Astronomie Oberartikel (Root)

Gehört zu: Astronomie  (this is the root article)
Siehe auch: Physik

Stand: 22.05.2023

Neue astronomische Beiträge 2023

Neue astronomische Beiträge 2022

Neue astronomische Beiträge 2021

Themenstruktur zur Astronomie

Das Thema Astronomie versuche ich in Themengebiete zu strukturienen:

Meine Blog-Artikel zu astronomischen Themen

Es gibt vieles Astronomisches, was man im Internet findet. Ausserdem habe ich als Amateur, der sich ein wenig mit der Astronomie beschäftigt,  einige Informationen in meinem Blog zusammengestellt.

Dazu habe ich vieles in einzelnen Artikeln aufgeschrieben:

Vereine und Institutionen für Amateurastronomie

Links im Internet zu Astronomischen Themen

Links von Hans:

Links von Prof. Dr. Stefan Jordan auf dem ATT 2018

Gesammelte Links

Astrofotografie: Überblick

Gehört zu: Astronomie
Siehe auch: Aufnahmeverfahren – Image Capturing

Astrofotografie

Bei den Astros kann man zwei “Lager” unterscheiden:

  • visuelle
  • fotografische

Ich persönlich möchte meine astronomischen Beobachtungen unbedingt festhalten, sprich als Foto dokumentieren.

Bei der Astrofotografie benötigt man deutlich mehr Technik als für die “nur” visuelle Astronomie.
Technik bedeutet hier: Gerätschaften (meine Geräteliste), Computer-Software (meine Softwareliste) und die zweckmäßige Vorgehensweise (Image Capturing).

Welche Websites können helfen?

Im Internet gibt es viele Quellen, die bei der Astrofotografie helfen können z.B.

Welche Objekte will ich fotografieren?

Da gibt es ganz unterschiedliche Motive/Beobachtungsobjekte:

  • Weitwinkel: Sternbilder, Milchstraße, Strichspuren, Zodikallicht, Erdschattenbogen, Halo-Erscheinungen, Leuchtende Nachtwolken,…
  • Objekte im Sonnensystem, wie Planeten/Kleinplaneten/Mond/Sonne
  • Deep Sky Objekte (“DSO”) Galaxien
  • Deep Sky Objekte: Sternhaufen, Asterismen
  • Deep Sky Objekte: Planetarische Nebel
  • Deep Sky Objekte: Emmissionsnebel, Absoptionsnebel

Wie ziele ich auf mein Beobachtungsobjekt?

Um das Beobachtungsobjekt in das Gesichtsfeld zu bekommen (“Framing”) gibt es verschiedene Methoden:

Wie hell ist das Beobachtungsobjekt?

Wenn es hell ist, kann man sehr kurz belichen

Wenn es dunkel ist, muss man sehr lange belichten

Wenn man lange belichtet, muss man evtl. nachführen, um die Erdrotation zu kompensieren.

Wie groß ist das Beobachtungsobjekt?

Das Beobachtungsobjekt muss in das Gesichtsfeld (Field of View = FoV) passen.

Bei der Astrofotografie macht es keinen Sinn von “Vergrößerung” zu sprechen. Das Bild entsteht auf dem elektronischen Sensor und kann dann in verschiedener Größe angezeigt werden. Wir haben ja kein Okular, mit dem wir das Bild betrachten (visuelle Astronomie). Bei Betrachtung durch ein Okular kann man von einer Vergrößerung sprechen und diese berechnen als f1/f2.

Womit kann ich fotografieren?

Zum Fotografieren benötigt man eine bildgebende Optik (Fotoobjektiv oder Teleskop) und einen bildaufnehmenden Sensor (DSLR oder Astro-Kamera CCD/CMOS).

Als Optiken für die Astrofotografie kommen infrage:

Bei Fotografieren entseht das Bild auf einem sog. Sensor:

  • Fotoapparate (DSLR)
  • Astro-Kameras (CCD/CMOS)

Linse und Sensor müssen zusammenpassen, um die beste Auflösung zu erzielen.

Aufnahmeverfahren (Image Capturing)

Wie gehe ich nun konkret vor beim Fotografieren von astronomischen Objekten? Das habe ich in diesem gesonderten Artikel beschrieben.

Astrofotografie – Überblick und Begriffe

Gehört zu: Astronomie

Mein Einstieg in die Astrofotografie

Als Amateurastronom möchte ich nicht nur visuell beobachten, sondern meine Beobachtungen auch gerne fotografisch festhalten.
Besonders interessant finde ich die Tatsache, dass ich auf einem Foto mehr sehen kann als mit bloßem Auge (dunklere Objekte, Farben,…).

Im Einzelnen habe ich für die Astrofotografie folgendes beschrieben:

  • Liste meiner Geräte (Equipment)
    • Montierung (Stativ etc.)
    • Kamera / Sensor
    • Fernauslöser (Remote Control,…)
    • Optik / Objektiv

 


Astrofotografie: Begriffe – Jargon

Wie häufig bei Spezialgebieten werden auch bei den erfahrenen Amatuerastronomen viele schöne Spezalbegriffe und Abkürzungen verwendet, die ein Einsteiger vielleicht nicht immmer gleich richtig versteht.

  • Lucky Imaging: Um der Luftunruhe ein Schnäppchen zu schlagen, macht man viele sehr kurz belichtete Aufnahmen (etwa 1/100 sec) und verwendet dann die wenigen Aufnahmen mit gutem “Seeing” zum Stacken…
  • Pretty Pictures: Leicht abwerted für “der macht keine wissenschftlichen Fotos”, sondern “nur” etwas, was schön aussieht
  • Tracking: Nachführung (heute meist motorisch in beiden Achsen)
  • Guiding bzw. Autoguiding (verbessertes Tracking)
  • Pointing-Modell  (Goto)
  • DMK: Bestimmte klassische Astro-Kameras
  • ASI: USB-Kameras von der Firma ZW Optical (ZWO)
  • LX200: eine klasssiche Montierung
  • Seeing: Luftunruhe (früher Szintillation genannt)
  • fokal / afokal
  • xyz

———————

Kamera bzw. Sensoren für Astrofotografie

Astrofotografie kann man heutzutage ganz einfach mit “normalen” digitalen Kameras (z.B. Canon, Nikon, Sony, Panasonic u.a.) machen.

Eine sehr niedrige Einstiegschwelle bietet die sog. afokale Fotografie, wo eine Kamera mit ihrem Objektiv direkt hinter das Okular eines Fernrohrs gehalten wird. Klassischerweise verwenden die “Profis” aber die sog. fokale Fotografie, wo der Sensor einer Kamera in die (primäre) Fokalebene eines Fernrohrs plaziert wird.

Weiterhin werden seit einiger Zeit auch kleine Video-Kameras eingesetzt, die aber keinen Bildspeicher haben, sondern ihr Bild immer an einen PC liefern müssen.
Meine “Sensoren“) sind:

Optiken

Als Optiken für die Sony habe ich verschiedene Möglichkeiten (Festbrennweiten mit Adapter auf E-Mount) –> DLSR-Objektive

  • Olympus G.ZUIKO AUTO-S  f=50mm, 1:1,4  (leichtes Tele z.B. für die Große Magellansche Wolke)
  • Vivitar AUTO WIDE-ANGLE f=24mm, 1:2 (Weitwinkel, z.B. für Polarlichter, die Milchstraße etc.)
  • MC Zenitar-M f=16mm, 1:2,8 (Überweitwinkel “FISH-EYE” z.B. für die Perseiden)
  • Asahi Optics Takumar f=135, 1:3,5
  • LidlScope 70/700 “SkyLux”  (z.B. für Sonnenbeobachtung)
  • Russentonne Rubinar f=500, 1:5.6   —> schlechte Qualität –> verkauft
  • und seit dem 1.11.2016 auch noch die sog. “Wundertüte” Beroflex, aber mit f=300mm, 1:4,0

Als Optiken für die Altair GP-CAM habe ich erst einmal:

  • Die mitgelieferte sog. “Meteorlinse”: This is a CS lens f=2.1mm    f/1.6   FOV 150 Grad
  • Eine zusätzlich als Sucher gekaufte f=12mm  f/1.2  FOV 17 x 22 Grad

Fernauslöser – Remote Control – für die Sony NEX-5R

In der Astrofotografie ist es erforderlich die Kamera erschütterungsfrei auszulösen.Das kann mit Hilfe spezieller Gerate (Fernauslöser) oder auch per Software von einem Computer erfolgen.

Außerdem kann es sinnvoll sein auch weitere Funktionen der Kamera per Software “Remote Control” zusteuern.

Fokussierung

Wir müssen das Teleskop bzw. das Foto-Objektiv so einstellen, das der Fokus genau in der Bildebene liegt und die astronomischen Beobachtungsobjekte “scharf” sind.

Astrofotografie für Einsteiger: Wie fokussiere ich mein Bild?

Montierungen – Stative – Nachführung

Zur Nachführung bei der Astrofotografie gibt es viele Möglichkeiten

Auffinden von Beobachtungsobjekten – Sucher

Oft ist es garnicht so einfach das gewünsche Beobachtungsobjekt im Gesichtsfeld von Kamera oder Teleskop einzustellen.

Beobachtungsorte – Lichtverschmutzung

Beobachtungsplanung

Welche Beobachtungsobjekte mit welchem Gerät zu welcher Zeit an welchem Ort?

Astrofotografie für Einsteiger: Welche Objekte kann ich fotografieren?

Bildbearbeitung

  • Stacken
  • Stretchen
  • Farbstich
  • Vignettierung
  • Farbrauschen
  • Gradienten
  • xyz

Meine Artikel zum Thema Astronomie

xxx

Astrofotografie: FITS Header

Gehört zu: Astrofotografie
Siehe auch: FITS FormatMetadaten, Fitswork, Stacking, Platesolving, Deep Sky Stacker, Astro Pixel Processor, N.I.N.A., SiriL

Stand: 28.9.2023

Der FITS Header

Das beliebteste Dateiformat für Astrofotos ist das FITS-Format, welches von der NASA entwickelt wurde und von der IAU empfohlen wird.

Astro-Kameras erzeugen oft direkt Bilddateien im FITS-Format; beispielsweise macht das meine Astro-Kamera ZWO ASI294MC Pro so.

Ein besonderer und sehr wichtiger Teil bei Fotos im FITS-Format ist der sog. FITS-Header, in dem wichtige sog. Metadaten über das Astrofoto gespeichert werden. Die Einheiten im FITS Header nennen Spezialisten auch HDUs (=Header Data Units).

Im FITS Header steht u.a.:

  • Name des Beobachtungsobjekts
  • Ort der Beobachtung
  • Aufnahmedatum
  • Belichtungszeit
  • Brennweite
  • etc.

Wem der Inhalt des FITS-Headers egal ist, braucht nicht mehr weiterzulesen.

Die Einzelaufnahmen (Sub Exposures) bei solchen Kameras werden also im FITS-Format (mit FITS Header) gespeichert, aber dann kommt die Stacking-Software und macht ein “Summenbild” aus den Einzelbildern. Sofort erhebt sich die Frage, ob denn im FITS-Header des Summenbildes auch alle relevanten Informationen aus den FITS-Headern der Einzelbilder übernommen werden.

Betrachten der Daten im FITS Header

Praktisch jede Software, die Bilddateien im FITS-Format bearbeiten kann, hat auch irgendwo eine Anzeigemöglichkeit für die Daten des FITS Headers. Beispiele: Fitswork, SiriL

Editieren der Daten im FITS Header

Wenn man aber selber Veränderungen am FITS Header vornehmen möchte (weil z.B. durch Stacking-Software Informationen verloren gingen) gibt es sogut wie garnichts.

Eine Software, die ich dafür gefunden habe ist F4W2HDU, was aber sehr kryptisch arbeitet und auch Beschränkungen hat.

Es soll noch eine weitere Software mit dem Namen WCSTools geben.

Für Suchen mit Tante Google würde ich den Suchbegriff “WCS-FITS” probieren.

Der FITS Header nach der Einzelaufnahme

Als erstes machen wir mit einer Aufnahme-Software Einzelaufnahmen. Die dazu benutzte Software schreibt einiges in den FITS Header.

Als solche Aufnahme-Software (FITS Header: SWCREATE) habe ich im Einsatz:

Viele wichtige Metadaten scheibt die Aufnahme-Software gleich in den FITS Header jedes Einzelfotos. Teilweise sind dies Eigenschaften von verbundenen Geräten,  Einstellungen die in der Aufnahme-Software gemacht wurden (z.B. über Profile) oder Daten der Einzelaufnahme gemäß eines Aufnahmeplans (Sequence) oder etc. etc. pp.

Beispiele von FITS-Headern, die meine Aufnahme-Software geschrieben hat, habe ich nach unten verschoben. Einen Vergleich zeigt folgende Tabelle:

Tabelle 1: FITS-Header und Aufnahme-Software

Metadatum FITS Header APT SharpCap N.I.N.A.
Name der Aufnahmesoftware SWCREATE Konstante Konstante Konstante
Name des Beobachters OBSERVER aus Settings aus Settings Nein
Name des Beobachtungsobjekts OBJECT Eingabe Nein “Snapshot” oder Target aus Sequence
Ort der Beobachtung SITELAT, SITELONG Eingabe Nein, aber OBSLAT, OBSLOG Eingabe
Datum der Beobachtung
The UTC date and time at the start of the exposure
DATE-OBS System Clock System Clock System Clock
Name der Kamera INSTRUME Eingabe Eingabe Eingabe
Pixel Size XPICSZ, YPICSZ Eingabe Eingabe Eingabe
Belichtungszeit EXPTIME Eingabe Eingabe Eingabe
Gain/ISO GAIN Eingabe Eingabe Eingabe
Name des Teleskops bzw. des Fotoobjektivs TELESCOP Eingabe aus Settings Eingabe
Brennweite FOCALLEN Eingabe Nein Eingabe
Equinoktikum EQUINOX Nein aus ASCOM-Teleskop aus ASCOM-Teleskop
Rektaszension OBJCTRA aus ASCOM-Teleskop aus ASCOM-Teleskop aus ASCOM-Teleskop
Deklination OBJCTDEC aus ASCOM-Teleskop aus ASCOM-Teleskop aus ASCOM-Teleskop

Je nachdem, wie die verwendete Montierung mithilfe der Aufnahme-Software auf das Beobachtungsobjekt gefahren wurde (z.B. GOTO), kennt die Aufnahme-Software die Himmelskoordinaten des Beobachtungsobjekts (im Pointing-Modell des ASCOM-Treibers der Montierung) und schreibt diese ebenfalls in den FITS Header als:

  • OBJCTRA
  • OBJCTDEC

Siehe dazu auch: https://forums.sharpcap.co.uk/viewtopic.php?t=734

Dabei bedeutet C2A  “Computer aided Astronomy” und ist ein Planetariumsprogramm (Link: http://www.astrosurf.com/c2a/english/)

Der FITS Header nach dem Stacken

Es gibt ja verschiedene Software, die man zum Stacken verwenden kann. Dabei gibt es einige Unterschiede beim eigentlichen Stacken (Kalibrieren, Registrieren und Stacken), aber auch Unterschiede bei der Behandlung der FITS Header.

Generelle Metadaten, die ich gerne im Summenbild behalten möchte sind:

Tabelle 2: FITS Header und Stacking-Software

Metadatum FITS Header DSS SiriL 1.2.0
Name der Software SWCREATE nein, stattdessen SOFTWARE nein, stattdessen PROGRAM
Name des Beobachters OBSERVER übernimmt aus erstem Bild
(Text aber nur bis zum ersten Blank)
übernimmt aus erstem Bild
Name des Beobachtungsobjekts OBJECT nein übernimmt
Ort der Beobachtung SITELAT, SITELONG übernimmt nicht unterstützt
Datum der Beobachtung
The UTC date and time at the start of the exposure
DATE-OBS nein übernimmt aus erstem Bild
Name der Kamera INSTRUME übernimmt übernimmt
Pixel Size XPICSZ, YPICSZ nein übernimmt
Anzahl Einzelbilder STACKCNT nein Anzahl gestackter Einzelbilder
Gesamte Belichtungszeit EXPTIME Summe aus den Einzelbilder Summe aus den Einzelbildern
Gain/ISO GAIN übernimmt übernimmt
Name des Teleskops bzw. des Fotoobjektivs TELESCOP übernimmt übernimmt
Brennweite FOCALLEN nein übernimmt
Equinoktikum EQUINOX nein übernimmt
Rektaszension (hms) OBJCTRA übernimmt übernimmt
Deklination (dms) OBJCTDEC übernimmt übernimmt

Der FITS Header nach dem Plate Solving (WCS Koordinaten)

Mit dem Plate Solving werden ja die Koordinaten (Himmelskoordinaten Rektaszension und Deklination) des Fotos ermittelt sowie Drehwinkel und Abbildungsmaßstab.

Diese durch Platesolving ermittelten Daten werden als sog. WCS Koordinaten in den FITS Header geschrieben.

Plate Solving wird einerseits eingesetzt, um das Teleskop auf das gewünschte Beobachtungsobjekt zu positionieren (also vor der Aufnahme); ggf. mit SYNC und GOTO  etc. Andererseits können auch nach der Aufnahme diese durch Plate Solving ermittelten Daten wichtig sein z.B. für eine fotometrische Farb-Kalibrierung oder auch ganz einfach für Annotationen.

Bei SiriL sind solche WCS Koordinaten erforderlich, um ein Koordinatennetz und/oder Annotationen (Namen von DSOs und/oder Sternen) automatisch anzuzeigen.

Gültige WCS Koordinaten im FITS Header benötigen folgende Einträge:

  • Evtl. auch: PLTSOLVD=T (nicht F)
  • CTYPE1 = ‘RA—TAN’
  • CTYPE2 = ‘DEC–TAN’
  • CRPIX1 = 1
  • CRPIX2 = 1

Post Processing mit WCS Koordinaten

Falls im FITS Header gültige WCS Koordinaten gefunden werden, unterstützt bestimmte Software (z.B. SiriL) weitere Funktionen:

  • Photometric Color Calibration
  • Annotations: Star names, DSO names
  • Äquatoriale Koordinatenlinien: Rektaszension, Deklination

Beispiele von FITS-Headern

Beispiel: FITS-Header mit APT

SIMPLE = T / file does conform to FITS standard
BITPIX = 16 / number of bits per data pixel
NAXIS = 2 / number of data axes
NAXIS1 = 4144 / length of data axis 1
NAXIS2 = 2822 / length of data axis 2
EXTEND = T / FITS dataset may contain extensions
COMMENT FITS (Flexible Image Transport System) format is defined in ‘Astronomy
COMMENT and Astrophysics’, volume 376, page 359; bibcode: 2001A&A…376..359H
BZERO = 32768 / offset data range to that of unsigned short
BSCALE = 1 / default scaling factor
OBJECT = ‘M57 ‘ / The name of Object Imaged
TELESCOP= ‘EQMOD HEQ5/6’ / The Telescope used
INSTRUME= ‘ZWO ASI294MC Pro’ / The model Camera used
OBSERVER= ‘Dietrich Kracht’ / The name of the Observer
DATE-OBS= ‘2022-09-12T09:51:36’ / The UTC date and time at the start of the expo
HIERARCH CAMERA-DATE-OBS = ‘2022-09-12T09:51:36’ / The UTC date and time at the
EXPTIME = 0.002 / The total exposure time in seconds
CCD-TEMP= 23.5 / Temperature of CCD when exposure taken
XPIXSZ = 4.63 / Pixel width in microns (after binning)
YPIXSZ = 4.63 / Pixel height in microns (after binning)
XBINNING= 1 / Binning factor in width
YBINNING= 1 / Binning factor in height
XORGSUBF= 0 / Sub frame X position
YORGSUBF= 0 / Sub frame Y position
EGAIN = 1.00224268436432 / Electronic gain in e-/ADU
FOCALLEN= 50 / Focal Length of the Telescope in mm
JD = 2459834.91083333 / Julian Date
SWCREATE= ‘Astro Photography Tool – APT v.4.01’ / Imaging software
SBSTDVER= ‘SBFITSEXT Version 1.0’ / Standard version
SNAPSHOT= 1 / Number of images combined
SET-TEMP= 21. / The setpoint of the cooling in C
IMAGETYP= ‘Light Frame’ / The type of image
OBJCTRA = ’05 12 43′ / The Right Ascension of the center of the image
OBJCTDEC= ‘-03 29 58’ / The Declination of the center of the image
OBJCTALT= ‘8.2047 ‘ / Nominal altitude of center of image
OBJCTAZ = ‘252.5824’ / Nominal azimuth of center of image
AIRMASS = 7.00717254857843 / Air Mass value
SITELAT = ‘+53 00 00.000’ / The site Latitude
SITELONG= ‘+10 00 00.000’ / The site Longitude
GAIN = 120 / The gain set (if supported)
OFFSET = 8 / The offset/black level set (if supported)
BAYERPAT= ‘RGGB ‘ / The Bayer color pattern
END

Beispiel: FITS-Header mit SharpCap

SIMPLE = T / C# FITS: 09/12/2022 12:18:27
BITPIX = 16
NAXIS = 2 / Dimensionality
NAXIS1 = 4144
NAXIS2 = 2822
XBAYROFF= 0 /
YBAYROFF= 0 /
FRAMETYP= ‘Light ‘ /
SWCREATE= ‘SharpCap v4.0.9268.0, 32 bit’ /
DATE-OBS= ‘2022-09-12T10:18:27.3673948’ / System Clock:Est. Frame Start
DATE-AVG= ‘2022-09-12T10:18:27.3682758’ / System Clock:Est. Frame Mid Point
BAYOFFY = 0 /
FOCUSPOS= 5000 /
GAIN = 120 /
BLKLEVEL= 8 /
DATE-END= ‘2022-09-12T10:18:27.3691567’ / System Clock:Est. Frame End
BAYOFFX = 0 /
COLORTYP= ‘RGGB ‘ / Try GBRG if image upside down or R/B swapped.
FOCTEMP = 0 / CELCIUS
CCD-TEMP= 27.1 / C
YBINNING= 1 /
XBINNING= 1 /
YPIXSZ = 4.63 / microns, includes binning if any
XPIXSZ = 4.63 / microns, includes binning if any
EXPTIME = 0.001762 / seconds
ROWORDER= ‘TOP-DOWN’ /
BSCALE = 1 /
BZERO = 32768 /
EXTEND = T / Extensions are permitted
BAYERPAT= ‘RGGB ‘ / Try GBRG if image upside down or R/B swapped.
INSTRUME= ‘ZWO ASI294MC Pro’ /
END

Beispiel: FITS-Header mit N.I.N.A.

SIMPLE = T / C# FITS
BITPIX = 16 /
NAXIS = 2 / Dimensionality
NAXIS1 = 4144 /
NAXIS2 = 2822 /
BZERO = 32768 /
EXTEND = T / Extensions are permitted
IMAGETYP= ‘LIGHT’ / Type of exposure
EXPOSURE= 1.0 / [s] Exposure duration
EXPTIME = 1.0 / [s] Exposure duration
DATE-LOC= ‘2022-09-12T13:01:51.863’ / Time of observation (local)
DATE-OBS= ‘2022-09-12T11:01:51.863’ / Time of observation (UTC)
XBINNING= 1 / X axis binning factor
YBINNING= 1 / Y axis binning factor
GAIN = 120 / Sensor gain
OFFSET = 8 / Sensor gain offset
EGAIN = 1.00224268436432 / [e-/ADU] Electrons per A/D unit
XPIXSZ = 4.63 / [um] Pixel X axis size
YPIXSZ = 4.63 / [um] Pixel Y axis size
INSTRUME= ‘ZWO ASI294MC Pro’ / Imaging instrument name
SET-TEMP= -10.0 / [degC] CCD temperature setpoint
CCD-TEMP= 28.9 / [degC] CCD temperature
BAYERPAT= ‘RGGB’ / Sensor Bayer pattern
XBAYROFF= 0 / Bayer pattern X axis offset
YBAYROFF= 0 / Bayer pattern Y axis offset
USBLIMIT= 40 / Camera-specific USB setting
TELESCOP= ‘Canon’ / Name of telescope
FOCALLEN= 50.0 / [mm] Focal length
ROWORDER= ‘TOP-DOWN’ / FITS Image Orientation
EQUINOX = 2000.0 / Equinox of celestial coordinate system
SWCREATE= ‘N.I.N.A. 2.0.0.9001 ‘ / Software that created this file
END

Astronomie: Smart Telescopes

Gehört zu: Teleskope
Siehe auch: Orion ED80/600, ZWO ASI294
Stand: 11.9.2023

Smart Telescopes

Man spricht ja seit einiger Zeit von EAA (= Electronically Assisted Astronomy). Elektronik bei der Astrofotografie zu verwenden ist ja eigentlich eine völlig normale Sache, die wir seit über 20 Jahren verwenden: Digitale Kameras auf Computer-gesteuerten Montierungen (ASCOM, Goto, Platesolving,…), Stacking, Post-Processing etc.  Die Hersteller, die heute von EAA sprechen, meinen damit aber ihre neuen Produkte, die besondes einfach zu benutzen sind und damit eine viel größere Zielgrauppe ansprechen als die sehr spezialisierten klassischen Amateur-Astronomen mit ihrem teueren und komplizierten Gerätschaften.

Typische Produkte sind z.B.:

DWARF Lab AP24/100

ZWO Seestar S50

Unistellar: EvScope2

Typische Merkmale eines “Smart Teleskop” sind:

Kann sehr schnell (und damit quasi spontan) zum Einsatz kommen

Ist klein und leicht (“kompakt”) und kann somit gut auf Reisen mitgenommen werden

Ergebnisse können schnell “sofort” bestrachtet werden (Live Stacking) – also für Laien, Journalisten etc.

Ganz einfache Bedienung: Smartphone, Akku bzw. Batterien, WiFi

Automatisches (motorisiertes) Positionieren auf das gewünschte Objekt: Goto mit Objektkatalog und Platesolving

Motorisierte Alt-Az-Montierung mit Alt-Az-Nachführung

Autofokus (Motorfokus)

 

Das DWARF Lab 2

Preis: 600,00 Euro bei https://www.astroshop.de/teleskope/dwarflab-teleskop-ap-24-100-dwarf-ii-deluxe-edition/p,77491

Gewicht: 1,2 kg

Montierung: Alt-Az motorisch, Goto, Nachführung

Optik: Zwei Linsen (Tele & Weitwinkel)

Brennweite: f=100mm

Öffnung: D=24mm

Sensor: Sony IMX415 CMOS ohne Kühlung

Sensorgröße: 5.6 x 3.2 mm  mit 1932 x 1096 Pixel

Pixelgröße: 2,9µ ( bei 2×2 Binning) bzw. 1.45µ (bei 1×1 Binning)

Field of View: 3° mit der Tele-Linse, 50° mit der Weitwinkel-Linse

Belichtungszeiten: max. 15 Sekunden

Gain: ?

Fokus: AF, MF?

Stacking: Live Stacking  (kann auch nach der Aufnahme “normal” auf dem PC gemacht werden)

Dark Frames

Transfer der Bilddateien auf PC:  USB Mass Storage oder SD-Karte (alle Einzelfotos können übertragen werden)

Tau-Beschlag: ???

Filter: ???

Das ZWO SeeStar S50

Preis: 699,– bei https://www.apm-telescopes.net/de/zwo-seestar-s50-smart-teleskop-2

Gewicht: 3 kg

Montierung: Alt-Az motorisch, Goto, Nachführung (Field Rotation?)

Optik: apochromatisches Triplett

Brennweite: f=250mm

Öffnung: D=50mm

Sensor: Sony IMX462 CMOS ohne Kühlung

Sensorgröße: 1080 x 1920 Pixel  (5,57 x 3,13 mm)

Pixelgröße: 2.9 µ

Field of View:  1,3° x 0,7°

Belichtungszeiten:  10 Sekunden  (fest eingestellt)

Gain: ?

Fokus: AF nicht perfekt, MF soll kommen

Stacking: nicht perfekt

Dark Frames: Jedes Mal

Transfer der Bilddateien auf PC:  USB or WiFi  Storage Drive

Heizung gegen Tau-Beschlag

Filter: UV/IR Cut und sog. Light Pollution, was in Wirklichkeit ein Dual Narrow Band (Ha 20 nm, OIII 30nm) ist (homofokal)

 

Mathematik: Äquivalenzrelation

Gehört zu: Mathematik
Siehe auch: Gruppentheorie
Benutzt: Latex-Plugin für WordPress

Stand: 10.09.2023

Eine Äquivalenzrelation

Bei meiner Beschäftigung mit der Gruppentheorie bin ich auf das klassische Thema Äquivalenzklassen gestoßen.

Eine Äquivalenzrelation in der Mathematik ist ersteinmal eine “Relation”. Dann soll diese Relation inetwa die Eigenschaften haben, die wir von der klassischen Äquivalenz her kennen: Gleichheit oder Ungleichheit.

Allgemein: Was ist eine Relation?

Auf einer Menge M können wir eine Relation R einfach definieren als eine Teilmenge der geordneten Paare. Also

\( R \subseteq M \times M \\\)

So eine Relation wird dann Äquivalenzrelation genannt, wenn sie noch zusätzlich drei wichtige von der Gleichheitsrelation bekannten Eingenschaften besitzt: reflexiv, symmetrisch, transitiv.

Reflexiv: \( (a,a) \in R \text{ für alle } a \in M \\\)

Symmetrisch:  \( \text{Wenn } (a,b) \in R \text{ dann ist auch } (b,a) \in R \\\)

Transitiv: \( \text{Wenn } (a,b) \in R \text{ und } (b,c) \in R \text{ dann ist auch } (a,c) \in R \\\)

Wenn es aus dem Kontext klar ist, welche Relation gemeint ist, schreibt man auch einfach: \( a \sim b\text{  für } (a,b) \in R \)

Äquivalenzklassen

Wenn ich eine Äquivalenzrelation R auf einer Menge M habe, kann ich damit zu jedem Element m ∈ M eine Teilmenge von M definieren:

\( [m]_R =  \{ x \in M \,|\, (m,x) \in R \} \\\)

Diese Teilmenge nennt man Äquivalenzklasse von m (bezüglich der Relation R auf M). Wenn man zwei Äquvalenzklassen betrachtet, sind diese entweder identisch oder disjunkt.
Da jedes Element der Menge M auch in einer (genau einer) Äquivalenzklasse vorkommt, bilden die Äquivalenzklassen also eine (disjunkte) Partition von M.

Faktor-Mengen

Wenn wir die Menge der Äquivalenzklassen betrachten ist aus unserer ursprünglichen Relation dort die Gleichheitsrelation geworden.
Die Menge der Äquivalenzklassen zu einer Relation R über M bezeichnet man auch als Faktor-Menge oder Quotienten-Menge und schreibt:

\( M/R = \{ [m]_R \,|\,  m \in M \} \\ \)

Beispiele von Konstruktionen mit Hilfe von Faktormengen

Generell kann man mit diesem Mechanismus viele interessante mathematische Gebilde konstruieren…

Die Menge der ganzen Zahlen: \( \mathbb{Z} = (\mathbb{N}^2 \times \mathbb{N}^2) / R_1 \)
Wobei die Relation R1 definiert wird als: (n1, n2) ∼ (m1, m2) genau dann wenn n2 + m1 = m2 + n1

Die Menge der rationalen Zahlen: \( \mathbb{Q} = (\mathbb{Z}^2 \times \mathbb{Z}^2) / R_2 \)
Wobei die Relation R2 definiert wir als: (n1, n2) ∼ (m1, m2) genau dann wenn n2 · m1 = m2 · n1

Äquivalenzklassen in der Gruppentheorie

In der Gruppentheorie kann man mittels einer Untergruppe H einer Gruppe G sog.  “Cosets” zu jedem Element g aus G bilden:

\(  gN = \{ x \in G \, | \, \exists h \in H \text{ with } x = g \cdot h \} \\\)

Diese Cosets (deutsch: Nebenmengen) bilden eine disjunkte Überdeckung der Gruppe G.

Ich kann mir auch ganz einfach eine Äquivalenzrelation R definieren, die diese gleichen Nebenmengen als Äquivalenzklassen erzeugt. Dazu muss ich nur definieren, wann zwei Elemente x und y aus G  zueingabder in Relation stehen sollen…

Ich versuche es einmal mit: \( R = \{ (x,y) \, | \, \exists h \in H : h\cdot x = h \cdot y \} \\ \)

Ist das wirklich eine Äquivalenzrelation (1) und erzeugt sie tatsächlich die gewünschen Äquivalenzklassen (2)?

Ad (1): Als Äquivalenzrelation wäre zu überprüfen:

Reflexivität; d.h. ist (x,x) immer in R? Offensichtlich stimmt das.

Symmetrie: d.h. wenn (x,y) in R liegt, liegt dann auch (y,x) in R?

Wenn demnach (x,y) in R liegt, existiert ein h in H sodass hx = hy. Dann ist mit dem gleichen h aus H auch hy = hx. Also ist R symmetrisch.

Transitivität:

Wenn (x.y) und (y,z) in R liegen, so heisst das: Es gibt ein h1 und ein h2 in H sodass gilt: h1 x = h1 y und h2 y = h2 z.
Man könnte es mit h = h1 h2 versuchen, was bei einer kommutativen (abelschen) Gruppe funktionieren würde…

Vertiefung

YouTube-Video:https://www.youtube.com/watch?v=E8gItS9vGKg

YouTupe-Video zum Tensor-Produkt:https://www.youtube.com/watch?v=KnSZBjnd_74

Mathematik: Gruppentheorie

Gehört zu: Mathematik
Siehe auch: Standardmodell der Elementarteilchenphysik, Symmetrien, Äquivalenzrelation
Benutzt: Latex-Plugin für WordPress

Stand: 30.8.2023

Was ist eine Gruppe?

Bei meiner Beschäftigung mit dem Standardmodell der Elementarteilchen bin ich auf das klassische Thema der Gruppentheorie gestoßen.

Eine Gruppe in der Mathematik ist eine Menge mit einer “inneren” Verküpfung (die man gerne mit dem Symbol “+” schreibt) und die bestimmten, unten aufgeführten Axiomen genügt.

Die Verknüpfung

Die Menge bezeichnen wir mal mit M und nehmen dann zwei Elemente aus dieser Menge:

\( a \in M \) und \( b \in M \)

Dann soll die Verknüpfung (geschieben als +) von a und b wieder in der Menge M liegen:

\( a + b \in M \)

Die Axiome

Damit das ganze dann eine Gruppe ist, müssen folgende Axiome gelten:

Assoziativgesetz:

\( (a + b) + c = a + (b + c) \\ \)

Existenz eines “neutralen Elements” e, sodass:

\( \exists e \in M \space \forall a \in M: a + e = a \\\)

Existenz eines inversen Elements zu jedem Element der Gruppe:

\( \forall a \in M \space \exists b \in M : a + b = e \\ \)

Beispiel 1: Die ganzen Zahlen

Die Menge der ganzen Zahlen \(\mathbb{Z}\) mit der Addition als Verknüpfung bildet eine Gruppe.

Beispiel 2: Die Kleinsche Vierergruppe

Die Kleinsche Vierergruppe (nach Felix Klein 1849-1925) besteht aus vier Elementen, wobei jedes Element mit sich selbst invers ist.

Die Menge schreiben wir als:
V = {e, a, b, c}

Die Verknüpfung definieren wir über eine Verknüpfungstafel (auch Cayley Table genannt):

e a b c
e e a b c
a a e c b
b b c e a
c c b a e

Wie man leicht sieht, werden mit der so definierten Verknüpfung die Gruppenaxiome erfüllt.

Beispiel 3: Die komplexen Zahlen auf dem Einheitskreis

In der komplexen Zahlenebene \(\mathbb{C}\) ist er Einheitskreis einfach die Teilmenge S der komplexen Zahlen, die wir definieren als:

\(S = \{ z \in \mathbb{C} \space : \space  |z| = 1  \} \\ \)

Als Verknüpfung auf dieser Menge nehmen wir die Multiplikation der komplexen Zahlen; geometrisch können wir uns das als Drehungen vorstellen.

Damit wird das Ganze eine Gruppe.

Die Leute, die sich mit den verschiedenen Arten von “Drehungsgruppen” als Spezialgebiet beschäftigen, bezeichnen diese Gruppe auch gerne als U(1); wobei die “1” bedeuten soll, dass wir nur eine Drehachse haben und das “U” steht für “unitär”, was man gerne zu einer Verknüpfung (Abbildung) sagt, wenn die Länge gleich bleibt (“längentreu”) – allerdings müsste man dann den Begriff “Länge” noch definieren.

Solche Gruppen, die aus Drehungen bestehen, spielen später im Standardmodell der Elementarteilchenphysik eine wichtige Rolle. Wobei eine Drehung auch als sog. “kontinuierliche Symmetrie” bezeichnet wird.

Da solche Drehungen ja “kontinuierlich” (im Gegensatz zu Spiegelungen) um auch beliebig kleine Winkel stattfinden können, kommt man damit auch in das Gebiet der Differentialgeometrie und letztlich zum Begriff der Lie-Gruppen (nach Sophus Lie, 1842-1899).

Vergleiche hierzu auch das YouTube-Video von Josef Gassner: https://www.youtube.com/watch?v=zFhjF6sfY4o

Nur für Mathematiker:
Drehungen im n-dimensionalen komplexen Raum sind lineare Abbildungen und damit als eine spezielle Art von nxn-Matrizen darstellbar.
\(U(n) = \{ U \in \text{ nxn Matrix } | \space U^\dagger U = I \} \)
Die nxn-Matrizen werden auch “General Linear Group” genannt und man schreibt sie als: \(GL(n,\mathbb{C}) \), wobei man zusätzlich fordert: det(U)>0 damit jede Matrix U invertierbar ist und so \(GL(n,\mathbb{C}) \) eine Gruppe ist.

Direktes Produkt von Gruppen

Wenn wir zwei Gruppen G und H haben, können wir das sog. “Direkte Produkt” dieser zwei Gruppen bilden, indem wir von den Mengen das cartesische Produkt \(G \times H\) nehmen und eine Verknüpfung auf diesem cartesischen Produkt komponentenweise definieren.
Wenn wir die Verknüpfungen mit dem Zeichen “+” schreiben, wäre das also:

\((g_1,h_1) + (g_2,h_2) = (g_1+g_2,h_1+h_2) \text{ wobei } g_1, g_2 \in G \text{ und } h_1,h_2 \in H\\\)

Wobei uns klar ist, dass das Symbol “+” hier für drei verschiedene Verknüpfungen benutzt wird.
Die Menge \(G \times H\) ausgestattet mit der so definierten Verknüpfung bezeichnet man als “Direktes Produkt” der Gruppen G und H und schreibt das als \(G \oplus H\).

Physik: Tscherenkow-Strahlung

Gehört zu: Physik
Siehe auch: Elementarteilchen, Lichtgeschwindigkeit, Brechungsindex

Stand: 3.8.2023

Tscherenkow-Strahlung

auch: Cherenkov-Strahlung

Tscherenkow-Strahlung ist eine elektromagnetische Strahlung, die durch den Tscherenkow-Effekt entsteht. Benannt nach Pawel Alexejewitsch Tscherenkow (1904-1990), der  zusammen mit Kollegen 1934 diese Strahlung entdeckte. Nobelpreis 1958.

Der Tscherenkow-Effekt entsteht, wenn schnelle elektrisch geladene Teilchen (z.B. Elektronen) in ein Medium eintreten, in dem die Lichtgeschwindigkeit kleiner ist, als die Geschwindigkeit der Teilchen.

Der Tscherenkow-Effekt kann nur in Medien mit Brechungsindex n>1 auftreten, weil im Gegensatz zur Lichtgeschwindigkeit im Vakuum von c = 299 792,458 km/s z. B. die Lichtgeschwindigkeit in Wasser nur etwa c′ ≈ 225 000 km/s beträgt und so Teilchen dort schneller sein können als dort das Licht.

Die ausgesandte Strahlung entlang der Flugbahn beschreibt einen sogenannten Mach-Kegel. Das Tscherenkow-Licht ist somit das optische Analogon zum Überschallkegel, der entsteht, wenn Flugzeuge sich schneller als der Schall fortbewegen.

Wo kann man Tscherenkow-Strahlung beobachten?

Im Abklingbecken von Kernkraftwerken

In der Hochatmoshäre, ausgelöst durch kosmische Strahlung

Astronomie: Pulsar

Gehört zu: Astronomie
Siehe auch: Synchrotronstrahlung, Sternentwicklung, Kernfusion

Stand: 1.8.2023

Pulsare sind Neutronensterne

Der Zentralbereich eines massereichen Sterns kollabiert zu einem kleinen, sehr dichten Stern, den man Neutronenstern nennt.

Der typische Durchmesser eines solchen Neutronensterns ist ca. 20km. Da der Drehimpuls des ursprünglichen Sterns (genauer: des Zentralbereichs) erhalten bleibt, rotiert der Neutronenstern extrem schnell.

Durch das Kollabieren wird auch das Magnetfeld komprimiert und wird extrem stark (Millionen Tesla).

Da elektrisch geladene Teilchen sich nur längs der Feldlinien frei bewegen können, werden sie von dem Magnetfeld festgehalten. Nur an den magnetischen Polen können die geladenen Teilchen (Plasma) in einem kleinen Kegelbereich in den interstellaren Raum (sog. Jets) entkommen.

Das Plasma durchquert das starke inhomogene Magnetfeld und sendet deswegen Synchrotronstrahlung aus. Da die Richtung der Synchrotronstrahlung in Richtung der Plasma-Bewegung zeigt, geht sie also radial aus den magnetischen Polen heraus.

Pulsar

Wenn bei einem solchen Neutronenstern die Achse des Magnetfeldes identisch ist mit der Rotationsachse des Sterns, so ist die Richtung der Strahlung konstant und nur für Beobachter “sichtbar”, die sich genau in dieser Richtung befinden. Ein solcher Beobachter würde eine konstante Strahlung erhalten.

Wenn bei einem solchen Neutronenstern die Achse des Magnetfeldes aber gekippt ist zur Rotationsachse des Sterns…

Liegt die Erde im Strahlungskegel, empfängt sie wie von einem Leuchtturm regelmäßig wiederkehrende Signale. Beobachtbar sind dann diese Pulse.

Die Pulsperioden liegen typisch zwischen 0,0015 und 4,5 Sekunden,

Die Pulse werden vorwiegend im Radiobereich empfangen, einige Pulsare lassen sich aber auch im Röntgen- und Gamma- sowie im optischen Bereich nachweisen.

Geschichte

Jocelyn Bell Burnell (1943-) und ihr Doktorvater Antony Hewish (1924-2021) entdeckten den ersten Pulsar bei der Suche nach Radioquellen am 28. November 1967 am Mullard Radio Astronomy Observatory bei Cambridge. Die Signale pulsierten in einer ungewöhnlichen Regelmäßigkeit, so dass Bell und Hewish sie zunächst für ein künstliches Signal – eventuell einer extraterrestrischen Zivilisation – hielten (Little Green Man 1). Antony Hewish wurde 1974 für die Entdeckung der Pulsare mit dem Nobelpreis für Physik ausgezeichnet.

Astronomie: Synchrotron-Strahlung

Gehört zu: Physik
Siehe auch: Quantenmechanik, Relativitätstheorie, Elementarteilchen

Stand: 02.08.2023

Synchrotron-Strahlung

Wenn sich elektrisch geladene Teilchen (z.B. Elektronen) gleichförmig bewegen, geschieht nichts besonderes.

Wenn sich solche Teilchen (z.B. Elektronen) aber nicht gleichförmig bewegen, also bescheunigt werden, gebremst werden oder ihre Richtung verändern, dann entsteht elektromagnetische Strahlung; d.h. es werden Photonen abgestrahlt, die der Energiedifferenz entsprechen. Allgemein heisst so eine Strahlung “Bremsstrahlung”.

Abbildung 1: Bremsstrahlung (Wikipedia)

Bremsstrahlung

Abbildung 2: Bremsstrahlung (http://microanalyst.mikroanalytik.de/info1.phtml)

Klassische Bremsstrahlung

Ein klassische Anwendung dieses Effekts ist das Erzeugen von Röntgen-Strahlen. Dazu werden Elektronen beschleunigt und dann auf ein Stück Metall geschossen, wo sie durch das Coulomb-Feld der Metallatome abgebremst werden.

Relativistische Bremsstrahlung

Wenn man zu sehr hohen Energien (v > 0,9 c) kommt, kann man  relativistische Effekte nicht mehr vernachlässigen; man spricht dann von “relativistischen” Teilchen (z.B. Elektronen). Diese Art Bremsstrahlung nennt man “Synchrotron-Strahlung”; auch weil solche hohen Energien praktisch nur in Teilchenbescheunigern mit Magnetfeldern erzielt werden können.

Die Richtung dieser Synchrotron-Strahlung ist tangential zur Bahn des bewegten Teilchens – vorrangig nach vorne, aber auch etwas nach hinten.

Der Name Synchrotron-Strahlung

Man nennt das “Synchrotron-Strahlung”, weil diese Strahlung zu erst (1947) in Teilchenbeschleunigern, die man Sychrotron nannte, auftrat und nachgewiesen wurde. In einem solchen Teilchenbeschleuniger werden geladene Teilchen (z.B. Elektronen) durch Magnete so abgelenkt, dass ein Kreisbahn entsteht, was eine Beschleunigung bedeutet.

Stärke der Synchrotron-Strahlung

Je größer die Geschwindigkeitsänderung pro Zeiteinheit (also die Beschleunigung als Vektor) ist, desdo intensiver ist auch die Synchrotron-Strahlung, wobei ein breites Spektrum entsteht: vom Infrarot bis zum Röntgenbereich…

Da viele Elektronen unterschiedlich stark abgelenkt bzw. abgebremst werden, entstehen Photonen mit unterschiedlichen Energien. Die Energieverteilung der Photonen ist deswegen kontinuierlich und breit. Bremsstrahlung hat ein kontinuierliches Spektrum.

Wenn man besonders starke Synchrotron-Strahlung herstellen will, reichen “einfache” Teilchenbescheuniger, wie Synchrotrons den Forschern aber nicht mehr aus. Man muss dann die bewegten geladenen Teilchen durch  Parcours von starken Magneten schicken, sodass sie bei diesen vielen Richtungswechseln tausendmal stärker als in den Kurven eines klassischen Ringbeschleunigers strahlen.

Synchrotron-Strahlung in der Astronomie

Synchrotronstrahlung gibt es nicht erst seit es Teilchenbeschleuniger gibt, sondern auch im Weltall gibt es Quellen.

In der Astronomie beobachtet man Synchrotronstrahlung immer dann, wenn sich ein heißes Plasma in einem Magnetfeld befindet. Beispiele für kosmische Synchrotronquellen sind Pulsare, Radiogalaxien und Quasare.

Bei astronomischen Synchrotronquellen, kann es auch weniger energetische Synchrotronstrahung geben, die dann Frequenzen im Radiobereich hat.

Familie: Software Ahnenblatt

Gehört zu: Familie
Siehe auch: Archivieren

Stand: 31.07.2023

Mein Bruder Rainer, hatt vor längerer Zeit angefangen, etwas Ahnenforschung zu betreiben.

Dazu hat er seinerzeit u.a. die Software “Ahnenblatt” eingesetzt.

Bezugsquelle: https://www.ahnenblatt.de/download/

Die Informationen speichert die Software Ahnenblatt in Dateien mit der Endung “*.ahn”.
Rainers Ahnenblatt-Datei liegt bei mir im Ordner: C:\Ablage\Familie\Rainer

Bilder der Pesonen im Ahnenblatt liegen bei mit im Ordner: C:\ArchivKopie\Pictures\Album_Ahnenblatt

Astronomie: Raumsonden

Gehört zu: Astronomie
Siehe auch: Lagrange-Punkte, Swing-by-Manöver, Himmelsmechanik

Stand: 26.7.2023

Raumsonden gestartet 2023

Kürzlich gestatet: EUCLID

Gestartet am 1.7.2023 von einem ESA-Konsortium mit einer Falcon-9 von Cape Caneveral

Zielort: Halo-Bahn um den Langrange-Punkt L2 ca. 30 Tage nach dem Start

Aufgabe:
Kartierung der räumlichen Verteilung von mehreren Milliarden Galaxien. Mit den Daten erhoffen sich die sechs aus Deutschland beteiligten Institute des internationalen Euclid-Konsortiums Aufschluss über den Einfluss der dunklen Materie und dunklen Energie auf die Struktur des Universums.

Aktuell: JUICE

Gestartet am 14.4.2023 von der ESA mit einer Ariane 5 vom Weltraumbahnhof Kourou

Zielort: Jupiter-Orbit im Juli 2031

Aufgabe: Erforschung der Jupiter-Monde Europa, Ganymed

Astronomie: Flächenhelligkeit

Gehört zu: Helligkeit, Astronomie
Siehe auch: Gegenschein, Physikalische Größen, Lichtverschmutzung, SQM
Benutzt: Latex-Plugin

Stand: 16.07.2023

Praxis: Welche dunklen Objekte kann ich am Himmel noch erkennen?

Wenn man  anhand von Zahlen und Formeln herausbekommen will, ob man ein Objekt am Himmel mit dem bloßen Auge oder einer Fotokamera erkennen kann (sei es mit Teleskop oder anders), kann das nach den untenstehenden Formeln einigermaßen “fummelig” werden.

Alternativ hilft immer: ausprobieren.

Vergleiche auch: https://www.astronomie.de/einstieg-in-die-astronomie/sterne-beobachten/wahrnehmung-von-flaechenhaften-objekten

Punktförmige Lichtquellen

Von einem Stern der Scheinbaren Helligkeit m (gemessen in Magnituden) geht ein Lichtstrom Φv (gemessen in Lumen) aus von:

\( \Large \Phi_v = 10^{(-m-14.2064)/2.5}  \enspace Lumen \\ \)

Ein Stern, von dem ein Lichtstrom Φv (in Lumen) ausgeht, erscheint in einer Scheinbaren Helligkeit m (gemessen in Magnituden) von:

\( \Large m = -14.2064 – 2.5 \log{\Phi_v} \enspace mag \)

Addition von punktförmigen Helligkeiten

Zur Addition von Helligkeiten muss man eine lineare Skala verwenden. Die Scheinbaren Helligkeiten (logarithmische Skala in Magnituden) werden dafür in Lichtströme (lineare Skala in Lumen) umgerechnet.

Man sollte im Kopf behalten, dass die Magnituden-Skala eine logarthimische Teilung hat und so skaliert ist, dass 5 Magnituden einen Helligheitsunterschied vom Faktor 100 ausmachen.

Bei einer engen Konjunktion zweier Planeten oder auch bei Doppelsternen verschmelzen die Einzel-Helligkeiten zu einer Gesamt-Helligkeit einer punktförmigen Lichtquelle.

Nehmen wir als Beispiel die enge Konjunktion von Jupiter und Saturn vom 21.12.2020.

  • Die scheinbare Helligkeit des Jupiters war: -1.97 mag  = 1.2748 10-5 Lumen als Lichtstrom
  • Die scheinbare Helligkeit des Saturns war: 0,63 mag = 0.1163 10-5 Lumen als Lichtstrom
  • Diese Lichströme  kann man addieren und bekommt als Summe also 1.3911 10-5 Lumen.
  • Das entspricht einer (scheinbaren) Gesamt-Helligkeit von zusammen -2.06 mag.

So können wir also die Gesamthelligkeit aus den Einzelhelligkeiten mehrerer punktförmiger Lichtquellen (z.B. enge Konjunktion, Doppelstern etc.) ermitteln.

Zur Addition von Helligkeiten kann man natürlich irgendeine lineare Helligkeits-Skala nehmen, es muss nicht der Lichtstrom in Lumen sein.

Beispielsweise:

\( \Large m_{1+2} = -2.5 \cdot \log(10^{-\frac{m_1}{2.5}} + 10^{-\frac{m_2}{2.5}}) \)

Was ist Flächenhelligekeit?

Wenn ein astronomisches Objekt nicht mehr als punktförmige Lichtquelle behandelt werden kann, verwendet man die physikalische Größe “Flächenhelligkeit”. Das ist ganz einfach:

Flächenhelligkeit = Helligkeit / Fläche.

Mit “Helligkeit” ist die sog. “Gesamthelligkeit” gemeint, also die Helligkeit des Objekts wenn es punktförmig wäre.
Normalerweise betrachten wir  die “scheinbaren” Helligkeiten; also so wie sie uns von der Erde aus erscheinen.

Genaugenommen hängt die Fläche eines Objekts von seiner Form ab:

  • Rechteck: Höhe x Breite
  • Kreis: Pi * Radius²
  • Ellipse:  Pi * Große Halbachse * Kleine Halbachse
  • etc.

Eine so berechnete Flächenhelligkeit ist einfach ein Durchnittswert. Wenn das Objekt eine Struktur hat, sind Teile heller und Teile dunkler.

Maßeinheiten allgemein (SI)

Als Helligkeit messen wir den Lichtstrom Φv (in Lumen) oder besser die Beleuchtungsstärke Ev (in Lux = Lumen/m²).
Der Astronom nimmt stattdessen Magnituden (s.u.).

Wenn wir die Fläche als Raumwinkel in Sterad messen (der Astronom nimmt stattdessen arcsec²), erhalten wir als Maßeinheit für die Flächenhelligkeit Lux/Sterad = Candela/m².

Näheres dazu unter Helligkeiten.

Maßeinheiten in der Astronomie

Die klassischen physikalischen Größen in der Astronomie sind:

  • Helligkeit eines Objekts misst man  gern in sog. Magnituden (mag) – auch Größenklassen genannt
  • Fläche am Himmel misst man gerne in Quadrat-Bogensekunden (arcsec²) oder in Quadrat-Bogenminuten (arcmin²)

Damit würde man eine Flächenhelligkeit in mag/arcsec² oder mag/arcmin² ausdrücken. Man muss dann fürchterlich aufpassen, ob Bogenminuten oder Bogensekunden gemeint sind.

Der Amerikaner schreibt auch gerne MPSAS = Magnitudes per square arc second.

Beispiele:

  • Die Himmelshelligkeit in der Stadt Hamburg beträgt ca. 18 mag/arcsec²   (siehe auch: Lichtverschmutzung)
  • Die Flächenhelligkeit von M31 beträgt 13.31 mag/arcmin² (laut Stellarium)
  • Die Flächenhelligkeit von M101 beträgt 14.86 mag/arcmin² (laut Stellarium)
  • Die Flächenhelligkeit des Gegenscheins beträgt ca. 22,17 mag/arcsec2

Flächige Lichtquellen

Bei einer flächigen Lichtquelle verteilt sich die Gesamthelligkeit über die Fläche der Lichtquelle. In astronomischen Werken wird gerne die Gesamthelligkeit von Objekten ausgewiesen, seltener aber auch deren Flächenhelligkeit.

Wenn  wir die Flächenhelligkeit selber ausrechnen wollen, müssen wir die Fläche der Lichtquelle kennen.
Für die Verteilung der Gesamthelligkeit (m) auf die Fläche brauchen wir statt der logarithmischen Skala eine lineare Skala. Dafür können wir z.B. den Lichtstrom (Φv) in Lumen nehmen. Also (Formel s.o.):

\( \Large \Phi_v = 10^{(-m-14.2064)/2.5}  \enspace Lumen \\ \)

Für das Beispiel M31 bekommen wir mit:

  • Gesamthelligkeit: 3,4 mag    (laut Stellarium)
  • Größe: 3° 9′ x 1° 2′ = 189 arcmin x 62 arcmin  (laut Stellarium)

Die Fläche ist inetwa eine Ellipse mit den Halbachsen a=94,5 arcmin und b=31 arcmin. Damit ist die Fläche π * a * b = 9203,3 arcmin²
Der Lichtstrom ist: Φv = 10 ((-3,4 – 14.2064)/2.5) = 10 -7.04256 = 9,0665 10-8 Lumen.
Diesen Lichtstrom verteilen wir nun (gleichmäßig) auf die Fläche von 9203,3 arcmin².
Das macht also 9,0665 10-8 / 9203,3 = 9,851358 10-12  Lumen/arcmin²

Der Astronom hat aber gerne Magnituden (logarithmische Skala) statt Lumen (lineare Skala), also rechnen wir:
\( m = -14.2064 – 2.5 \log{\Phi_v} \enspace mag \)

Bmag = -14.2064 – 2.5 * (0,9934961017 – 12) =  13,31  mag/arcmin²

Für das Beispiel M101 bekommen wir mit:

  • Gesamthelligkeit: 7,90 mag    (laut Stellarium)
  • Größe:  28,8 arcmin x 26,9 arcmin    (laut Stellarium)

Die Fläche ist inetwa kreisförmig mit einem Radius von. ca. 14 arcmin. Damit ist die Fläche π * r² = 615,75 arcmin²
Der Lichtstrom ist: Φv = 10 ((-7,9 – 14.2064)/2.5) = 10 -8,84256 = 1,43694452 10-9 Lumen.
Diesen Lichtstrom verteilen wir nun (gleichmäßig) auf die Fläche von 615,75  arcmin².
Das macht also 1,43694452 10-9 / 615,75 =   2,3336492 10-12  Lumen/arcmin²

Der Astronom hat aber gerne Magnituden (logarithmische Skala) statt Lumen (lineare Skala), also rechnen wir:

Bmag = -14.2064 – 2.5 * (0,3680355724 – 12) =  14,87  mag/arcmin²

Formel für Flächenhelligkeiten

Da wir zur Ermittlung der Flächenhelligkeit ja “nur” die Gesamthelligeit durch die Anzahl Flächeneinheiten (arcmin²) dividieren müssen, können wir uns zu Nutze machen, dass  bei einer logarithmischen Skala die Division einer Subtraktion entspricht (minus minus = plus) und wir erhalten eine einfache Formel:

Bei einer Gesamthelligkeit von m (in Magnituden) und einer Fläche von F  haben wir eine Formel zur Berechnung der Flächenhelligkeit:

\( B_{mag} = m  + 2.5 \log{F}  \\ \)

Wenn wir die Fläche F in Einheiten von arcmin² einsetzen, ergibt die obige Formel die Flächenhelligkeit in mag/arcmin². Wenn wir die Fläche F in arcsec² angeben, erhalten wir die Flächenhelligkeit in mag/arcsec².

Für unsere Beispiele erhalten wir damit:

M31 (m = 3,4  F = 9203,3 arcmin² = 33131880 arcsec²)

  • Flächenhelligkeit: 3,4 + 2,5 * 3,963943579 = 3,4 + 9,9098589475 = 13,31 mag/arcmin²   (13,31 laut Stellarium)
  • Flächenhelligkeit: 3,4 + 2,5 * 7,5202460797 = 3,4 +18,8006151993 = 22,20 mag/arcsec²

M101  (m = 7,9  F = 615,75 arcmin² = 2216700 arcsec²)

  • Flächenhelligkeit:  7,9 + 2,5 * 2,7894044205 = 7,9 + 6,9735110513 = 14,87 mag/arcmin²  (14,86 laut Stellarium)
  • Flächenhelligkeit:  7,9 + 2,5 * 6,3457069213 = 7,9 + 15,8642673033 = 23,76 mag/arcsec²

Addition von flächigen Lichtquellen

Hier geht es typischerweise darum die Flächenhelligkeit des Himmels und die Flächenhelligkeit eines flächigen Beobachtungs-Objekts zu betrachten.

Früher dachte ich, dass ein Beobachtungsobjekt in der Helligkeit des Hintergrunds verschwindet, wenn es zu schwach ist. Es ist aber so, dass sich die beiden Flächenhelligkeiten immer addieren. Das Beobachtungsobjekt hat dann effektiv als Flächenhelligkeit die Summe der beiden Flächenhelligkeiten und die Frage ist nur, ob sich  diese Summen-Flächenhelligkeit noch genug von der Flächenhelligkeit des Himmels abhebt. Ob es da also genügend “Kontrast” gibt.

Bevor wir zwei Flächenhelligkeiten einfach so addieren, solten wir aber sicherstellen, dass beide in gleichen Masseinheiten angegeben sind; also beispielsweise beide in mag/arcsec².

Der Himmel in Hamburg-Eimsbüttel: 18 mag/arcsec²

Dann können wir einfach addieren für M31 (habe ich mit Excel gemacht):

m = -2,5 * log(10^-22,20/2,5  + 10^-18,00/2.5) = -2,5 * log( 10^-8,88  +  10^-7,2) = -2,5 * log( 1,31826E-9 + 6,30957E-8) = -2,5 * log(6,441396E-8) = -2,5 * -7,191020 = 17,977550

Und für M101 erhalten wir auf gleiche Weise (habe ich mit Excel gemacht):

m = -2,5 * log(10^-23,76/2,5  + 10^-18,00/2.5) = -2,5 * log( 10^-9,504  +  10^-7,2) = -2,5 * log(3,133286 E-10 + 6,30957E-8) = -2,5 * log(6,340906E-8) = -2,5 * -7,197849 = 17,994622

Beispielsweise (FH = Flächenhelligkeit):

Objekt FH in mag/arcmin² FH in mag/arcsec² Himmel in mag/arcsec² FH Summe in mag/arcsec²
M31 13,31 22,20 18,00 17,9775
M101 14,87 23,76 18,00 17,9946

Bei einem Hamburger Großstadt-Himmel von 18 mag/arcsec² ist also

  • M31 gerade mal 0,0225 mag heller als der Himmelshintergrund
  • M101 gerade mal 0,0054 mag heller als der Himmelshintergrund

Wo da bei visueller Beobachtung die Grenzen sind, weiß ich nicht.
Bei fotografischer Beobachtung kann ich das Foto so lange belichten, bis das Histogramm sich vom linken Rand löst und dann das Histogramm so bearbeiten, dass M101 knapp sichbar wird.

Der Himmel in Handeloh 21 mag/arcsec²

Wenn wir das Gleiche nicht in Hamburg City, sondern in Handeloh machen, sieht das schon ganz anders aus.
In Handeloh gehen wir mal von einer Himmelshelligheit von 21 mag/arcsec² aus.

Damit ergibt sich (FH Summe mit Excel errechnet):

Objekt FH in mag/arcsec² Himmel in mag/arcsec² FH Summe in mag/arcsec²
M31 22,20 21,00 20,6894
M101 23,76 21,00 20,9177

Unter einem dunklerem Himmel von 21 mag/arcsec² ist also

  • M31  schon 0,3 mag heller als der Himmelshintergrund
  • M101 schon 0,1 mag heller als der Himmelshintergrund

Conclusio: Nicht ist besser als ein noch dunklerer Himmel