Astronomie: Expansion des Universums

Gehört zu: Kosmologie
Siehe auch: Entfernungsbestimmung, Friedmann-Gleichung

Expansion des Universums

Youtube Video Josef Gassner vAzS (69): https://youtu.be/8avR8-2ndOA

Edwin Hubble (1889-1953) hatte 1929 durch Beobachtungen herausgefunden, dass Galaxien eine Rotverschiebung aufweisen – und zwar um so mehr, je weiter sie von uns entfernt sind. Die Rotverschiebung (Symbol z) misst man unmittelbar im Spektrum, die Entfernung (Symbol R) konnte Hubble zunächst durch die Methode der Delta-Cephedien als Standardkerzen vornehmen. Das nach ihm benannte Hubble-Gesetz ist also:

Rotverschiebung = const. * R

Wenn man die Rotverschiebung als verursacht durch eine Art “Fluchtgeschwindigkeit” v  versteht, kann man also schreiben:

v = H * R

Wegen der Grundannahmen von Homogenität und Isotropie, geht man nicht davon aus, das wir im Mittelpunkt dieser Bewegungen stehen, sonden dass eine allgemeine und allseitige Längen-Skalierung stattfindet. Alle Längen (Symbol R) im Universum verändern sich mit der Zeit mit einem Faktor, was man als Skalenfaktor a(t) beschreibt. Eine Länge R0 zum Zeitpunkt t=0 ist also zum Zeitpunkt t:

R(t) = a(t) * R0

oder: R0 = R(t) / a(t)

Dies ist also eine Ausdehnung (oder Kontraktion) des Raumes allein. Die Zeit ist von diesem Skalenfaktor (des Raumes) nicht unmittelbar betroffen. Es wäre also falsch zu sagen, die Raumzeit dehnt sich aus.

Um die Geschwindingkeit zu bekommen, differenziere ich obige Gleichung nach der Zeit (t):

\( v = \dot{R} = \dot{a}(t) \cdot R_0  \)

Nun setzte ich R0 = R(t) / a(t) ein und erhalte:

\( v = \dot{R} = \dot{a}(t) \cdot \frac{R(t)}{a(t)}  \)

und damit:

\( v = \frac{\dot{a}(t)}{a(t)} R(t) \)

Was genau das Hubble-Gesetz ist, mit der Hubble-Konstanten:

\( \displaystyle \frac{\dot{a}(t)}{a(t)}=H(t) \)

Als gegeben gilt für uns also die Expansion des Universums, die durch den Hubble-Parameter H(t) bzw. den Skalenfaktor a(t) beschrieben ist.

Diese Expansion des Universums mit dem Hubble-Gesetz hatte George Lemaître (1894-1966) im Jahre 1927 bereits theoretisch (also ohne praktische Beobachtungen) aus den Einsteinschen Feldgleichungen abgeleitet. Da Lemaître also bereits zwei Jahre vor Hubble den Zusammenhang zwischen Rotverschiebung und Entfernung herausbekommen hatte nennt man das Hubble-Gesetz auch machnmal “Hubble-Lemaître-Gesetz”.

Rotverschiebung

In den Spektren von vielen Galaxien kann man eine Verschiebung der Linien zum Roten hin beobachten.

Als Rotverschiebung z definiert man den Quotienten der Differenz zwischen der Wellenlänge im Beobachtersystem (obs) und derjenigen im Emittersystem (em):

\(\displaystyle z = \frac {\lambda_{obs} – \lambda_{em}}{\lambda_{em}} \)

Edwin Hubble interpretierte die Rotverschiebung z als Dopplereffekt hervorgerufen durch eine Fluchtgeschwindigkeit v der Galaxien.

\(\displaystyle z = \frac{v}{c} \)

Edwin Hubble konnte 1929 nachweisen, dass diese Rotverschiebung mit der Entfernung R der Galaxien zunimmt.  Es waren zwar nur 18 Galaxien, die Hubble untersuchte, doch mit wachsender Zahl hat sich dieses Ergebnis bestätigt. Dieser Zusammenhang ging als Hubble-Effekt in die Kosmologie ein und wird auch zur Entfernungsbestimmung benutzt.

\(\displaystyle v = H_0 \cdot R \)

Wenn man die Rotverschiebung als Effekt der Expasion des Universums mit dem Skalenfaktor a(t)  interpretiert ist also:

\(\displaystyle z = \frac{\lambda_{obs} – \lambda_{em}}{\lambda_{em}} = \frac{\lambda_{obs}}{\lambda_{em}} – 1 = \frac{1}{a} – 1\)

Das Hubble-Gesetz zeigt einen linearen Zusammenhang zwischen Fluchtgeschwindigkeit v (bzw. der Rotverschiebung z) und der Distanz R mit einer Proportionalitätskonstante, der Hubble-Konstanten H0. Die Linearität hat jedoch nur im nahen Universum ihre Gültigkeit, nämlich bis zu einem maximalen Abstand von gut 400 Mpc oder z  kleiner als 0,1. Für weiter entfernte Objekte bricht die Linearität zusammen.

Bei größeren Geschwindigkeiten (d.h. relativ zur Lichtgeschwindigkeit) müssen zusätzlich die relativistischen Effekte berücksichtigt werden. Dazu schreibe ich etwas in den separaten Blog-Posts   “Robertson-Walker-Metrik” und “Friedmann-Gleichung“.

Messung der Hubble-Konstante

Die nach Edwin Hubble benannte Hubble-Konstante, beschreibt die gegenwärtige Expansionsgeschwindigkeit des Universums.

Messungen zu Beginn des 21. Jahrhunderts ergaben Werte zwischen \(68 \frac{km}{s \cdot Mpc}\) und \(74 \frac{km}{s \cdot Mpc}\) .

Aus der Wikipedia https://de.wikipedia.org/wiki/Hubble-Konstante können wir entnehmen:

Unter Verwendung von Daten des Spitzer-Weltraumteleskops, basierend auf Beobachtungen im 3,6-μm-Bereich (mittleres Infrarot) zur Neukalibrierung der Cepheiden-Distanzskala, erhielten die Wissenschaftler des Carnegie Hubble Programs neue, hochgenaue Werte für die Hubble-Konstante. Dadurch konnte dieser nun um einen Faktor 3 genauer bestimmt werden. Er beträgt (74,3 ± 2,1) km/(s·Mpc). Damit hat die Hubble-Konstante nur noch eine Unsicherheit von drei Prozent (Stand 16. August 2012).

\({\displaystyle H_{0}\approx (74{,}3\pm 2{,}1)\ {\frac {\mathrm {km} }{\mathrm {s\cdot Mpc} }}} \)

Die Hubble-Sphäre ist der um den Beobachter gedachte kugelfömige Teil des Universums ausserhalb dessen sich Objekte aufgrund der Expansion des Universums mit Überlichtgeschwindigkeit entfernen. Diese Hubble-Sphäre ist also das beobachtbare Universum.

Der “proper” Radius einer Hubble-Sphäre (genannt Hubble-Radius oder Hubble-Länge) beträgt: \(  \Large \frac{c}{H_0} \)

Wie würde sich eine Expansion des Raumes gemäß dieser Hubble-Konstante auf bekannte Objekte im Universum auswirken?

Dazu dieses Google Sheet