Astronomie Oberartikel (Root)

Gehört zu: Astronomie  (this is the root article)
Siehe auch: Physik

Stand: 18.12.2023

Astronomische Beiträge 2024

Astronomische Beiträge 2023

Neue astronomische Beiträge 2022

Neue astronomische Beiträge 2021

Themenstruktur zur Astronomie

Das Thema Astronomie versuche ich in Themengebiete zu strukturienen:

Meine Blog-Artikel zu astronomischen Themen

Es gibt vieles Astronomisches, was man im Internet findet. Ausserdem habe ich als Amateur, der sich ein wenig mit der Astronomie beschäftigt,  einige Informationen in meinem Blog zusammengestellt.

Dazu habe ich vieles in einzelnen Artikeln aufgeschrieben:

Vereine und Institutionen für Amateurastronomie

Links im Internet zu Astronomischen Themen

Links von Hans:

Links von Prof. Dr. Stefan Jordan auf dem ATT 2018

Gesammelte Links

Astrofotografie: Überblick

Gehört zu: Astronomie
Siehe auch: Aufnahmeverfahren – Image Capturing

Astrofotografie

Bei den Astros kann man zwei “Lager” unterscheiden:

  • visuelle
  • fotografische

Ich persönlich möchte meine astronomischen Beobachtungen unbedingt festhalten, sprich als Foto dokumentieren.

Bei der Astrofotografie benötigt man deutlich mehr Technik als für die “nur” visuelle Astronomie.
Technik bedeutet hier: Gerätschaften (meine Geräteliste), Computer-Software (meine Softwareliste) und die zweckmäßige Vorgehensweise (Image Capturing).

Welche Websites können helfen?

Im Internet gibt es viele Quellen, die bei der Astrofotografie helfen können z.B.

Welche Objekte will ich fotografieren?

Da gibt es ganz unterschiedliche Motive/Beobachtungsobjekte:

  • Weitwinkel: Sternbilder, Milchstraße, Strichspuren, Zodikallicht, Erdschattenbogen, Halo-Erscheinungen, Leuchtende Nachtwolken,…
  • Objekte im Sonnensystem, wie Planeten/Kleinplaneten/Mond/Sonne
  • Deep Sky Objekte (“DSO”) Galaxien
  • Deep Sky Objekte: Sternhaufen, Asterismen
  • Deep Sky Objekte: Planetarische Nebel
  • Deep Sky Objekte: Emmissionsnebel, Absoptionsnebel

Wie ziele ich auf mein Beobachtungsobjekt?

Um das Beobachtungsobjekt in das Gesichtsfeld zu bekommen (“Framing”) gibt es verschiedene Methoden:

Wie hell ist das Beobachtungsobjekt?

Wenn es hell ist, kann man sehr kurz belichen

Wenn es dunkel ist, muss man sehr lange belichten

Wenn man lange belichtet, muss man evtl. nachführen, um die Erdrotation zu kompensieren.

Wie groß ist das Beobachtungsobjekt?

Das Beobachtungsobjekt muss in das Gesichtsfeld (Field of View = FoV) passen.

Bei der Astrofotografie macht es keinen Sinn von “Vergrößerung” zu sprechen. Das Bild entsteht auf dem elektronischen Sensor und kann dann in verschiedener Größe angezeigt werden. Wir haben ja kein Okular, mit dem wir das Bild betrachten (visuelle Astronomie). Bei Betrachtung durch ein Okular kann man von einer Vergrößerung sprechen und diese berechnen als f1/f2.

Womit kann ich fotografieren?

Zum Fotografieren benötigt man eine bildgebende Optik (Fotoobjektiv oder Teleskop) und einen bildaufnehmenden Sensor (DSLR oder Astro-Kamera CCD/CMOS).

Als Optiken für die Astrofotografie kommen infrage:

Bei Fotografieren entseht das Bild auf einem sog. Sensor:

  • Fotoapparate (DSLR)
  • Astro-Kameras (CCD/CMOS)

Linse und Sensor müssen zusammenpassen, um die beste Auflösung zu erzielen.

Aufnahmeverfahren (Image Capturing)

Wie gehe ich nun konkret vor beim Fotografieren von astronomischen Objekten? Das habe ich in diesem gesonderten Artikel beschrieben.

Astrofotografie – Überblick und Begriffe

Gehört zu: Astronomie

Mein Einstieg in die Astrofotografie

Als Amateurastronom möchte ich nicht nur visuell beobachten, sondern meine Beobachtungen auch gerne fotografisch festhalten.
Besonders interessant finde ich die Tatsache, dass ich auf einem Foto mehr sehen kann als mit bloßem Auge (dunklere Objekte, Farben,…).

Im Einzelnen habe ich für die Astrofotografie folgendes beschrieben:

  • Liste meiner Geräte (Equipment)
    • Montierung (Stativ etc.)
    • Kamera / Sensor
    • Fernauslöser (Remote Control,…)
    • Optik / Objektiv

 


Astrofotografie: Begriffe – Jargon

Wie häufig bei Spezialgebieten werden auch bei den erfahrenen Amatuerastronomen viele schöne Spezalbegriffe und Abkürzungen verwendet, die ein Einsteiger vielleicht nicht immmer gleich richtig versteht.

  • Lucky Imaging: Um der Luftunruhe ein Schnäppchen zu schlagen, macht man viele sehr kurz belichtete Aufnahmen (etwa 1/100 sec) und verwendet dann die wenigen Aufnahmen mit gutem “Seeing” zum Stacken…
  • Pretty Pictures: Leicht abwerted für “der macht keine wissenschftlichen Fotos”, sondern “nur” etwas, was schön aussieht
  • Tracking: Nachführung (heute meist motorisch in beiden Achsen)
  • Guiding bzw. Autoguiding (verbessertes Tracking)
  • Pointing-Modell  (Goto)
  • DMK: Bestimmte klassische Astro-Kameras
  • ASI: USB-Kameras von der Firma ZW Optical (ZWO)
  • LX200: eine klasssiche Montierung
  • Seeing: Luftunruhe (früher Szintillation genannt)
  • fokal / afokal
  • xyz

———————

Kamera bzw. Sensoren für Astrofotografie

Astrofotografie kann man heutzutage ganz einfach mit “normalen” digitalen Kameras (z.B. Canon, Nikon, Sony, Panasonic u.a.) machen.

Eine sehr niedrige Einstiegschwelle bietet die sog. afokale Fotografie, wo eine Kamera mit ihrem Objektiv direkt hinter das Okular eines Fernrohrs gehalten wird. Klassischerweise verwenden die “Profis” aber die sog. fokale Fotografie, wo der Sensor einer Kamera in die (primäre) Fokalebene eines Fernrohrs plaziert wird.

Weiterhin werden seit einiger Zeit auch kleine Video-Kameras eingesetzt, die aber keinen Bildspeicher haben, sondern ihr Bild immer an einen PC liefern müssen.
Meine “Sensoren“) sind:

Optiken

Als Optiken für die Sony habe ich verschiedene Möglichkeiten (Festbrennweiten mit Adapter auf E-Mount) –> DLSR-Objektive

  • Olympus G.ZUIKO AUTO-S  f=50mm, 1:1,4  (leichtes Tele z.B. für die Große Magellansche Wolke)
  • Vivitar AUTO WIDE-ANGLE f=24mm, 1:2 (Weitwinkel, z.B. für Polarlichter, die Milchstraße etc.)
  • MC Zenitar-M f=16mm, 1:2,8 (Überweitwinkel “FISH-EYE” z.B. für die Perseiden)
  • Asahi Optics Takumar f=135, 1:3,5
  • LidlScope 70/700 “SkyLux”  (z.B. für Sonnenbeobachtung)
  • Russentonne Rubinar f=500, 1:5.6   —> schlechte Qualität –> verkauft
  • und seit dem 1.11.2016 auch noch die sog. “Wundertüte” Beroflex, aber mit f=300mm, 1:4,0

Als Optiken für die Altair GP-CAM habe ich erst einmal:

  • Die mitgelieferte sog. “Meteorlinse”: This is a CS lens f=2.1mm    f/1.6   FOV 150 Grad
  • Eine zusätzlich als Sucher gekaufte f=12mm  f/1.2  FOV 17 x 22 Grad

Fernauslöser – Remote Control – für die Sony NEX-5R

In der Astrofotografie ist es erforderlich die Kamera erschütterungsfrei auszulösen.Das kann mit Hilfe spezieller Gerate (Fernauslöser) oder auch per Software von einem Computer erfolgen.

Außerdem kann es sinnvoll sein auch weitere Funktionen der Kamera per Software “Remote Control” zusteuern.

Fokussierung

Wir müssen das Teleskop bzw. das Foto-Objektiv so einstellen, das der Fokus genau in der Bildebene liegt und die astronomischen Beobachtungsobjekte “scharf” sind.

Astrofotografie für Einsteiger: Wie fokussiere ich mein Bild?

Montierungen – Stative – Nachführung

Zur Nachführung bei der Astrofotografie gibt es viele Möglichkeiten

Auffinden von Beobachtungsobjekten – Sucher

Oft ist es garnicht so einfach das gewünsche Beobachtungsobjekt im Gesichtsfeld von Kamera oder Teleskop einzustellen.

Beobachtungsorte – Lichtverschmutzung

Beobachtungsplanung

Welche Beobachtungsobjekte mit welchem Gerät zu welcher Zeit an welchem Ort?

Astrofotografie für Einsteiger: Welche Objekte kann ich fotografieren?

Bildbearbeitung

  • Stacken
  • Stretchen
  • Farbstich
  • Vignettierung
  • Farbrauschen
  • Gradienten
  • xyz

Meine Artikel zum Thema Astronomie

xxx

Physik: Quantenmechanik nach Susskind

Gehört zu: Physik
Siehe auch: Quantenmechanik, Die Bra-Ket-Notation, Wellenfunktion, Komplexe Zahlen

Stand: 17.03.2024

Quantenmechanik nach Susskind

Bei Youtube bin ich auf die Vorlesungen von Prof. Susskind an der Stanfort University gestossen (“continued education”).

Professor Susskind beschreibt die für die Quantenmechanik erforderliche Mathematik einfach und anschaulich, was nicht immer ganz genau der reinen Mathematik entspricht. Deswegen kann ich es gut verstehen.

Zunächst betrachten wir klassische Physikalische Systeme, danach gehen wir Zug um Zug in die Welt der Quantenphysik. Der Trick dabei ist, schon die klassische Physik “gepixelt” zu sehen, was approximativ möglich sein sollte.

In der Quantenphysik werden wir es immer wieder mit Komplexen Zahlen zu tun haben. Auch der Begriff der komplex konjugierten wird hier eine große praktische Rolle spielen.

Ket-Vektor

Ein physikalisches System kann verschiedene diskrete Zustände annehmen (ggf. approximiert).

Z.B. Das Werfen  einer Münze: Kopf oder Zahl

Z.B. Ein Würfel: Eins, Zwei, Drei, Vier, Fünf oder Sechs

Z.B. Spin eines Elektrons: Up oder Down

So einen Zustand schreiben wir auf als sog. “Label” in sog. Ket-Schreibweise…

z.B.    |Kopf>   oder |Zahl>

z.B.   |Eins> oder |Zwei> oder…

z.B. |Up> oder |Down>

Wir können jeden Zustand (State) durch einen Spalten-Vektor repräsentieren.

\(  |Kopf> \space  —>   \left( \begin{array}{c} 1 \\\ 0   \end{array}\right)   \)

und

\(  |Zahl>  \space —>   \left( \begin{array}{c} 0\\\ 1   \end{array}\right)  \\  \)

Oder beim Würfel:

\(  |Eins> \space  —>   \left( \begin{array}{c} 1 \\\ 0  \\\ 0 \\\ 0 \\\ 0 \\\ 0  \end{array}\right)   \) und     \(  |Zwei> \space  —>   \left( \begin{array}{c} 0 \\\ 1  \\\ 0 \\\ 0 \\\ 0 \\\ 0  \end{array}\right)   \) und …

Man sagt auch |a> sei ein Vektor, obwohl der zugehörige Spaltenvektor “nur” eine Repräsentation von |a> ist. Manchmal identifizieren wir beides (aus Bequemlichkeit).

Die Menge der möglichen Zustände nennt man auch “Zustandsraum“. Beispielsweise:

\( S = \left\{ \left( \begin{array}{c} 1 \\\ 0   \end{array}\right) , \left( \begin{array}{c} 0\\\ 1   \end{array}\right)  \right\} \\ \)

Der Zustand eines physikalischen Systems könnte sich mit der Zeit ändern. Den Zustand zu einem bestimmten Zeitpunkt nennt man auch “Konfiguration“.

Später werden wir sehen, wie dieser Zustandsraum einen zu einem Vektorraum erweitert werden kann (der Vektorraum wird aufspannt).

Bra-Vektor

Zu jedem Ket-Vektor |a>  bilden wir einen sog. Bra-Vektor <a| auf folgende Weise:

Der Ket-Vektor sei:

\(  |a> \space  —>   \left( \begin{array}{c} a_1 \\\ a_2  \\\ a_3 \end{array}\right)  \\ \)

dann bilden wir den zugehörigen Bra-Vektor als Zeilenvektor folgendermaßen:

\(  <a| \space  —>   \left( \begin{array}{r} {a_1}^* &  {a_2}^*  &  {a_3}^* \end{array}\right)  \\ \)

Wir sagen, der Bra-Vektor sei das komplex konjugierte zum Ket-Vektor

Inneres Produkt

Das sog. “Innere Produkt” zweier Vektoren definieren wir nun einfach als:

\( <a|b> = \left( \begin{array}{r} {a_1}^* &  {a_2}^*  &  {a_3}^* \end{array}\right)  \cdot \left( \begin{array}{c} b_1 \\\ b_2  \\\ b_3 \end{array}\right) = {a_1}^*  b_1 + {a_2}^* b_2 + {a_3}^* b_3 \\ \)

Das Innere Produkt eines Vektors mit sich selbst ist dann immer eine reelle Zahl. Wir definieren als “Länge” oder auch “Norm” eines Vektors die positive Wurzel aus diesem Inneren Produkt.

Wenn das Innere Produkt zweier Vektoren Null ist, sagen wir sie seien “orthogonal”.

Observable

Observable nennt man Dinge, die man messen kann.

In einem bestimmten physikalischen Experiment wollen wir eine bestimme Größe messen und bekommen so zu jedem Zustand des Systems einen Messwert.

Eine bestimmte Observable M ordnet also jedem Zustand aus dem Zustandsraum S einen Messwert (reelle Zahl) zu. Mathematisch geschrieben:

\( M: S \to \mathbb{R} \)

Abstrakter Vektorraum

Die Ket-Vektoren |a> bilden einen (abstrakten) Vektorraum; d.h. es gelten bestimmte Regeln:

Regel 1: Jeder Vektor aus dem Vektorraum kann mit einem Skalar (komplexe Zahl) mutipliziert werden, wobei das Ergebnis wieder ein Vektor aus dem Vektorraum ist.

\( \lambda \space | a> = | a^\prime> \)

Regel 2: Zwei Vektoren aus dem Vektorraum kann ich addieren, wobei das Ergebnis wieder ein Vektor aus dem Vektorraum ist.

\(  | a >  +  | b >  =  | c > \)

Beispiele von Vektorräumen

Die Menge der Ket-Vektoren bilden einen Vektorraum, wobei wir als Einträge ganz allgemein Komplexe Zahlen zulassen und die Dimension des Vektorraums gleich der Anzahl verschiedener Zustände ist.

Die oben aufgeführten Regeln für Vektorräume gelten offenbar:

\( \lambda \left( \begin{array}{c} a_1 \\\ a_2  \\\ a_3 \end{array}\right) = \left( \begin{array}{c}\lambda  a_1 \\\ \lambda  a_2  \\\ \lambda a_3 \end{array}\right) \\\) \(   \left( \begin{array}{c} a_1 \\\ a_2  \\\ a_3 \end{array}\right) + \left( \begin{array}{c} b_1 \\\ b_2  \\\ b_3 \end{array}\right) = \left( \begin{array}{c} a_1 + b_1 \\\ a_2 + b_2 \\\ a_3 + b_3\end{array}\right)   \)

Linearkombinationen

Wir können jeden Ket-Vektor | a > als Linearkombination der Zustandsvektoren darstellen:

\( | a > = \left( \begin{array}{c} a_1 \\\ a_2  \\\ a_3 \end{array}\right) = a_1 \left( \begin{array}{c} 1 \\\ 0  \\\ 0 \end{array}\right) +  a_2 \left( \begin{array}{c} 0 \\\ 1  \\\ 0 \end{array}\right)  + a_3 \left( \begin{array}{c} 0 \\\ 0  \\\ 1 \end{array}\right)  \\\)

Damit spannen die Zustandsvektoren einen (abstrakten) Vektorraum auf, aber nicht jeder Vektor aus diesem Vektorraum beschreibt einen physikalischen Zustand – …

Quantenmechanisches Beispiel

Wenn ich den Spin eines quantenmechanischen Elektrons messe, bekomme ich bei jeder Messung einen von zwei Zuständen, die wir | up > und | down > nennen können.

Diese beiden Zustände repräsentieren wir durch zwei Spaltenvektoren im Vektorraum:

\(  | up > \space  —>   \left( \begin{array}{c} 1 \\\ 0   \end{array}\right)  \\ \) und

\(  | down >  \space —>   \left( \begin{array}{c} 0\\\ 1   \end{array}\right)  \\ \)

In der klassischen Physik würde niemand auf die Idee kommen, Linearkombinationen solcher zwei Zustände zu betrachten. In der Quantenpysik machen wir das aber.

Linearkombination dieser beiden Zustände wären also:

\( a_{up} \space | up > + a_{down} \space | down > \\\)

Die Koeffizienten können wir als Spaltenvektor schreiben:

\( a = \left( \begin{array}{c} a_{up} \\\ a_{down}  \end{array}\right) \\\)

Wobei die Beträge der Komponenten (Koeffizienten der Linearkombination)  interpretiert werden als die Wahrscheinlichkeiten der Zustände; also:

\( P_{up} = a_{up} {a^*}_{up} \\\) und

\( P_{down} = a_{down} {a^*}_{down} \\\)

Wobei natürlich die Summe der Wahrscheinlichkeiten 1 ergeben muss: \( P_{up} + P_{down} = 1 \)

Alle Linearkombinationen der Ket-Vektoren  | up > und | down >, die diese Bedingung (Summe der Wahrscheinlichkeiten = 1) erfüllen, werden in der Quantenmechanik als physikalisch mögliche Zustände angesehen. Wir können diese Bedingung auch schreiben als:

\( P_{up} + P_{down} = a_{up} {a^*}_{up} + a_{down} {a^*}_{down} = \left( \begin{array}{r} {a_{up}}^* &  {a_{down}}^*   \end{array}\right)  \cdot \left( \begin{array}{c} a_{up} \\\ a_{down}   \end{array}\right) = <a|a> = 1 \)

Die Bedingung ist also: “Länge = 1”; d.h. die quantenmechanisch möglichen Zustände des Elektronen-Spins liegen auf dem Einheitskreis.

Matrizen

Wir werden Matrizen brauchen. Wofür, sehen wir später.
Eine Matrix ist einfach eine quadratische Anordnung von Zahlen, beispielsweise:

\( M = \left( \begin{matrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \\ \end{matrix} \right) \\ \)

So eine Matrix M können wir anwenden auf einen Spaltenvektor v indem wir im Prinzip die inneren Produkte von Matrix-Zeilen mit dem Spaltenvektor bilden:

\( M v =  \left( \begin{matrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \\ \end{matrix} \right)  \left( \begin{array}{c} v_1 \\\ v_2  \\\ v_3 \end{array}\right) = \left( \begin{array}{c} m_{11} v_1  + m_{12} v_2  + m_{13} v_3 \\\ m_{21} v_1 + m_{22} v_2 + m_{23} v_3  \\\ m_{31} v_1 + m_{32} v_2 + m_{33} v_3\end{array}\right) \\ \)

Das Ergebnis ist wieder ein Spaltenvektor.

Wenn wir nun einen Zeilenvektor w und eine Matrix M nehmen, sieht das ganz analog aus:

\( w M  =  \left( \begin{array}{c} w_1 & w_2  & w_3 \end{array}\right) \left( \begin{matrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \\ \end{matrix} \right)  = \left( \begin{array}{c} w_1 m_{11}  + w_2 m_{21} + w_3 m_{31}  & w_1 m_{12}  + w_2 m_{22} + w_3 m_{32}  & w_1 m_{13} + w_2 m_{23} + w_3 m_{33} \end{array}\right) \\ \)

Das Ergebnis ist wieder ein Zeilenvektor.

Matrizen als Operatoren auf einem Vektorraum

Matrizen kann man auch “Operatoren” nennen. Sie können die Vekoren eines Vektorraums transformieren. Das allgemeine KOnzept heißt “Linearer Operator” oder auch “Lineare Transformation”. Wir identifizieren diese zur Vereinfachung.

Wir schauen uns mal ein paar Beispiele aus dem 2-dimensonalen reellen Vektorraum an.

Beispiel 1: Stretchen um einen Faktor 2

\( M v = \left( \begin{matrix} 2 & 0 \\ 0 & 2  \end{matrix} \right)  \left( \begin{array}{c} v_x \\\ v_y  \end{array}\right)  =   \left( \begin{array}{c} 2 v_x \\\  2 v_y  \end{array}\right)  \\ \)

Beispiel 2: Stretchen in Richtung der y-Achse

\( M v = \left( \begin{matrix} 1 & 0 \\ 0 & 2  \end{matrix} \right)  \left( \begin{array}{c} v_x \\\ v_y  \end{array}\right)  =   \left( \begin{array}{c} v_x \\\  2 v_y  \end{array}\right)  \\ \)

Beispiel 3: Rotieren um 90 Grad im Uhrzeigersinn

\( M v = \left( \begin{matrix} 0 & 1 \\ -1 & 0  \end{matrix} \right)  \left( \begin{array}{c} v_x \\\ v_y  \end{array}\right)  =   \left( \begin{array}{c} v_y \\\  -v_x  \end{array}\right)  \\ \)

Wir sehen also: Matrizen transformieren einen Vektorraum; aber nicht alle Transformationen sind Matrizen.

Hermitische Matrizen

Observable in der Quantenphysik werden durch hermitische Operatoren dargestellt. Wir schauen hier deswegen auf hermitische Matrizen.

Eine hermitische Matrix ist definiert durch: \( m_{ij} = {m_{ji}}^*   \)

Eine hermitische Matrix ist vom Konzept her so etwas wie eine reelle Transformation, aber nicht ganz genau: nur die Diagonalelemente der Matrix sind reell, die anderen Elemente werden beim Spiegeln an der Diagonale komplex konjugiert.

Die Namensgebung geht zurück auf den französischen Mathematiker Charles Hermite (1822-1901).

Hintergrund:

Zu einer Matrix \(M = (m_{ij}) \) definieren wir eine “Hermitsch konjugierte” Matrix und schreiben die mit einem “Dagger”;

\( \Large M^\dagger = (m_{ij}^*) \)

Wir nennen eine Matrix M “hermitisch”, wenn sie gleich ihrer hermitisch konjugierten ist, also wenn:

\( \Large M = M^\dagger \\ \)

Diese Eigenschaft ist so ähnlich wie \( z = z^* \) bedeutet, dass z eine reelle Zahl ist.

In der Quantenphysik werden wir es fast ausschließlich mit Hermitischen Matrizen (Hermitischen linearen Operatoren) zu tun haben.

Zusammenfassung Nr. 1 zur Quantenphysik

In der Quantenphysik geht es darum, Wahrscheinlichkeiten zu berechnen. Wahrscheinlichkeiten, dass eine Observable bei einem bestimmten Zustand des Systems einen bestimmten Wert (Messwert) annimmt.

Vektoren repräsentieren die Zustände.
Solche Zustandsvektoren bekommen eine irgendwie geartete Bezeichnung (“Label”); z.B. \( |hinz\rangle  \text{ und } |kunz\rangle \).
Auch die Linearkombinationen solcher Zustandsvektoren werden als Zustände bezeichnet.
Alle solchen Linearkombinationen, im Beispiel:  \( a |hinz\rangle + \enspace b |kunz\rangle \enspace mit\enspace  a, b \in C \), bilden einen Vektorraum, den sog, Zustandsraum

Hermitische Matrizen repräsentieren die Observablen.
Wie ich zu einer Observablen (also einer Messgröße) die Matrix finde, ist noch ein Geheimnis.
Später werden wir sehen, dass die Eigenwerte der Matrix die Werte sind, die die Observable annehmen kann; d.h. die wir messen können.

Erwartungswert einer Observablen

Nun entspricht also eine Hermitische Matrix M einer Observablen.

In einem bestimmten Zustand  | a > ist der Erwartungswert der Observablen M:

\( < a | M | a> = \text{Erwartungswert von M} \\ \)

Eigenwert und Eigenvektor in der Quantenphysik

Wofür diese Konzepte gut sind, sehen wir hier in der Quantenphysik: Die Eigenwerte einer Hermitischen Matrix werden die möglichen Messwerte der Observablen sein.

Wir betrachten eine hermitische Matix M und fragen uns, ob es dazu einen Vektor |a>  gibt, der durch die Matrix M nicht in der Richtung, sondern nur in der Länge verändert wird. Die Längenveränderung  wäre dann ein Faktor, der vom Vektor |a> abhängt, weswegen wir in λa nennen.

\(  M|a> = \lambda_a | a > \\ \)

Wenn es so etwas zu der Matrix M gibt, nennen wir so ein  λa einen Eigenwert, und den Vektor |a> einen Eigenvektor der Matrix.

Der Witz in der Quantenmechanik ist, dass die Eigenwerte einer hermitische Matrix M die möglichen Messwerte der Observablen sind und der zugehörige Eigenvektor ist der Zusrand in dem die Wahrscheinlichkeit, diesen Wert zu messen 1 ist.

Wie man auf diese Matrizen kommt, die ja Observable repräsentieren sollen, ist noch völlig offen.

Wir schauen uns als Beispiele mal diagonale Matrizen an. Man sieht leicht, dass die Diagonalelemente die Eigenwerte sind und die Eigenvektoren die möglichen Einheitsvektoren aus lauter Nullen und einer Eins.

Beispiel Elektronenspin

Die Observable ist also der Spin eines Elektrons, der +1 oder -1 sein kann.

Als Matrix für diese Observable nehmen wir mal:

\( \sigma_3 = \left( \begin{matrix} 1 & 0  \\ 0 & -1  \\ \end{matrix} \right) \\ \)

Diese Matrix wird auch “Spinoperator” genannt und mit σ3 bezeichnet. Diese Matrix als Repräsentation der Observablen “Spin” fällt hier ersteinmal so vom Himmel. Wir können aber einfach nachweisen, dass es stimmt, den die Eigenwerte sind:
+1 zum Eigenvektor \( \left( \begin{array}{c} 1 \\\ 0   \end{array}\right)  = |up> \) und -1 zum Eigenvetor \( \left( \begin{array}{c} 0 \\\ 1   \end{array}\right)  =|down> \)

Genaugenommen steht σ3 für die Messung des Eletronenspins in z-Richtung (wieso das so ist kommt später).

In y-Richtung gemessen bekommen wir als Observable:

\(  \sigma_2 = \left( \begin{matrix} 0 & -i  \\ i & 0  \\ \end{matrix} \right) \\\)

In x-Richtung gemessen bekommen wir als Observable:

\( \sigma_1 = \left( \begin{matrix} 0 & 1  \\ 1 & 0  \\ \end{matrix} \right) \\ \)

Wir haben also 3 Spinoperatoren…

Wichtiger Satz über Eigenwerte (Lecture 3, t=59m)

Wenn es zu einer Observablen (hermitischen Matrix) M mehrere Eigenvektoren gibt:

\(  M | a > = \lambda_a  | a > \\ \)

und

\(  M | b > = \lambda_b  | b > \\ \)

und die Eigenwerte verschieden sind, dann sind die Eigenvektoren orthogonal; also <a|b> = 0.

Ein Eigenvektor |a> beschreibt ja einen Zustand, in dem die Wahrscheinlichket 1 ist, den Wert λa zu messen.

Wenn ich also zu einer Observablen zwei unterschiedliche Messwerte λa bzw. λb bekomme, gibt es dazu zwei orthogonale Zustandsvektoren |a> und |b>, in denen die Wahrscheinlichkeit 1 ist, die Messwerte λa bzw. λb zubekommen.

Ein Satz zu Wahrscheinlichkeiten (Lecture 3, t= 1h 14:30m)

Wir mögen ein System haben, das im Zustand |b> präpariert ist – z.B. ein Elektron haben mit dem Elektronenspin |b>

Nun betrachten wir eine Observable M mit einem Eigenwert λa zum Eigenvektor |a> .

Wenn wir in dem gegebenen Zustand |b> eine Messung mit M durchführen, können wir uns fragen, mit welcher Wahrscheinlichkeit P unser Messergebnis λa sein wird.
Prof. Susskind sagt:
\( P = \langle a|b \rangle {\langle a|b \rangle}^* \)

Quantenmechanik mit einem Elektronenspin (Lecture 4)

Wir stellen uns vor, wir hätten ein Elektron so präpariet, dass der Elektronenspin in Richtung des (räumlichen) Vektors n = (n1, n2, n3) zeigt.

Nun wollen wir den Elektronenspin dieses Elektrons entlang der Richtung m = (m1, m2, m3) messen. Das Ergebnis ist (natürlich) entweder +1 oder -1 (so merkwürdimg ist die Quantenwelt).

Dieses ganze Experiment (präparieren und dann messen) wiederholen wir sehr oft, um die Wahrscheinlichkeit für das Messergebnis +1 (P+) bzw. die Wahrscheinlichkeit für das Messergebnis -1 (P) zu bestimmen.

Das können wir jetzt ja ganz einfach ausrechnen. Als Ergebnis (ohne Beweis)  erhalten wir, dass die Wahrscheinlichkeit nur vom (räumlichen) Winkel θ zwischen den beiden Vektoren abhängt. Der Cosinus dieses Winkels ist bekanntlich das Innere Produkt der beiden Winkel:

\( \Large \cos{\theta} = \langle n, m \rangle \\ \)

Und die Wahrscheinlichkeit wird (ohne Beweis):

\( \Large P_+ = \frac{1 + \cos{\theta}}{2} \\ \)

Wichtger Zusatz: Kommutator (Lecture 4, t= 1h 54m)

Wenn wir eine Messung einer Observablen durchführen, verändern wir den Zustand des Quantensystems. (Detail: Es ändert sich der “Eigenzustand” auf einen Eigenvektor, der zu dem gemessenen Eigenwert gehört.)

Wir können also nicht zwei Messungen eines Anfangszustands machen, denn der Anfangzustand hat sich ja durch die erste Messung verändert. Das würde nur gehen, wenn die beiden Matrizen (=Observablen) die gleichen Eigenvektoren hätten.

Ein System mit zwei Elektronen: Entanglement (Lecture 4, t= 1h 55m)

Zunächst machen wir mal eine kleine Tabelle, wie das mit einem Elektron war:

\( \begin{array}{l} \sigma_1 | up \rangle = | down \rangle \\ \sigma_1 | down \rangle = | up \rangle \\ \sigma_2 | up \rangle = i | down \rangle \\ \sigma_2 | down \rangle = -i | up \rangle \\ \sigma_3 | up \rangle =  | up \rangle \\ \sigma_3 | down \rangle = – | down \rangle \end{array} \\\)

Wenn wir nun zwei Elektronen betrachten, wollen wir die vier möglichen  Zustände der beiden Elektronenspins wie folgt bezeichnen:

| u u >

| u d >

| d u >

| d d >

weiter geht’s…

Computer: Datensicherung mit c’t-WIMage

Gehört zu: Datensicherung
Siehe auch: Heise-Verlag

Stand: 21.02.2024

Installation von c’t-WIMage

Was ist c’t-WIMage?

c’t-WIMage ist ein PowerShell-Skript, dass einen großen USB-Stick benötigt.

Download von: https://www.heise.de/hintergrund/c-t-WIMage-Stand-16-10-2017-3863074.html

Gesichert werden können mit diesem Tool c’t-WIMage die Windows-Partionen von Windows-Computern.

Ich habe mir dafür einen 128 GB großen USB-Stick angeschafft (Mindestgröße soll 64 GB sein).

Was man da nun alles machen muss, habe ich im Internet gefunden bei: https://www.deskmodder.de/phpBB3/viewtopic.php?t=30240

Probleme mit c’t-WIMage

Problem 1:

Auf meinem Windows 11 Laptop läuft c’t-WIMage nicht, da der Befehl “wmic” verwendet wird, den Microsoft ausgmustert hat.

Schade.

Die Fehlermeldung lautet:
Der Befehl “wmic” ist entweder falsch geschrieben oder konnte nicht gefunden werden

Problem 2

Wenn der Speicherplatz auf dem Stick nicht ausreicht, bricht c’t-WIMage einfach ab und macht das Komandofester zu. Man bekommt keinerlei Meldung und sieht einfach nichts.

Wenn man weiss, wo die Log-Datei steht (bei mir: C:\Windows\Logs\DSIM\dsim.log) sieht man dort: [5148] [0x144012f]

Danke c’t vom Heise-Verlag !

Das Media Creation Tool

Zunächst muss man mit dem Microsoft Media Creation Tool die richtige Windows-Version auf den USB-Stick holen.

Download Media Creation Tool (“MCT”): https://www.microsoft.com/de-de/software-download/windows10

Start Media Creation Tool

Auswählen: “für anderen PC/USB-Stick”

Das Media Creation Tool schreibt dann die ausgewählte Windows-Version auf den Stick – von dem man dann ein Windows installieren könnte – was wir aber nicht machen wollen.

Wenn das Media Creation Tool fertig ist (kann etwas dauern) erscheint die Meldung: “Der USB-Stick ist bereit”.

Nun haben wir einen USB-Stick mit dem Label “ESD-USB”.

Installieren c’t-WIMage auf den USB-Stick

Wir entpacken ersteinmal die Datei c’t-WIMage.zip”.

Den Inhalt kopieren wir dann in den Wurzel-Ordner des USB-Sticks. Dabei landen dort nun zusätzlich:

1. Die Datei “c’t-WIMage-maker.bat”

2. Der Ordner “c’t-WIMage”

Dabei wird das direkt in den Wurzel-Ordner kopiert ohne das ein “Zwischen-Ordner” entsteht.

Nun starte ich die Datei “c’t-WIMage-maker.bat” auf dem USB-Stick als Administrator.

Das dauert ein bisschen.

Zwischendurch muss ich einmal eine Sicherheitsfrage mit “Ja” beantworten.

Am Ende haben wir:

1. Der USB-Stick hat sein Label geändert auf: “CT-BOOT”  (FAT32 formatiert)

2. Auf dem USB-Stick gibt es eine weitere Partition “CT-WIMAGE” (NTFS formatiert)

Diese beiden Partitions des USB-Sticks wurden automatisch als Laufwerke eingebunden.

Eine Sicherung erstellen

Auf dem Laufwerk CT-WIMAGE befindet sich eine Datei “ct-WIMage-x64.bat”. Diese starte ich als Administrator.

Empfohlen wird, den Computer vom Internet zu trennen und den Virenscanner abzuschalten.

Damit wird die Erstversion der System-Sicherung für diesen Computer erstellt. Diese Erstversion kann man immer dann ergänzen, wenn man Neues gemacht hat. So ein Weiterschreiben geht dann schneller.

Das Ergebnis der Sicherung ist im Wesentlichen die Datei “install.wim” auf dem Laufwerk CT-WIMAGE.
Dies ist eine ZIP-Datei aus der man auch einzelne Dateien herausholen kann.

Sicherung zurückspielen

Im Fall des Falles kann die Sicherung ganz leicht zurückgespielt werden:

USB-Stick in irgendeinen Windows-Computer stecken und davon booten.

Ggf. auswählen, welche Sicherung zurückgespielt werden soll

Dabei kann die Sicherung auch auf andere bzw. neue Computer eingespielt werden.

c’t-WIMage beutzt dazu das Original-Setup-Programm von Microsoft, dem nur eine andere Image-Datei untergeschoben wird. Das ist von Microsoft auch erlaubt, weil Firmen und OEMs so spezielle Images verteilen können.

 

Astronomie: Observatorien

Topic: Astronomische Observatorien
Gehört zu: Astronomie

Stand: 17.02.2024

Astronomische Observatorien

Professionelle Observatorien – Amateur Observatorien – Observatorien zur Miete (Feriensternwarten, Remote Teleskope) – Volkssternwarten

Ergebundene Observatorien – Weltraum-Teleskope

Weltraum-Telesope

Kepler (außer Betrieb 2018)

Spitzer (außer Betrieb 2020)

Hubble Space Telecope “HST”

James Web Space Telescope “JWST”

Euclid

Erdgebundende Observatorien in Chile

Cerro Parenal:

ALMA: Atacama Large Millimeter/Submillimeter Array

ELT: Extremly Large Telescope (in Bau, First Light geplannt für 2028)

  • Ort: Cerro Armazones ist ein Berg in der Atacama Wüste, some 130 kilometres south of the town of Antofagasta and about 20 kilometres from Cerro Paranal, home of ESO’s Very Large Telescope (VLT).  Google Maps
  • Teleskope: 39 m Durchmesser
  • Betreiber: ESO European Southern Observatory
  • URL: https://elt.eso.org/

La Silla: Das erste Observatorium der ESO

Gemini Süd

Erdgebundene Observatorien sonstwo

Hawaii, Kanarische Inseln, Südafrika, Australien, Mount Palomar, Mount Wilson, Effelsberg, Paris, Uranienborg, Altona, Bergedorf

Hawaii: Keck, Mouna Kea

Hawaii: Gemini North, Mouna Kea

Amateur Observatorien

Mein privates Observatorium

 

Physik: Elektrodynamik

Gehört zu: Physik

Stand: 16.02.2024

Elektrodynamik

Die klassische Elektrodynamik (auch Elektrizitätslehre) ist das Teilgebiet der Physik, das sich mit bewegten elektrischen Ladungen und mit zeitlich veränderlichen elektrischen und magnetischen Feldern beschäftigt. Die Elektrostatik als Spezialfall der Elektrodynamik beschäftigt sich mit ruhenden elektrischen Ladungen und ihren Feldern.

Die zugrundeliegende Grundkraft der Physik heißt elektromagnetische Wechselwirkung.

Die Theorie der klassischen Elektrodynamik wurde von James Clerk Maxwell (1831-1879) Mitte des 19. Jahrhunderts mithilfe der nach ihm benannten Maxwell-Gleichungen formuliert.

Älterer Blog-Artikel: Elektrisches Feld

Astronomie: Annotations mit N.I.N.A.

Gehört zu: N.I.N.A.
Siehe auch: Fotografieren mit N.I.N.A., Platesolving mit N.I.N.A.

Stand: 12.02.2024

Annotations – was ist das?

In einem Astro-Foto sind meist viele Sterne und manchmal auch Nebel, DSOs etc. zu sehen.

Annotationen sind einfach Beschriftungen im Astro-Foto.

Beispielsweise könnte ich DSO-Objekte mit ihrer Katalog-Nummer (Messier, NGC etc.) beschriften. Das macht in einem gewissen Umfang die Platesolving-Funktion.

Annotiations mit N.I.N.A. (ohne Hocus Focus)

N.I.N.A. kann diverse Beschriftungen zu einem Foto hinzufügen (und auch wieder ausblenden); beispielsweise:

  • HFR (Half Flux Radius) von Sternen
  • Star Detection

Im N.I.N.A.-Tab “Imaging” kann man die Annotationen an- und ab-schalten mit einem Klick auf das Stern-Symbol. Dann wird jedes neu aufgenommene Foto von N.I.N.A. untersucht; d.h. Star Detection (mit Kringel) und HFR (mit kleiner Zahl).

Abbildung 1:  Star Detection in N.I.N.A. (Google Drive: 20240212_NINA_Annotations_01.jpg)

Voraussetzung ist aber, dass zunächst die “Annotations” generell eingeschaltet sind.  Das machen wir im N.I.N.A.-Tab “Options – Imaging”. Dort schalten wir im Abschnitt “Image Options” den Schalter “Annotate image” auf “ON”.

Auch in der Kachel “Statistics” sieht man einiges: 152 Sterne wurden im (ganzen) Foto entdeckt mit einem durchnittlichen HFR von 3,46 Pixels wobei die Helligkeiten im Foto von minimal 1842 ADUs (2 Pixel) bis maximal 65532 ADUs (1361 Pixel) gingen.

Mehr Annotations mit Hocus Focus

Wenn ich in N.I.N.A. das Plugin “Hocus Focus” installiere, gibt bei den Annotations zusätzliche Möglichkeiten.

Nach der Installation des Plug-Ins “Hocus Focus” gehen wir zunächst auf den  N.I.N.A.-Tab “Options – Imaging” in stellen dort im Abschnitt “Images Options” ein: “Star Detector: Hocus Focus” und “Star Annotator: Hocus Focus”.

Dann gehen wie auf den N.I.N.A.-Tab “Imaging”. Aber bevor wir ein neues Foto aufnehmen, machen wir noch in dem durch das Hocus Focos neu entstandene Symbol “Stern mit Bleistift” (dicker Kringel) die für Hocus Focus gewünschten Einstellungen: Ich möchte blaue Quadrate um ausgebrannte Sterne haben. Also “Show saturated”. Dann nehmen wir ein neues Foto auf, denn nur neu aufgenommene Fotos werden von N.I.N.A. gemäß den von uns gesetzten Angaben analysiert.

Abbildung 2: N.I.N.A.-Annotations mit Hocus Focus (Google Drive: 20240212_NINA_Annotations_02.jpg)

Im Bildausschnitt sehen wir vier ausgebrannte Sterne in blau markiert.

Astronomie: Filterschublade für die ASI294MC Pro

Gehört zu: Astronomie, Astrofotografie
Siehe auch: Liste meiner Astro-Geräte, Backfokus

Stand: 12.02.2024

Am 5.11.2021 habe ich bei Teleskop-Service eine ZWO Filterschublade für 2″ Filter – Länge 21 mm gekauft (ZWO-FD-M42 – “FD” steht für “Filter Drawer”, nicht für Canon).

  • Anschluss Teleskopseite: M48x0,75 Innengewinde – kann auf T2 Gewinde reduziert werden
  • Anschluss Kameraseite: T2 Außengewinde – kann auf M48x0,75 Gewinde erweitert werden

Die ist speziell für meine Kamera ZWO ASI294MC Pro gedacht.

Mit einer optischen Länge von 21mm passt das Teil perfekt mit meiner Astro-Kamera ZWO ASI294MC Pro zusammen. Allerdings ist es ein rein mechanischer Adapter, der also keine Elektronik enthält mit der man z.B. fokusieren könnte (im Gegensatz zum AstroMechanics-Teil).

Mit einem zusätzlichen Adapter passen auch andere Optiken  (z.B. Foto-Objektive, Teleskope) an diese Filterschublade:

  • mit einem kurzen Adapter OM-EOS mein Foto-Objektiv Olympus 135mm
  • mit einem Adapter T2-Canon mein “großes” Teleskop ED80/600,

Ich habe dann zwar keine Elektronik aber einen mechanischen Anschluss und den Vorteil der Flexibilität einer Filterschublade.

Link: https://www.teleskop-express.de/shop/product_info.php/info/p11885_ZWO-Filter-Drawer-for-2–filters—M48-and-T2-connection—length-21-mm.html

Backfokus

Diese Filterschublade passt ja exakt mit ihren 21mm Länge zu meiner Kamera ASI294MC Pro wo sie zusammen mit den mit der Kamera mitgelieferten Teilen genau den für den Flattener/Reducer erforderlichen Backfokus von 55mm herstellt.

Allerdings gilt das nur dann, wenn ich in die Filterschublade keine Filter schiebe. Jeder dort eingeschobene Fikter würde den Backfokus ein klein wenig verändern.

Da ich ohnehin maximal mit einem Filter arbeiten will (entweder der UV-IR-Cut oder mein Tri Narrowband), kann ich diesen einen Filter auch vorne in den Stuzen schrauben. Die Filterschublade baue ich also wieder aus und benutze anstelle das 21mm Stück von ZWO.

 

Astronomie: Der Rotationswinkel bei N.I.N.A.

https://drive.google.com/file/d/1yxKsLbxKEMoKsrHq6O7BXbbbhp5tAWxK/export/pngTopic: Rotationswinkel bei N.I.N.A.
Gehört zu: Astrofotografie
Siehe auch: N.I.N.A., Polar Alignment mit N.I.N.A., N.I.N.A. Advanced Sequencer, Platesolving mit N.I.N.A.
Benutzt: Fotos von Google Drive

Stand: 28.01.2024

Der Rotationswinkel bei N.I.N.A.

Ich möchte meine Astrofotos nach den äquatorialen Koordinatenlinien ausrichten, meistens so, dass Norden oben ist.

Da ich das bei meiner Astro-Kamera ASI294MC Pro nicht so genau sehen kann, bemühe ich das N.I.N.A. Platesolving dafür.

Bei jedem Platesolving werden ja nicht nur die Koordinaten des Bildmittelpunkts bestimmt, sondern auch der Rotationswinkel des Bildes gegen die Nordrichtung – das ist ja quasi ein “Abfallprodukt”.

Ich kann meinen Okularauszug (OAZ) dann manuell so rotieren, dass der gewünsche Winkel (hier Null Grad) erreicht wird.

Einstellen des Rotationswinkels bei N.I.N.A.

Der Rotationswinkel bei N.I.N.A. kann auf einen bestimmen gewünschten Wert eingestellt werden. Das geht auch ohne motorischen Rotator und ist dann eine recht mühsame, meist iterative, Prozedur.

Als einmalige Aktion versuche ich nun den Rotationswinkel meiner Kamera auf Null Grad (Norden oben) manuell einzustellen.

Abbildung 1: Plate Solving shows Rotation (Orientation)  (Google Drive: NINA-Rotation-02.jpg)

Auf obigen Bild sieht man die Schritte:

  • Iterativ erfolgte Platesolving und manuelle Rotation des OAZ
  • So konnte der Rotationswinkel von 22.29° über die Schritte 7.60°, 4,72°, 0.64° schließlich auf 0.18° gestellt werden.

SEO Blah Blah

Der Suchmaschinen-Optimierer möchte mehr Text haben. Also schreiben wir hier noch ein bisschen Blah-Blah.
Ein fest eingestellter Rotationswinkel ist eigentlich nicht schlecht; denn nach jeder Veränderung des Rotationswinkels müsste ich neu Flatframes machen.
Flatframes sind ja ganz wichtig bei der Astrofotografie und sollten keinesfalls vergessen werden.

Es soll aber immer noch mehr Text in diesem Artikel stehen, also labern wir weiter. Norden oben ist bei einer zylinderförmigen Astrokamera wie meiner, nicht ganz trivial einzustellen. Ich müsste eine Markierung an der Kamera anbringen. Das mache ich mal mit meinem weißen Edding-Stift. Wichtig ist einzig und allein die Markierung auf der Kamera selbst; ein Strich auf den Hülsen des Okluarauszugs wird letztlich nicht gebraucht.

Physik: Entropie

Gehört zu: Klassifikation
Siehe auch: Maschine Learning, Thermodynamik, Zustand
Benutzt: Latex-Plugin für WordPress, Fotos von Wikimedia

Stand: 26.01.2024

Was ist Entropie?

Der Begriff “Entropie” wird klassischerweise in der statistischen Thermodynamik verwendet.
Dieser Begriff wurde von Rudolf Clausius (1822-1888) in die Physik eingeführt.

Ludwig Boltzmann (1844-1906)  hat dann 1877 die berühmte Formel aufgestellt, die auch auf seinem Grabstein auf dem Wiener Zentralfriedhof steht:

\(  S = k \log_2{W} \\\)

Zur Beschreibung des Zustands eines physikalischen Systems wird eine physikalische Größe, die Entropie (Formelzeichen S) verwendet.   Wobei k die Boltzmann-Konstante und W eine Art “Wahrscheinlichkeit” für den Zustand sein soll…

Die Entropie wird auch gerne als Ausmaß von Unordnung der Teilchen eines Systems gesehen. Hohe Entropie wäre hohe Unordnung; niedrige Entropie wäre stärkere Ordnung der Teilchen.

Abbildung 1: Boltzmanns Grab (Wikimedia: Grab_von_Ludwig_Boltzmann_auf_dem_Wiener_Zentralfriedhof.JPG)

Klassifikationsalgorithmen

Beim “Machine Learning” ist es die allgemeine Aufgabe Muster in Datensätzen (Data Records) einer Datenmenge (Data Set – gerne falsch übersetzt mit “Datensatz”) zu finden.

Wenn wir ein Modell suchen, das Voraussagen zu einer Zielvariablen, einer Klassifikation, machen kann und wenn wir dazu ein Trainings-Datenmenge haben, sprechen wir von sog. “Supervised Learning“,

Ein Ansatz zur Klassifikation ist die wiederholte Aufteilung (rekursive Partitionierung).
Die “Güte” einer möglichen Aufteilung kann man durch den sog. Informationsgewinn, soll heissen Entropiedifferenz (nach der Aufteilung – vor der Aufteilung) bestimmen. So einen Klassifizierungsalgorithmus nennt man auch C5.

Zur Veranschaulichung nehmen wir mal ein ganz einfaches Beispiel. Eine Datenmenge soll eine binäre Klassifikation bekommen; z.B. Personen sind “kreditwürdig” oder “nicht kreditwürdig”.

Wir haben eine Trainings-Datenmenge in der Personen mit mehreren Attributen (“Features”) beschrieben sind; z.B. Jahreseinkommen, Alter, Name der Wohngemeinde, Einwohnerzahl der Wohngemeinde,…

Auch die Klassifikation auf der Trainings-Datenmenge ist bereits erfolgt. Wir haben da also schon ein Attribut Kreditwürdig Ja/Nein. Deshalb sprechen wir von “Supervised” Learning.

Diese gesamte Trainings-Datenmenge möchten wir anhand eines Entscheidungs-Kriteriums in zwei Teilmengen aufteilen, sodass die Summe der Entropien der Teilmengen kleiner ist als die Entropie der gesamten Trainings-Datenmenge.
So ein “Entscheidungs-Kriterium” wollen wir mithilfe der Datenattribute (den sog. Features) formulieren z.B. “Einwohnerzahl > 500”.

Zunächst haben wir also die Aufgabe, die Entropie (S) von Teilmengen der Trainings-Datenmenge zu bestimmen.

Quelle: https://rpubs.com/cyobero/C50

Die Formel lautet (nach Boltzmann s.o.)

\( S = \sum\limits_{i=1}^n {-p_i \cdot \log_2{p_i}} \\\)

Wobei n die Anzahl der Klassen in unserer Klassifizierung ist und pi die Anteil der Datensätze, die in die Klasse i fallen.

Wenn wir, wie im Beispiel, eine binäre Klassifikation haben, ist n=2 und p2 = 1- p1.

Wir betrachten im Beispiel einmal folgende Trainingsmenge:

Tabelle 1: Trainingsmenge

Feature 1 Feature 2 Klasse
Gehalt Alter Kreditwürdigkeit
48000 ./. ja
30000 ./. nein
52000 ./. ja
31000 ./. nein
53000 ./. ja
32000 ./. nein
54000 ./. ja
55000 ./. ja
49000 ./. ja
33000 ./. nein

Hier haben wir p1 =0.6 und p2=0.4

Woraus sich eine Entropie für die gesamte Trainings-Datenmenge ergibt von:

\( S = -0.6 \cdot \log_2{0.6} – 0.4 \cdot \log_2{0.4} = 0.970951  \)

Wir versuchen jetzt einmal eine Partitionierung anhand von Feature 1 und probieren ein Kriterium Gehalt>50000. Daduch erhalten wir zwei Teilmengen durch Gehalt>50000 und Gehalt≤50000.

Tabelle 2: Teilmenge 1

Feature 1 Feature 2 Klasse
Gehalt Alter Kreditwürdigkeit
52000 ./. ja
53000 ./. ja
54000 ./. ja
55000 ./. ja

Hier haben wir p1 = 1.0 und p2 = 0.0

Das ergibt eine Entropie S1 = 0.0

Tabelle 3: Teilmenge 2

Feature 1 Feature 2 Klasse
Gehalt Alter Kreditwürdigkeit
48000 ./. ja
30000 ./. nein
31000 ./. nein
32000 ./. nein
49000 ./. ja
33000 ./. nein

Hier haben wir p1 =0.3333 und p2 = 0.6667

Das ergibt eine Entropie S2 = 0.918296

Nun müssen wir die beiden “Teil-Entropien” addieren.
Dazu gewichten wir jede Teilmenge i mit dem Anteil der Datensätze, die in diese Teilmenge fallen wi.
Wir bekommen als Gewichte: w1=0.4 und w2= 0.6 und damit die Gesamtentropie nach erster Aufteilung bei Gehalt>50000:

\( S = w_1 \cdot S_1 + w_2 \cdot S_2 = 0.4 \cdot 0.0 + 0.6 \cdot 0.918296 = 0.5509776 \)

Durch die Aufteilung haben wir also Informationsgewinn (Differenz der Entropien) von:  0.970951 – 0.5509776 = 0,419973

Das ist schon einmal ganz gut, wir müssen nun noch prüfen, ob wir bei einer anderen Aufteilung im Feature “Gehalt” noch besser würden und ob eine Aufteilung nach einem andren Feature (z.B. “Alter”) ein noch größeren Informationsgewinn bringen würde.

Astronomie: Discord Server

Gehört zu: Astronomie
Siehe auch: Foren, Youtube
Benutzt: ./.

Stand: 17.01.2024

Discord Server für Astronomie

Zu astronomischen Themen kann man schon seit langer Zeit im Internet Hilfe finden (“traditionell”).

Seit einigen Jahren (verbreitet so ab 2023) gibt es etwas Neues: Discord Server für Astronomie.

Traditionelle Astronomie im Internet

Zur Kommunikation über astronomische Themen gibt es im Internet schon lange Foren; z.B.

Astronomie-Foren

Es gibt auch spezielle Astronomie-Seiten, wie z.B.

Natürlich findet man auch bei Youtube einiges zur Astronomie:

Astronomie mit Discord Servern

Neueren Datums sind die sog. Discord Server, die es zu allen möglichen Themenbereichen gibt.

Discord Server muss man erst einmal suchen; z.B. bei: https://disboard.org/de/servers/tag/astronomie

Wenn man einen Discord Server gefunden hat, gibt es dann auf dem einen Server meistens mehrere Discord Channel.

Auf so einem Discord-Channel wird meistens sehr konzentriert zu bestimmeten einzelnen Themen gesprochen – im Gegensatz zu Foren, wo es sehr sehr allgemein zugeht.

Ich habe beispielsweise folgende Discord Channels gefunden:

In einem Discord Channel kann es mehrere “Unter-Channel” geben und jeder Channel kann dan “Räume” haben.