Astrofotografie für Einsteiger: Nachführung – Tracking

Problemstellung: Warum Nachführung?

Bei der Astrofotografie wird man (meistens) länger belichten wollen z.B. 30 Sekunden oder 5 Minuten (oder…) – dabei werden Sterne nicht mehr punktförmig, sondern werden kleine Striche, was man meistens nicht so will. Diese scheinbare Bewegung der Sterne am Himmel ist ein Spiegelbild der Erdrotation. Am Himmelsäquator bewegen sich die Sterne in 4 Minuten um 1 Grad; in höheren Deklinationen muss man mit dem Cosinus der Deklination multiplizieren z.B. bei 60 Grad Deklination ist es in 4 Minuten nur ein halbes Grad.

Beispiel: Konzentrische Strichspuren am Himmelspol:

starstax_dk_20150604_05307-dk_20150604_05396_gap_fillingsmall

Diese scheinbare Bewegung der Sterne am Himmel will man während der Aufnahme durch eine entgegengesetzte Bewegung kompensieren; das nennt man Nachführen – Nachführung – engl. Tracking.

Achtung: Der Begriff “Guiding” bedeutet ein optimiertes/korrigiertes  Tracking. Es gibt also “unguided tracking” und “guided tracking”.

Im Zusammenhang mit dem “tracking” steht das “pointing“. Pointing bedeutet das Richten des Teleskops auf eine bestimmtes Objekt am Himmel, was man auch gerne “Suchen” oder “Goto” nennt. Tracking ist letztlich ein differentielles Pointing. Die Genauigkeit von Pointing wird durch die mittlere Abweichung zwischen Soll-Position und Ist-Postion gemessen, wobei die “mittlere” Abweichung gerne als “RMS” = Root Mean Square (Wurzel aus dem Mittelwert der Abweichungsquadrate) angegeben wird. Im Amateurbereich ist eine RMS von 30″ sehr gut.

Links zur Nachführung

Voraussetzung: Polar Alignment

Um eine genaue Nachführung mit einer äquatorialen Montierung zu erreichen ist absolute Grundvoraussetzung eine sehr gute Einnordung (Polar Alignment). Das gilt besonders dann, wenn man Brennweiten von mehr als 50mm und Belichtungszeiten von mehr als 30 Sekunden hat.

Voraussetzung: Stellar Alignment

Um eine genaue Einstellung einer äquatorialen Montierung zu erreichen ist das sog. Alignment (auch Stellar Alignment oder Goto-Alignment). also die Ausrichtung an Referenzsternen erforderlich. Erst dann ist die volle Funktionalität einer Montierung  gegeben; d.h. Nachführung, Goto-Funktion etc.

Lösungen zur Nachführung

Um die Nachführung nicht per Hand machen zu müssen, gibt es elektrisch betriebene Einrichtungen wo Servomotoren (oder Schrittmotoren) die erforderliche Nachführ-Bewegung (das Tracking)  automatisiert erledigen.

Wenn man die Sub-Exposures länger belichten will (z.B. 5 Minuten oder noch länger), wird das Tracking der besten Montierung meistens doch zu ungenau und man setzt dann zur Fein-Korrektur des Trackig ein sog. Autoguiding ein. Dazu habe ich  separaten Artikel geschrieben:

Kleine Lösungen zur Nachführung (Tracking)

Dies sind kleinere Geräte/Vorrichtungen, die transportabel sind und so z.B. auf Reisen mitgenommen werden können.

Diese Geräte verfügen über eine Drehachse, die parallel zur Rotationsachse der Erde ausgerichtet werden muss (siehe: Einnorden ).

Weitere “kleine” Lösungen zur Nachführung (neueren Datums)

Zeitweise war ich mit der Nachführgenauigkeit meines NanoTrackers unzufrieden und habe mich nach Alternativen umgeschaut:

Vixen Polarie Star Adventurer Mini Star Adventurer
 Preis 375,– 239,– 280,–
 Gewicht 740g 650g 1200g
 Stromversorgung  2 x AA
Mini-USB
2 x AA
Micro-USB
 4 x AA
USB
 Traglast  2 kg 3 kg 5 kg
 Polsucher  nein ja ja
 WLAN  nein ja nein
 Shutter Control  nein ja nein
 ST-4 zum AutoGuiding  nein  nein ja
 Zubehör  kaum reichhaltig reichhaltig

Große Lösungen zur Nachführung (Tracking)

Montierungen mit einer computergesteuerten motorischen Nachführfunktion (Tracking).

  • Azimutale Montierungen (Nachführung in zwei Achsen)
  • Parallaktische Montierungen (Nachführung in einer Achse)

Bei der parallaktischen Montierung muss die Drehachse (Stundenachse) parallel zur Rotationsachse der Erde ausgerichtet werden (siehe: Einnorden ).

Ich habe eine solche Lösung für mich gewählt mit einer leichten parallaktschen Montierung iOptron SmartEQ Pro

Tracking-Genauigkeit verbessern durch Guiding

Das Tracking einer motorischen Nachführung kann durch ein sog. Auto-Guiding verbessert werden. Dabei wird das “blinde” Tracking ergänzt durch eine tatsächliche Beobachtung eines Leitsterns in einem “Guiding-Fernrohr”.  Aus dort sichtbar werdenden Abweichungen kann eine Software (z.B. PHD2 Guiding) Korrekturbefehle für die Computersteuerung des Teleskops ableiten. Dabei müssen Korrekturen sowohl in der Rektaszension als auch in der Deklination möglich gemacht werden; d.h. es sind computergesteuerte motorische Bewegungen in zwei Achsen erforderlich.

Nachführung und Brennweite – Faustregel

Wie genau eine Nachführung sein muss (in Bogensekunden), damit die Sterne noch Punktförmig abgebildet werde, hängt von dem Abbildungsmaßstab der Optik bezogen auf die Pixelgröße des Sensors ab.

Abbildungsmaßstab

Die Formel lautet:

Pixel Scale (arcsec/Pixel) = 206,265  * Pixelgröße  (µm) / Focal Length (mm)

(wobei 206265 = 360*60*60/2π)

Beispiel: GuideScope50 und GPCAM:

Pixel Scale = 206 *  3,75 / 180 =  4,20 arcsec / Pixel

Beispiel: f=135mm an Canon EOS 600D

Pixel Scale = 206 *4,3 / 135 = 6,56 arcsec / Pixel

Beispiel: f=135mm an Sony NEX-5R

Pixel Scale = 206 * 4,8 / 135  =  7,33 arcsec / Pixel

Beispiel: f=24mm an Sony NEX-5R

Pixel Scale = 206 * 4,8 / 24  =  41,25 arcsec / Pixel

Quellen:

Erdrotation

Die scheinbare Bewegung der Sterne am Himmel durch die Erdrotation beträgt:  360° = 360 * 60 * 60 arcsec = 1296000 arcsec in 24 Stunden (24*60*60 Sekunden) am Himmelsäquator (δ=0).

  • Sternbewegung = 129600 * cos(δ) / 86400      [arcsec / s]
  • Sternbewegung =  15 * cos(δ)  arcsec/s

Auflösungsvermögen

Die Formel für das Auflösungsvermögen (wegen Beugungsscheibchen) lautet:

Auflösung in arcsec = 138 / Objektivöffnung in mm

Beispiel: GuideScope50

Auflösung = 138/ 50 = 2,76 arcsec

(wobei 138 = lambda * 206,265, mit lambda = 670 nm)

Quellen:

Oversampling / Undersampling

Oversampling hat man, wenn der Pixel Scale feiner ist als die Auflösung. Jedes Pixel bekommt weiniger Licht (Photonen) als eigentlich möglich. Das ist meistens nicht so gut.

Undersampling hat man, wenn der Pixel Scale gröber ist als die Auflösung. Man “verschenkt” also eine eigentlich mögliche höhere Auflösung, was bei größeren Sternfeldern durchaus gewollt sein kann

Beispiel: GuideScope50 und GPCAM:

Da der Pixel Scale mit 4,2 größer ist als die Auflösung von 2,76, haben wir hier ein Undersampling

Die 500er-Regel

Ab welcher Belichtungszeit eine Nachführung erforderlich ist, hängt von der verwendeten Optik – im Wesentlichen von der Brennweite – ab.

Faustregel: 500 dividiert durch die “effektive” Brennweite in Millimetern ergibt die maximale Belichtungszeit in Sekunden bei der noch keine Nachführung nötig ist

Wobei: Effektive Brennweite = Wahre Brennweite * Crop-Faktor   (der Crop-Faktor soll hier verkehrt sein)

Quelle: http://www.justinngphoto.com/2014/05/16/how-i-photograph-the-milky-way-from-light-polluted-skies-of-singapore/

Die NPF-Regel

Eine wesentlich genauere Formel, die sog. NPF-Formel, findet man bei der Société Astronomique du Havre:

http://www.sahavre.fr/tutoriels/astrophoto/34-regle-npf-temps-de-pose-pour-eviter-le-file-d-etoiles

Der ClearSky-Blog

In der Rubrik “Mathematik in der Astronomie” findet man:

http://www.clearskyblog.de/2014/10/30/mathematik-in-der-astronomie-teil-6-die-maximale-belichtungszeit-astrofotografie/

Beispiele zur Nachführung

Beispiel 1: Nachführung mit dem NanoTracker

Wir erproben die Genauigkeit der NanoTracker Nachführung mit meiner Kamera Sony NEX-5R und verschiedenen Objektiven.

Für die obige Faustformel haben wir:

  • Die Sony NEX-5R hat einen APS-C-Sensor (mit einem Crop-Faktor von 1,5)
  • Das Objektiv Olympus E-Zuiko hat eine Brennweite von 135mm
  • Die fotografierten Sterne (Cygnus) haben eine Deklination von ca. 42 Grad

Die Faustformel ergibt:  500 / 135  = 3,70 Sekunden maximale Belichtungszeit am Himmelsäquator (Deklination = 0 Grad) und 4,98 Sekunden bei einer Deklination von 42° (cos 42° = 0,7431).

Einzelheiten stehen in meinem separaten Artikel zum NanoTracker.

Beispiel 2: Nachführung mit dem SkyTracker

Wir erproben die Genauigkeit der SkyTracker Nachführung mit meiner Kamera Sony NEX-5R und der Russentonne.

Für die obige Faustformel haben wir:

  • Die Sony NEX-5R hat einen APS-C-Sensor mit einem Crop-Faktor von 1,5
  • Die Russentonne Rubinar Macro 5,6 / 500 hat eine Brennweite von 500mm
  • Die fotografierten Sterne (alpha Geminorum) haben eine Deklination von ca. 32 Grad

Die Faustformel ergibt:  500 / (500 * 1,0) = 1,00 Sekunden maximale Belichtungszeit am Himmelsäquator (Deklination = 0 Grad).

Das fotografiert Objekt war Alpha Geminorum bei einer Deklination von ca. 32 Grad – wobei cos(32°) = 0,8480. Die maximale Belichtungszeit dort wäre nach dieser Faustformel also: 1,00 / 0,8480 = 1,18 Sekunden. Nach der NPF-Regel wären es nur 0,5 Sekunden…

Einzelheiten stehen in meinem separaten Artikel zum SkyTracker.

 

Leave a Reply

Your email address will not be published. Required fields are marked *

*
*
Website