Astrofotografie: GEOPTIK Sucherschuh

Link: Geräteliste

Da ich mit meinem Leuchtpunktsucher nicht so richtig klar kam (war zu hell und blendete) habe ich mich jetzt für einen “normales” kleines Sucherfernrohr entschieden; wobei ich das kleine Sucherfernrohr auf meine DSLR stecken möchte, weil sich  auf dem Teleskop ja schon das Guidingrohr befindet.

bei diesem Vorhaben half mir ein Sucherschuh, der auf den Blitzschuh der DSLR gesteckt wird.

Produkt: GEOPTIK Sucherhalter für DSLR-Kameras

Tipps und Tricks: Um den Sucherschuh auf dem Blitzschuh der Kamera zu befestigen, muss man eine kleine versenkte Schraube mit einem Inbusschlüssel (2,41 mm)  fest ziehen.

Link:  https://www.teleskop-express.de/shop/product_info.php/info/p8824_Geoptik-Sucherhalter-fuer-DSLR–Kameras.html

Mein Foto:

DK_20180504_2506

 

Astrofotografie für Einsteiger: Auffinden von Beobachtungsobjekten – Pointing – Suchen – Goto

Das Problem: Wie stelle ich das Beobachtungsobjekt in das Gesichtsfeld ein?

Das ist manchmal garnicht so einfach. Als ich das erste Mal die Große Magelansche Wolke fotografieren wollte, hatte ich das Problem, das ich das Biest mit bloßem Auge nur sehr schwach sehen konnte und die Ausrichtung der Kamera (Sony NEX-5R auf Kugelkopf) war mühsam.

Bei der Astrofotografie bedarf es zweier Fähigkeiten für einen Regelkreis zur Positionierung:

  • Erkennen wie mittig das (evtl. kaum sichtbare) Beobachtungsojekt im Gesichtsfeld “sitzt”?   (Feststellen Differenz Soll-Ist)
  • Verstellen der Ausrichtung der Kamera / des Teleskops  (Verändern Ist in Richtung Soll)

Die Ausrichtung auf ein Beobachtungsobjekt wird auch engl. gern “Pointing” genannt. Neben dem manuellen ggf. durch Technik unterstützem Pointing gibt es das vollautomatische computergestützte Pointing, was auch gerne “Goto” genannt wird.

Wo genau steht das Beobachtungsobjekt?

Aus der lokalen Sternzeit kann man leicht die Position eines Objekts am Himmel berechnen als Deklination und Stundenwinkel und dann mit einer richtig aufgestellten parallaktischen Montierung auf das Objekt fahren. Wenn man es ganz genau machen will, muss man allerdings ein paar “Kleinigkeiten” zusätzlich berücksichtigen:

  • Präzesion (50″ / Jahr)  –> J2000 vs. JNow
  • Nutation
  • Jährliche Abberation
  • Eigenbewegung des Objekts
  • Geografische Position des Beobachters
  • Atmosphäre

Genauigkeit des Pointing

Die Genauigkeit einer Pointing-Methode wird als “mittlere” Abweichung der Teleskop-Position von der Objekt-Position angegeben, wobei “mittlere” gern als “RMS” (Root Mean Square, Wurzel aus dem Mittelwert der Abweichungsquadrate) bezeichnet wird; d.h. 60% der Messungen leigen unterhalb von RMS.  Im Amateurbereich wird eine RMS von 30″ als hervorragend angesehen.

Erforderliche Genauigkeit – Gesichtsfeld

Praktisch hängt die Genauigkeit mit der auf das Beobachtungsobjekt positioniert werden soll wesentlich von der Größe des Gesichtsfelds des verwendeten Objektivs  ab. Eine Genauigkeit von 20% des Gesichtsfeldes würde ich für gut halten, 10% wären ein sehr guter Wert.

  • LidlScope 700mm mit APS-C-Sensor: 1,9 x 1,3 Grad   –> sehr gute Ausrichtung: 11′
  • Russentonne 500mm mit APS-C-Sensor:   2,7 x 1,8 Grad  –> sehr gute Ausrichtung: 16′
  • Beroflex 300mm mit APS-C Sensor: 4,5 x 3,0 Grad –> sehr gute Ausrichtung: 27′
  • Takumar 135mm mit APS-C-Sensor:  9,9 x 6,6 Grad –> sehr gute Ausrichtung: 59′
  • Olympus G.ZUIKO 50mm mit APS-C-Sensor: 26,6 x 17,7 Grad  –> Objekt LMC  –> sehr gute Ausrichtung:  2,7°
  • Vivitar 24mm mit APS-C-Sensor:  52,2 x 36,0 Grad   –> Objekte Polarlichter, Milchstraße  –>sehr gute Ausrichtung: 5,2°

 

Techniken zur Positionierung auf das Beobachtungsobjekt

Technik #1: Live-View mit höherer ISO-Einstellung

Beispiel “Großen Magellanschen Wolke” in Trafalgar

Mit einer höheren ISO-Einstellung wird das etwas schwache Objekt dann im Live View gut sichtbar.

Es bleibt das Problem des feinen Verstellens der Kamera-Richtung. Auf einem gewöhnlichen Kugelkopf ist das fummelig, weil man nicht in einer Richtung hin und her stellen kann – und damit leider nicht Fehler leicht korrigieren kann.
Besser wäre ein Kopf mit dem ich in zwei festen Achten fein hin und her stellen kann.

Technik #2: Leuchtpunktsucher

Ein Leuchtpunktsucher hat keine Vergrößerung, sondern zeigt beim Durchblicken 1:1 den Himmel, lediglich in der Mitte des Gesichtsfeldes ist ein Leuchtpunkjt oder ein leuchtendes Kreus eingeblendet. Das hilft ganz gut  bei der Positionierung auf ein Beobachtungsobjekt, das man gut sehen kann. Wenn man das Beobachtungsobjekt nicht sehen kann, aber sich die Position in Bezug auf die sichtbaren Sterne eingeprägt, hat ist es auch eine gewisse Hilfe.

Technik #3: Elektronischer Sucher / Digitaler Sucher

Als elektronischen Sucher habe ich mir eine USB-Kamera “Altair GP-CAM” gekauft und dazu ein Objektiv mit f=12mm. Das ergibt ein Sucher-Gesichtsfeld von 23° x 17°. das ich im Live View per Software (z.B. SharpCap) auf meinem Window-Computer betrachten kann. Bei ShapCap kann ich auch ein Fadenkreuz einblenden. Zu perfekten Glück fehlen dann noch:

  • Der Montagekopf muss eine feinfühlige Richtungsverstellung in zwei festen Achsen ermöglichen
  • Die Aufnahmeoptik muss parallel zum elektronischen Sucher ausgerichtet sein

Technik #4: SmartEQ Pro Goto-Funktion

Eine gut funktionierende Goto-Montierung ersetzt den Sucher. Man benötigt keinen Sucher mehr und kann ihn verkaufen :-). Deshalb habe ich mir die iOptron SmartEQ Pro gekauft. Allerdings ist jedesmal ein 1-2-3-Star Alignment erforderlich, wo man auch Sterne in das Zentrum des Gesichtsfelds stellen muss. Dafür benötigt man ggf. doch einen Sucher.

Beispiele zur Positionierung auf Beobachtungsobjekte

Olympus G.ZUIKO f=50mm mit Sony NEX-5R z.B. LMC

xxxxxx

Objekte finden mit Russentonne f=500mm und Sony NEX-5R

Das Gesichtsfeld der Russentonne ist klein (1,8 x 2,7 Grad). Es wird schwierig werden, damit gut auf ein Beobachtungobjekt zu positionieren. Ich habe ja meinen Rotpunkt-Sucher, der auf dem Blitzschuhschlitten der Kamera sitzt. Das passt auch mit der Russentonne.

Mit dem Rotpunktsucher sollte eine grobe Positionierung auf ein Objekt möglich sein. Eine Feinpositionierung müsste mit dem Smart Remote Contol und dem Live View auf dem iPad möglich sein, wenn man vielleicht das ISO für diesen Zweck etwas aufdreht. Bei mit sitzt die Russentonne allerdings auf einem Kugelkopf, der auf der Nachführung SkyTracker sitzt. Mit dem Kugelkopf ist eine solche “Feinpositionierung” nur ganz schwer möglich.

Objekte finden mit Takumar f=135mm und Sony NEX-5R

Wir gehen von folgendem Szenario aus:

  • Aufnahmekamera: Sony NEX-5R mit Objektiv Takumar 135mm  (=> Gesichtsfeld 9,9° x 6,6°) und Smart Remote Control per iPad
  • Sucherkamera: GP-CAM mit Objektiv f=12mm angeschlossen per USB an Notebook (=> Gesichtsfeld 22° x 17°)
  • Montierung: iOptron SmartEQ pro – parallaktisch – mit zwei Servomotoren (Stellmotoren)
  • PC (Notebook) mit Windows 10 & SharpCap

Dieser Aufbau sieht wie folgt aus:

Setup SmatEQ Pro, Sony NEX 5R mit 135mm Takumar und GP-CAM als elektronischer Sucher

Setup SmartEQ Pro, Sony NEX 5R mit 135mm Takumar und GP-CAM als elektronischer Sucher

Schritt 1: Vorbereitung am Tage:

  • Batterie der Kamera: Aufladen und Ersatzbatterie bereitlegen
  • Kamera: Sensor reinigen
  • Batterie des iPads: Aufladen und ggf. Mobil-Akku bereitstellen
  • 12V-Akku für Montierung: Aufladen und Kabel bereitlegen
  • Notebook-Computer: Batterie aufladen

Schritt 2: Justieren so dass Sucher und Aufnahmekamera parallel:

  • Gleich nach dem Einnorden kann der Polarstern benutzt werden, um die Parallelität der beiden Geräte zu justieren
  • Beide Geräte werden fokussiert, sodass die Sterne scharf zu sehen sind
  • Fadenkreuz wird auf beiden Geräten angeschaltet..
    • Sony PlayMemories Mobile: Einstellungen => Gitterlinie => 4×4 Raster + Diagonale
    • SharpCap:  Tool-Leiste: Switch between different styles of retucule overlay

SharpCap with reticule overlay:

SharpCap_Reticule

Sony PlayMemories Mobile: Einstellungen Gitter:

iPad_PlayMemoriesGitter

Im Prinzip funktioniert nun mein elektronischer Sucher: ich kann ein  Objekt ins Gesichtsfeld des Suchers einstellen und bei der Kamera sollte es dann auch im Gesichtsfeld sein.

Ich muss mein SharpCap nur noch so einstellen, dass schön viele Sterne auf dem Notebook-Bildschirm sichtbar werden.

Schritt 3: SharpCap Einstellungen für optimalen Sucher

Das Minimum-Ziel ist es, Sterne bis 4. Größenklasse im Sucher (Notebook) gut sichtbar zu machen.

Dazu stelle ich folgendes ein:

  • Einzelbild (“still”)
  • Belichtungszeit: 5 sec
  • Gain:  ????
  • XYZ:    ?????

yyyyyy

Astronomie: GuideScope50 als Sucher oder zum AutoGuiding

Beschreibung des GuideScope50

Das GuideScope50 ist eigentlich ein Sucherfernrohr mit guter Ausstattung.

DK_20180118_2326

Meine ursprüngliche Idee war, daraus zusammen mit einer VideoCam einen elektronischen Sucher zu bauen. Das war aber nicht zuende gedacht, da das Gesichtsfeld dann viel zu klein werden würde.

Gekauft bei: http://www.teleskop-austria.at/shop/index.php?m=2&kod=Guidescope50&lng=de

Die “gute” Ausstattung des GuideScope50 besteht aus:

  • Objektiv 50mm Durchmesser 180mm Brennweite
  • Halterung mit zwei stabilen Justierringen
  • 1,25 Zoll Okulartubus
  • T2-Anschluss
  • 20mm einstellbarer Okular-Verlängerung
  • Nicht-rotierender Helical Microfokus, Verstellweg 32mm
  • Schiene für Sucherschuh

Ein Okular wird nicht mitgeleifert.

Meine Verwendung für das GuideScope50

Da das GuideScope50 einen 1,25″ Okulartubus hat, kann ich meine VideoCam GP-CAM einsetzen und habe eine Brennweite von 180mm. Als elektronischer Sucher ist das nicht sinnvoll, denn das Gesichtsfeld beträgt nur 1,5° x 1,2°.
Damit könnte ich ohne Nachführung Mond und Sonne fotografieren.

Da das GuideScope50 auch ein T2-Gewinde hat, kann ich es mit meinem T2-NEX-Adapter auch wunderschön mit meiner DSLR Sony NEX 5R für fokale Astrofotos verwenden. Das Gesichtsfeld wäre dann 7,5° x 5,0°.

Mein mittelfristiges Ziel ist es ja, Astrofotografie mit meiner DSLR (Canon EOS 600D bzw.  Sony NEX 5R) zu betreiben (z.B. mit dem 135mm Foto-Objektiv oder an einem kleinen Refraktor). Dafür brauche ich eine Montierung mit einer guten Nachführung und letztlich auch AutoGuiding um auf schön lange Belichtungszeiten zu kommen.

Dafür ist meine Ausrüstung jetzt ausgelegt; d.h. das GuideScope50 mit GP-CAM zum AutoGuiding meiner Montierug Skywatcher HEQ5 Pro bzw.  iOptron SmartEQ Pro.

 

 

 

 

Astrofotografie mit einem “elektronischen Sucher” per Goto

Meine Situation mit der Astrofotografie

Eines meiner Hauptprobleme bei der Astrofotografie ist die Ausrichtung meiner Digitalkamera auf das gewünsche Objekt am Sternenhimmel.

Ich habe es mit einem “elektronischen Sucher” probiert. Ich hatte da eine GPCAM mit einer einem 12mm-Objektiv (Gesichtsfeld horizontal 23 Grad) ausprobiert. Auch damit hatte ich trotzdem zwei Probleme:

  1. Die manuelle Feinausrichtung der Kamera auf einem Stativ mit Kugelgelenk auf ein Himmelsobjekt ist sehr mühsam. Besser wären Servomotoren, die per Tastendruck meine Kamera mit “etwas Deklination” bzw. “etwas Rektaszension” hin und her bewegen würden…
  2. Auch in einem großen elektronischen Sucher (s.o. 23 Grad Gesichtsfeld) habe ich persönlich große Mühe (bei Lichtbedingungen in der Großstadt) ein Sternenfeld zu erkennen (z.B. ist das was ich sehe tatsächlich die Corona Borealis?)

Die Lösung für diese meine persönlichen Probleme könnte eine kleine motorisch betriebene Montierung sein, die per GoTo auf von mir vorgeplante Objekte positioniert…

Meine Lösung: Goto-Funktion zum bewegen eines elektronischen Suchers

Als Sucher möchte ich die Goto-Funktion meiner computergesteuerten Montierung  iOptron SmartEQ Pro nutzen.

Mein Aufbau: Doppel-Vixenschiene auf der iOptron SmartEQ Pro

Als OTA (Optical Tube Assembly) kommt bei meinem bescheidenen Setup kein “richtiges Fernrohr” zum Einsatz, sondern nur meine Digitalkamera Sony NEX-5R, die auf einer Vixen-Schiene sitzt. Die spezielle Vixen-Schiene verfügt über zwei Löcher für 1/4-Zoll Fotoschrauben (bzw. Schnellwechselplatten) sowie eine Sucherschuh (z.B. für mein GuideScope50).

Da ich wahlweise mit der Sony NEX-5R oder der Altair GPCAM arbeiten will, sind beide parallel auf der Vixenschiene montiert. Beide Kameras müssen optisch parallel ausgerichtet werden, da sie ja auf ein und derselben Goto-Montierung sitzen. Also muss eine Kamera beweglich/richtungsjustierbar sein (hier die Sony NEX-R5 auf Kugelkopf).

dk_20161030_0971

Vorbereitende Schritte

Polar Alignment

Als erstes muss die Monitierung eingenordet werden. Das habe ich in diesem Artikel separat beschrieben.

Goto Alignment

Damit die Goto-Funktion gut funktioniert, muss ein gutes “Star Alignment” durchgeführt werden.

One Star Align

Die SmartEQ Pro muss in der Zero Position stehen.

Auf der Handbox eingeben: Menu -> Align -> One Star Align

Auf dem Display erscheint eine Liste von hellen Sternen, die von der Computersteuerung so berechnet wurden,, dass sie im Moment über dem Horizont sein sollten – ca. 20 Grad oder höher).
Beispielsweise erschien am 21.7.2016 um 22 Uhr folgende Liste von Sternen für Alignment:

  • Alderamin 014 – Alpha Cep – östlich vom Meridian
  • Alfirk 015 – Beta Cep – östlich vom Meridian
  • Alioth (Aliath) – Epsilon UMa – westlich vom Meridian
  • Alkaid  – Eta UMa   – westlich vom Meridian
  • Alphecca   – Alpha Crb  – nicht sichtbar (WSW hinter dem Haus)
  • Altair  – Alpha Aql  – östlich vom Meridian – nicht sichbar (hinter dem Dachfirst)
  • Arcturus   – Alpha Boo  – nicht sichtbar (WSW hinter dem Haus)
  • Caph (Chep) 065  – Beta Cas – östlich vom Meridian
  • Deneb 074 – Alpha Cyg – östlich vom Meridian
  • Denebola  – Beta Leo – nicht sichtbar
  • Dubhe – Alfa UMa  – westlich vom Meridian
  • Eltamin (Etamin)  – Gamma Dra – nahe Zenit
  • Izar    – Epsilon Boo  – westlich vom Meridian – nicht sichtbar (hinter dem Haus)
  • Kochab (102) – Beta UMi  – westlich vom Meridian
  • Merak  –  Beta UMa – westlich vom Meridian – nicht sichtbar (hinter dem Haus)
  • Mizar  – Zeta UMa – westlich vom Meridian – nicht sichtbar (hinter dem Haus)
  • Phecda  – Gamma UMa – westlich vom Meridian – nicht sichtbar (hinter dem Haus)
  • Rasalhague  – Alpha Oph  – östlich vom Meridian – nicht sichtbar (hinter dem Dach)
  • Rukbar (Ruchbah) 152 – Delta Cas – (zweiter Stern in “Schreibrichtung”)
  • Sadr  – Gamma Cyg  – östlich vom Meridian
  • Schedar (Schedir) 162 – Alpha Cas – östlich vom Meridian
  • Scheat 161 – Beta Peg – östlich vom Meridian
  • Vega  – Alpha Lyr – östlich vom Meridian – nicht sichtbar (hinter dem Haus)

Wir blättern durch diese Liste mit den Pfeiltasten UP & DOWN und wählen schließlich mit ENTER einen Stern aus.

Die Servomotoren rattern los und schwenken auf  die von der SmartEQ berechnete Position des ausgewählten Sterns.

Der Stern wird nun nicht mittig im Gesichtesfeld stehen, sondern ein wenig woanders. Wir müssen nun den Stern mit den Pfeiltasten genau in die Mitte des Gesichtsfelds stellen und der Computersteuerung durch die ENTER-Taste sagen, wenn wir das geschafft habe.

Problem #1: Man muss die Sterne, auf die positionioert werden soll vom Namen und ihrer Stellung am Himmel gut kennen.

Problem #2: Man muss den richtigen Stern in die Mitte des Gesichtsfelds stellen; d.h. den den man namentlich aus der Liste der Computersteueung ausgesucht hat und nicht einen anderen, der irgendwie in der nähe steht.

Problem #3: Man mus den (richtigen) Stern so genau wie möglich in die Mitte des Gesichtsfelds stellen. Das ist z-B- bei einem Kamera Live View nicht so ganz einfach.

Multi Star Align

Die SmartEQ Pro muss in der Zero Position stehen.

Auf der Handbox eingeben: Menu -> Align -> Multi-Star Align

YYYYYYYYYYYYYY   ZZZZZZZZZZZ

Ausrichten der Kamera auf Objekte am Nachthimmel

Das Anfahren von Beobachtungsobjekten erfolgt mit Hilfe der Servomotoren an den beiden Achsen der Montierung. Diese Servomotoren werden über die Go2Nova Handbox gesteuert – entweder “manuell” durch drücken der vier Pleiltasten auf der Handbox oder per GoTo-Funktion der Go2Nova Handbox.

Ausserdem besteht die Möglichkeit die Steuerung der Motoren mittels ASCOM-Treibern von einem Windows-Computer vorzunehmen….

Voraussetzung ist immer das zuvor erfolgte sorgfältige Polar-Alignment und Goto-Alignment.

Sichtkontrolle mit Live-View

Um die Ausrichtug der Kamera auf das gewünschte Beobachtungsobjekt zu kontrollieren, verfolge ich im Live-View das Bild der Kamera, in das ein Fadenkreuz eingeblendet ist. Die Einzelheiten dazu sind unterschiedlich, je nach dem, welche Kamera verwendet wird.

Live-View mit der Altair GPCAM

Um hier überhaupt ein Bild zu bekommen, verbinde ich die Altair GPCAM per USB-Kabel mit meinem Windows-Notebook. Auf dem Windows-Notebook starte ich dann ein “Capture”-Programm wie z.B. SharpCap oder das mit der Kamera mitgelieferte “Altair Capture“. Seit Neuestem unterstützt sogar “FireCapture 2.5” meine USB-Kamera Alair GPCAM.

Live-View mit der Sony NEX-5R

Die Digitalkamera Sony NEX-5R benötigt im Prinzip keinen Windows-Computer, denn sie hat alles Erforderliche “an Bord”: Ein verstellbares Display für Live View und einen Bildspeicher per SD-Karte. Allerdings hat eine Live-View-Verbindung zu einem größeren Bild auf einem Computer viele Vorteile. Um so eine Verbindung herzustellen wird bei der Sony NEX-5R immer das WLAN benutzt. Ich kann die Kamera per WLAN-Verbindung mit meinem iPad oder auch mit meinem Windows-Notebook verbinden.

  • Für die Verbindung mit dem iPad benötigt man die Sony-App “Play Memories Mobile“….
  • Die Verbindung mit dem Windows-Notebook könnte mit der Windows-Software “qDlsrDashboard” hergestellt werden….

Manuelles Anfahren von Objekten (Ohne GoTo)

Nach dem ein Alignment durchgeführt wurde kann ich manuell die gewünschen Himmelsobjekte anfahren, durch drücken der Pfeiltasten auf dem Go2Nova Hand-Controller.

Computergesteuertes Anfahren von Objekten  (GoTo)

Die SmartEQ Pro verfügt über noch mehr Komfort: eine GoTo-Funktion positioniert das “Fernrohr” (OTA) computergesteuert auf ein angegebenes Zielobjekt.

Als Zielobjekte kommen laut Menü der Handbox in Frage:

  • Solar System
  • Named Stars
  • Deep Sky Objects
  • User Objects

Zum Testen der GoTo-Funktion habe ich folgende User Objekte eingegeben, die leicht von meinem Terrassenstandort zu finden sein sollten:

Nr. Name Sternbild Helligkeit SAO R.A. Deklination
1 Alphekka alp CrB 2,2 83893 15h 35m 26° 40′
2 zet Her 2,8 65485 16h 42m 31° 35′
3 Alkaid eta Uma 1,8 44752 13h 48m 49° 48′

 

Meine Test-Sequenz #1:  Polaris & Zero Position

Montierung einnorden mit Hilfe des Polfernrohrs

Strom aus, Montierung in “Zero Position” bringen, Strom an

Kamera an Notebook anschließen, Bild mit SharpCap einstellen (Belichtung, Fokus)

Kamera:   f=12mm, Gesichtsfeld horizontal 23 Grad    (oder GuideScope50,  FoV 1.5° x 1.1°, 4.2 arcsec/pixel)

Wie gut steht jetzt Polaris in der Bildmitte?

Ggf. Zero Position korrigieren.

Meine Test-Sequenz #2: Go To User Object

Handbox: Select and Slew

Go To User Object No. 1   (Alpha Corona Borealis)

Software: SharpCap  Belichtungszeit und Gain einstellen

Wie gut steht jetzt das User-Object in der Bildmitte?

Ggf. Feinkorrektur der Montierung:

  • Handbox: Menue -> Sync to Target
  • Follow on-screen instructions and center object
  • Press ENTER

 

Astrofotografie mit der Philips ToUCam Pro II als elektronischem Sucher

Meine Idee: Elektronischer Sucher

Mein astronomisches Hauptgerät ist die Sony NEX-5R Digtalkamera mit diversen schönen alten MF-Objektiven.
Mit der Digitalkamera ist es aber oft sehr beschwerlich, das gewünsche Beobachtungsobjekt am Himmel einzustellen.

Die Idee ist es, dieses Problem mit einem “Elektronischen Sucher” zu lösen. Das wäre eine WebCam, die ich parallel zu meiner Digitalkamera montiere und dann ganz bequem am Notebook-Bildschirm den Bildausschnitt betrachte. Dafür benötige ich für die WebCam ein Objektiv mit längerer Brennweite, sodass das Gesichtsfeld so ca. 10-15 Grad ist. Ausserdem muss die WebCam eine Lichtempfindlichkeit haben, die Sterne der Größenklasse 5 mag (mindestens) auf dem Notebook zeigt.

Das möchte ich mal für wenig Geld ausprobieren und als  günstige WebCam versuche ich es mit einer Philips ToUCam Pro II.

The ToUCam is mentioned in a lot of astronomical web pages as a highly good solution for astronomical applications. The official name of the ToUCam is/was: Philips PCVC840K.
Wird seit 2007 nicht mehr hergestellt.

Nachfolgemodell: SPC 900 NC  – wird ebenfalls nicht mehr hergestellt, aber die Treiber sollen auch für die ToUCam passen.

Datasheet / Technische Daten

Farbe

Max. Auflösung: Video: VGA (640×480);

Standbild: 1.2 Megapixel (1280×960)

Max. Einzelbildrate pro Sekunde: 60 f/s

Computeranschluss: USB, Plug & Play

Kameraobjektiv abschraubbar    wahrscheinlich M12 x 0.5 Gewinde

Integriertes Mikrofon

Technische Daten:

Öffnung/Brennweite:     2,31/6 mm (f/2,6)
CCD-Chip:               Sony ICX098BQ
Auflösung:              0,33 Megapixel
Chipdiagonale:          4,5 mm (¼")
Chipbreite              4,60 mm
Chiphöhe:               3,97 mm
Pixelabstand:           5,6 μm
Eff. Pixelzahl:         659 × 494
Ges. Pixelzahl:         692 × 504
Auflösung:              640 × 480
Empfindlichkeit:        < 1 Lux

Belichtungszeit:  max. 1/25 sec

Links: http://astrofotografie.hohmann-edv.de/aufnahmetechniken/toucam.php

Objektivgewinde der ToUCam Pro II:  M12 * 0.5  / S-Mount (CCTV lens)

Es scheint, die ToUCam Pro II hat ein M12 x 0.5 Gewinde am abschraubbaren Objektiv.

The 12M X 0.5 thread is the standard for micro-video lenses (see Edmund’s Optics Catalog), and is used on the 3Com Home Connect (or Vista Imaging) PC Web Cam.

The S-mount is a standard lens mount used in various surveillance CCTV cameras and webcams. It uses a male metric M12 thread with 0.5 mm pitch on the lens and a corresponding female thread on the lens mount; thus an S-mount lens is sometimes called an “M12 lens”. Because the lens mounts are usually attached directly to the PCB of the sensor, the standard is often called “board lens”. The supported sensor formats range from the smallest 1/6-inch type to the largest 1/3-inch having an 11mm diagonal sensor. The lens mount is usually made of plastic and the lenses lack an iris control. S-mount lenses do not have a flange and therefore there is no fixed lens to sensor distance and they must be adjusted to focus.[1]  (Source: Wikipedia)

Objektive für eine WebCam

Google-Suche nach “TV Lens”, “CCTV Lens”, “Box Camara”

Alternativen

Altair GPCAM AR0130C – General Purpose Astronomy Colour Camera, 1.2 MP CMOS

http://www.teleskop-express.de/shop/product_info.php/language/en/info/p8190_Altair-GPCAM-AR0130C—General-Purpose-Astronomy-Colour-Camera–1-2-MP-CMOS.html

Treiber für die ToUCam Pro  II

Schritt 1: Treiber der SPC900NC besorgen

Für die ToUCam Pro II gibt es vom Hersteller Philips für Windows Vista, Windows 7, Windows 10 keine Treiber mehr.

Auf der Website http://lab.frumania.com/2010/12/philips-toucam-windows-7-64bit/  wird empfohlen, einfach die Treiber für die SPC900NC zu nehmen.

Zitat Anfang

Wie dem auch sei, letztendlich bin ich doch fündig geworden. Der Trick ist hierbei einen Treiber eines anderen Webcam Typs zu nutzen. In unserem Fall für die 64 bit Variante der Treiber der Philips SPC900NC.

Treiber Win 7 – 64bit: http://download.p4c.philips.com/files/s/spc900nc_00/spc900nc_00_dw7_eng.exe

Der Vollständigkeit halber hier noch der Treiber für Win Vista/Win 7 32 bit:

Treiber Win 7 – 32 bit: http://fichiers.touslesdrivers.com/philips/Philips_ToUcam_Vista.zip

Installation erfolgt über den Geräte Manager. Das unbekannte Gerät auswählen und über Rechtklick->“Treibersoftware aktualisieren“ den Treiber aus dem zuvor heruntergeladenen und entpacken Archiv auswählen. Danach kann die Webcam wie gewohnt beispielsweise in Skype genutzt werden.

Quellen: Link1 Link2

Zitat Ende

Leider konnte ich diese SP900NC-Treiber nicht erfolgreich für die ToUCam installieren, es blieb um Gerätemanager immer ein “Unbekanntes Gerät”.

Ein weiter Link für Vista 32Bit Treiber:  http://www.touslesdrivers.com/index.php?v_code=16195&v_page=23

Schritt 2: Leichte Modifikation der Treiberdateien

Auf der Cloudy Nights bei  habe ich dann den “Trick” gefunden, der mir weiter geholfen hat: http://www.cloudynights.com/topic/275496-getting-a-toucam-pro-840k-to-work-with-windows-7/

Zitat Anfang

Michael Rapp Posted 13 June 2010 – 10:44 AM

I am slowly getting back into imaging after a three year absence and I was testing out my equipment last night. I was especially dismayed to find that my ToUCam Pro (840K model) was not supported by Philips for Windows 7.
There are no drivers for it. :( My camera is in great condition and I think its still a viable planetary camera, so I was not looking forward to having to go buy a new webcam. After some sleuthing on the internet, I found a workaround! I can’t take credit for this as I found it on another forum.
Here is my version of the steps (do this with your camera plugged in and unrecognized):
1) Download and install the Windows 7 Driver (not the software, the driver) for the one of the SPC900 models of webcam from Philips.
2) After rebooting, run Notepad as administrator. If you are running the 32 bit version of Windows 7, navigate to c:\Program Files\Philips\Philips\SPC900NC PC Camera. (If on 64-bit Windows, go to Program Files (x86).)
3) Open Camvid40.inf and edit the following lines. Turn off word wrap and turn on the Status Bar (View menu) to see the line numbers. Or count if you feel like it. ;) Edit line 66 to look like this: %USBVid.DeviceDesc%=USBVidx86,USB\VID_0471&PID_0311&MI_00 Edit line 69 to look like this: %USBVid.DeviceDesc%=USBVidXp64,USB\VID_0471&PID_0311&MI_00 Edit line 72 to look like this: %USBVid.DeviceDesc%=USBVidVista64,USB\VID_0471&PID _0311&MI_00 You’ll notice you seem to be changing the PID attriubute. Perhaps it stands for ProductID?
4) Save the file and then open SPC900.txt from the same directory. Edit line 2 to look like this: USB\VID_0471&PID_0311&MI_00
5) Save the file and close notepad.
6) Go to Device Manager (right click on Computer, choose Properties, then select Device Manager on the resulting screen.)
7) Under Other Devices, you’ll see an Unknown Device. This is your currently unrecognized webcam. Right click on the unknown device and select Update Driver Software. Select Browse my Computer and go to C:\Program Files\Philips\Philips SPC900NC PC Camera (again, if you’re on Windows 7 64-bit, you want to go into the Program Files (x86) directory.) Make sure Include Subfolders is checked and click next.
8) In a few moments you should have a nice recognized webcam. It will recognize the 840K as the SPC 900, but it should work just find in your capture software.
9) Enjoy and do something else with the time you would have spent reformatting with Windows XP or messing with a virtual XP machine.

Zitat Ende

Erfahrung: ToUCam Treiber funktionieren für Windows 7

Mit den oben zitierten zwei Schritten, ist es mir tatsächlich gelungen die ToUCam Pro II unter Windows 7 32 Bit und auch unter Windows 7 64 Bit zum Laufen zu bekommen.
Kontrolliert habe ich das im Gerätemanager….

Gerätemanager Windows 7

Gerätemanager Windows 7

Die Funktionsfähigkeit der ToUCam selbst zeigt die kleine WebCam-Software “MyCam” mit der ich das Live-Bild auf dem Notebook betrachten kann (Hersteller:   http://e2esoft.cn/mycam/  ).

ToUCam-MyCam-Test

Problem mit Windows 10

Unter Windows 10 prüft der Gerätemannager bei der Treiberinstallation  anscheinend auf “unerlaubte Änderungen”  gegen einen Hashcode und die Installation funzt leider nicht.

ToUCAM-Treiber-Windows10

Da müsste man mal weiter forschen nach dem  “Hashwert in der Katalogdatei”…..

Astronomische Software für die WebCam

Die oben erwähnte Software “MyPic” ist für die allerersten Tests gut, aber wenn es in die astronomische Anwendung geht, benötigt man etwas mehr.

Ich habe als ersten astronomischen Versuch die Software “SharpCap” genommen: http://www.sharpcap.co.uk/sharpcap/downloads

Aber mit dem Standard-Objektiv der ToUCam ist da nicht zu machen, da braucht es längere Brennweiten. Ich habe ein Vario 10-30mm bestellt…

 

 

Astrofotografie: Sucher

Gehört zu: Liste

Für mich ist es immer ein erheblicher Aufwand, meine Kamera auf die Objekte am Himmel, die ich fotografieren will, zu positionieren.

Auch beim 1-2-3-Star-Alignment muss ich ja genau auf einen Stern positionieren; wenn der Stern nicht im Gesichtsfeld erscheint, beginnt die Sucherei – per Sucher…

Konventionelle Sucher

Neben meinen Versuchen mit einem “elektronischen Sucher” habe ich im Sept. 2017 einen ganz konventionelle Sucher angeschafft, weil mein Leuchtpunktsucher wegen zu großer Helligkeit und Blendung unbrauchbar war.

Der kleine 6×30 Sucher

https://www.teleskop-express.de/shop/product_info.php/info/p294_TS-Optics-6×30-Sucher-mit-Halter—schwarz–geradsichtig.html

  • Gesichtsfeld: 7,5° am Himmel
  • Vergrößerung: 6 fach
  • Öffnung: 30 mm
  • Fadenkreuz

Mein Foto davon:

DK_20180504_2509

Prismenschiene PLAT-1

Bei http://www.teleskop-austria.at habe ich etwas gefunden, was mir helfen könnte:

PLAT-1-4

Das geniale ist dabei die Prismenschiene, die links im Bild eine 1/4″ Schraube für meine Kamera hat und rechts im Bild einen Sucherschuh.

PLAT-1-1

Der Sucher kann dann beliebig komfortabel sein z.B. nur zur visuellen Durchsicht oder mit Video-Kamera oder Auto Guider oder sonstwas Schönes.

Die Prismenschiene (“Vixen Level”) muss dan “nur noch” auf eine schöne kleine motorisierte Reisemontierung…..