geliefert werden sollte. Aber ich habe mal begonnen mich mit Linux und INDI-Treibern auseinanderzusetzen. Für die ASI294MC Pro gibt es sowohl INDI-Treiber als auch ASCOM-Treiber.

Ich hatte dann mal die kleine Linux-Kiste “StellarMate” ausprobiert, hatte da aber Probleme, sie über mein LAN/WLAN zu erreichen.

Und das gehört zur ASI294MC Pro:

  • ASI294MC Pro  (mit Anschlüssen: T2, 1,25″ und 2″)
  • gebraucht gekauft am 2. Januar 2020 für EURO 850,– gebraucht
  • Sensor: Sony 4/3″ CMOS Color Sensor IMX294CJK – “Back illuminated”
  • Pixelgröße: 4,63 µm – 4144 x 2822 Pixel
  • Leistungsstarke Peltierkühlung bis 45 °C unter Umgebungstemperatur
  • Heizmanschette…

Astronomie: Software Regim

Gehört zu: Bildverarbeitung
Siehe auch: PixInsight, Fitswork

Was ist Regim?

Regim ist eine kostenlose Software des Entwicklers Andreas Röring.

Regim benötigt die Java Runtime Umgebung und läuft damit auf Windows, Linux und MacOS.

Allerdings ist die Benutzeroberfläche nach heutigen Maßstäben recht schlicht.

Auch ist Regim insgesamt recht langsam.

Probleme gibt es auch bei einigen Varianten der Bildformate TIFF und auch FITS.

Download der Software: https://www.andreasroerig.de/regim/regim.xhtml

Download der Dokumentation: https://www.andreasroerig.de/content/regim/regim.pdf

Version: 3.8 (5.1.2019)

Besondere Funktionen von Regim

Installation und Aufruf von Regim

xyz

Bekannte Probleme mit Regim

Bildformate TIFF und FITS

Java Heap Space

Links zu Regim

AstroHardy 23.01.2014: Vorbereitung von FITS-Dateien in Fitswork für Regim

AstroHardy 20.01.2014:  Automatische Farbkalibrierung mit Regim  Remove Gradient & B-V-Color Calibration

AstroHardy 19.01.2014: Farbkalibrierung mit Regim und Gimp

AstroCologne 09.09.2019: Richtige Farben in Deep-Sky-Bildern

AstroCologne 01.09.2011: Regim Tutorial Teil 1  Stacking

AstroCologne 01.09.2011: Regim Tutorial Teil 2 Fortsetzung des Stacking von Teil 1

Funktionen von Regim

Die wichtigsten Funktionen von Regim sind:

  • Stacking
  • Background Extraction / Gradient Removal
  • B-V Color Calibration / B-V-Farbkalibrierung
  • Plate Solving

Stacking mit Regim

Regim starten und in der Menüleiste “Preprocessing” anklicken. Dann im Drop-Down-Menü nochmals “Preprocessing” auswählen….

Eingabe für das Stacking sind:

  • LIght Frames  (Format FIT oder RAW,…)
  • Dark Frames
  • Flat Frames
  • “Flat Darks” sagt Regim. DSS nennt das “Bias Frames”

Ausgabe beim Stacken ist:

  • Ergebnisdatei FIT
  • Save as: Ergebnisdatei 16 Bit TIFF

Background Extraction / Gradient Removal mit Regim

Wir haben nun das Stacking bereits durchgeführt und haben also eine sog. “Summendatei”.

Als nächsten Schritt glätten wie den Hintergrund d.h. “Background Extraction” bzw. “Gradient Removal”. Der übernächste Schritt behandelt dann die Farben.

Als Eingabe benötigen wir eine Summendatei, die noch nicht gestretched ist, sich also noch in linearem Zustant befidet. Am Besten im Format TIFF.

Dann rufen wir die Funktion Gradient Removal auf indem wir in der Regim-Menüleiste auf “Edit” klicken und dann im Drop-Down-Menü “Remove Gradient” auswählen.

Daraufhin escheint eine kleine Dialogbox (Titel Remove Gradient) mit den Schaltflächen “Generate”, “Execute” und “Exit”.

Bevor wir auf “Generate” klicken füllen wir die Eingabefelder:

  • Number of Samples:   z.B. 21
  • Blur Radius: z.B. 11
  • Background: auto/Manuell

Wenn diese Eingabefelder gefüllt sind, können wir auf die Schaltfläche “Generate” klicken. Es werden dann etsprechend den Eingaben Messpunkte für den Hintergrund (Background) gesetzt.

Wenn die Messpunkte für den Hintergrund O.K. sind, können wir auf “Execute” klicken. Das dauert ein klein wenig und am Ende haben wir drei Fenster (Originalbild, Bild nur mit dem Hintergrund, Bild mit dem entfernten Hintergrund). Die Bilder sind noch linear; d.h. zum Betrachten müssen wir den rechten Regler ziehmlich weit aufdrehen.

Wir klicken nun auf die Schltfläche “Exit” (sonst geht’s nicht weiter).

Wir können dann die nicht benötigten Fenster schießen und das Ergebnis als 16 Bit TIFF abspeichern.

Da Regim nicht so wahnsinnig stabil läuft, ist das Abspeichern eines solchen Zwischenergebnisses immer sehr zu empfehlen.

Farbkalibrierung mit Regim

Auf der Regim-Menüleiste klicken wir auf “Color” und in dem Dropdown-Menü dann auf “Automatic B-V Color Calibration” oder “Manual B-V Color Calibration”…

Die Idee ist, den Farb-Index (B-V-Index) eines oder mehrerer Sterne im Feld heranzuziehen für die Farbkalibrierung des Bildes.

Bei der “Automatic”-Variante ermittelt Regim zunächst per Plate Solving, welche Sterne im Bild vorhanden sind und kann dann zu den identifizierten Sternen die B-V-Indices aus einem Sternkatalog abrufen.

 

Astronomie Software KStars

Gehört zu: Astro-Software
Siehe auch: INDI, StellarMate, ASIair

KStars was ist das?

KStars ist eine Astronomie-Software, die einerseits als schönes Planetarium-Programm fungiert, andererseits die astronomischen Geräte (Montierung, Kameras, …) steuern kann und dabei diverse nützliche Zusatz-Funktionen hat, wie beispielsweise

  • Plate Solving
  • Polar Alignment
  • Fokussierung

Zu diesem Behufe enthält KStars ein Module names Ekos, welche als INDI-Client mit einem INDI-Server spechen kann.

KStars gibt es für Windows, MacOS und Linux.

Die aktuelle Version von KStars ist 3.3.9 (Jan 2020).

Erste Schritte mit KStars

Die Sprache von KStars ist manchmal komisch bis gewöhnungsbedüftig. Beispielsweise gibt es in der deutsche Version so etwas wie “STF” auf das ich mir so überhaupt keinen Reim machen konnte. Im Englischen heist das “FoV” – aha: “Field of View”, also “Gesichtsfeld”- aber KStars denkt “Sichtfeld”. abgekürzt “STF”.

Wie schalten wir die Sprachen bei KStars um?????

Große Frage – nicht bei den KStars-Einstellungen, sondern im Menü “Help -> Switch Application Language”

Ekos

Eine wesentliche Funktion von KStars auf dem Windows-Computer ist ja, das Modul “Ekos” aufzurufen und damit das Astro-Equipment zu steuern. Das setzt voraus, das wir unsere Astro-Geräte mit einem INDI-Server verbunden haben.