Astronomie: Kreisbahn – Zentripedalkraft – Drehimpuls

Drehimpuls gehört zu: Astronomie, Physik, Himmelsmechanik
Siehe auch Keplersche Gesetze, Sonnensystem, Gravitation

Zentripedalkraft in einer Kreisbahn

Wenn eine Masse m eine Kreisbahn mit dem Radius r beschreibt, so muss eine Kraft in Richtung des Mittelpunkts der Kreisbahn wirken:

\( F = \frac{m \cdot v^2}{r} \)

Diese Kraft nennt man “Zentripedalkraft”.

Wenn diese Zentripedalkraft z.B. im Sonnensystem durch die Anziehungskraft des Zentralkörpers Sonne (Graviationskraft) erzeugt wird, hat man:

\(\frac{m \cdot v^2}{2} = G \cdot \frac{m \cdot M}{r^2}\)

Für die Kreisbahngeschwindigkeit im Sonnensystem gilt also:

\( v = \sqrt{2 \cdot G \cdot M} \cdot \frac{1}{r} \)

Dies ist auch ein Ausgangspunkt der Forschungen von Vera Rubin (1928-2016), die die Rotationsgeschwindigkeit in Galaxien bei unterschiedlichen Abständen vom Zentrum untersucht hat und dadurch die Existenz von sog. Schwarzer Materie bekräftigtigen konnte.

Definition des Drehimpulses

Klaro: Drehimpuls ist Winkelgeschwindigkeit x Trägheitsmoment.

Da erhebt sich die Frage, was eigentlich ein “Trägheitsmoment” sein soll…

Im Falle einfacher Kreisbahnen von Planeten (Masse) vom Radius R im Sonnensystem folgt aus der allgemeinen Definition des Trägheitsmoments:

\(Trägheitsmoment = Masse \cdot R^2 \)

Damit wäre der Drehimpuls: Winkelgeschwindgkeit x Masse x R Quadrat

Wenn man die Beziehung: Winkelgeschwindigkeit = Bahngeschwindigkeit / R  benutzt, ergibt sich:

Drehimpuls = Bahngeschwindigkeit x Masse x R

Drehimpuls und die Keplerschen Gestze

Wenn der Drehimpuls eine Erhaltungsgröße ist, folgt aus obiger Gleichung sofort das 2. Keplersche Gesetz.

Beispiele der Erhaltung des Drehimpulses

Wir alle kennen das Beispiel der Pirouette einer Eistänzerin. Wenn die Arme angezogen werden, verringert sich das Trägheitsmoment und die Winkelgeschwindigkeitvsteigt an, da der Drehimplus erhalten bleibt.