Astronomie: Physikalische Größen

Physikalische Größen / SI-Einheiten

Als sog. SI-Einheiten sind international definiert:

  1. Meter   – Länge
  2. Kilogramm –  Masse
  3. Sekunde  –  Zeit
  4. Ampere  –  Stromstärke  (1948)
  5. Kelvin  –  Temperatur  (1954, 1968)
  6. Mol –  Stoffmenge  (1971)
  7. Candela  –  Lichtstärke   (1979)

Für die Messung der Himmelshelligkeit ist die Lichtstärke gemessen in Candela interessant. Wobei die SI-Definition besagt:

Eine Lichtquelle hat die Lichtstärke 1 cd, wenn sie monochromatisches Licht der Frequenz 540 x 10 12 Hertz (555 nm) aussendet und dabei in einen Raumwinkel von 1 sr (Steradiant) eine Leistung von 1/683 Watt abgibt.

Abgeleitete Einheiten:

  • Lichtstrom  Φv , gemessen in Lumen (lm): Eine Lichtquelle der Lichtstärke 1 cd strahlt in einen Raumwinkel von 1 sr einen Lichtstrom von 1 lm (Lumen) ab. Also lm = cd sr
  • Leuchtdichte  Lv , gemessen in Candela pro Qudratmeter  (cd m-2 oder lm m-2 sr-1)
  • Beleuchtungsstärke E, gemessen in Lux (lx):  Lichtstrom pro m². Also lx = lm m-2

Die Wikipedia gibt für einen “Sternklaren Nachthimmel” eine Leuchtdichte (also Flächenhelligkeit) von   0,001 cd m-2 an. Nach der unten stehenden Umrechnungsformel wären das 20,08 mag/arcsec².

Wobei “mag” für Größenklassen (Magnituden) der klassischen astronomischen Helligkeitsskala steht.

Umrechnungen:

  • 1 cd/m²    =     12,58 mag/arcsec²
  • Allgemein gilt:  Leuchtdichte in  mag/arcsec² =  12,58 –  2,5 * log(LV)    (wobei LV: Leuchtdichte in cd/m²  und log der 10er Logarithmus ist)

Astronomie: Scheinbare Helligkeit

Die Helligkeit von Sternen

Die (scheinbare) Helligkeit misst der Astronom in „Größenklassen“, auch „Magnituden“ (mag) genannt.

Das geht auf die Babylonier zurück und wurde von Hipparch (190-120 v.Chr.) für seinen berühmten Sternkatalog übernommen.

Die hellsten Sterne sind „Größenklasse 1“ z.B. Antares, Regulus,…

Die dunkelsten, gerade noch sichtbaren Sterne sind „Größenklasse 6“. 

Noch dunklere Sterne, die nur noch in Teleskopen sichtbar sind, haben also Größenklassen wie 7, 8, 9,…

Es gibt aber auch hellere Sterne z.B.

  • Wega 0,0 mag
  • Sirius -1,45 mag
  • Venus (max.) -4,3 mag
  • Vollmond -12,7 mag
  • Sonne -26,8 mag
  • Die ISS: -2,0 mag bis -4,7 mag

In der Neuzeit wurde für die Helligkeiten eine logarithmische Skala definiert, weil das Auge Helligkeiten nach dem Weber-Fechner’schen Gesetz logarithmisch wahrnimmt.
Erhalten bleibt der klassische Helligkeitsunterschied von 5 Magnituden, der einen Helligkeitsunterschied vom Faktor 100 bedeutet. Ursprünglich wollte man die Helligkeitsskala so positionieren, das der Polarstern genau 2,0 mag hat.

Δ m = m1 – m0 = (-5 * log(Φ10))/log(100)

Wobei Φ der Lichtstrom (gemessen in Lumen)  ist, was ich in meinem Artikel über die physikalischen Maßeinheiten näher erläutere.

Die scheinbare Helligkeit eines Objekts beeinflusst auch seine Eignung als Beobachtungsobjekt  (z.B. Grenzgröße, Lichtverschmutzung etc.).

 

Astrofotografie: Polar Aligment – Einsüden – Wie finde ich Sigma Octantis?

Wie finde ich Sigma Octantis?

Bei verschiedenen Methoden zum “Polar Alignment” ist es erforderlich, die Position des Himmelsnordpols bzw. des Himmelssüdpols am Sternenhimmel (SCP = South Celestial Pole) eindeutig auszumachen.

Sowohl beim Polfernrohr als auch beim QHY PoleMaster muss man Gegend des Himmelspols (Nord bzw. Süd) eindeutig im FoV auffinden können. Was beim Südpol nicht so einfach ist, weil es keinen hellen Polarstern am Südpol gibt (Sigma Octantis ist 5,45 mag hell).

Ich habe mehrere Methoden zum Auffinden des SCP gefunden:

  • Wikipedia: Southern Cross
  • Alain Maury: Beta Hydri
  • Hannes Pieterse: Achenar
  • Skywatcher Star Adventurer

Method #1: Wikipedia Method Southern Cross

In der Wikipedia findet man mehrere Aufsuchmethoden, die erst einmal helfen,  grob die Gegend des SCP zu finden.

Eine Methode geht vom Kreuz des Südens aus:

This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. Attribution: Micke (usurped) at English Wikipedia

Method #2: Beta Cen und Achenar

Die Methode von Hannes Pieterse sagt nicht, wie man das “Trapez” im Octant findet, sondern beschreibt wie, von diesem Tranpez ausgehend, die genaue Position des SCP gefunden werden kann.
http://assabfn.blogspot.de/2010/08/find-south-celestial-pole-scp.html

Method #3:  Acux – Fliege – Octans

Im user manual des Star Adventurer wird eine Methode zum “coarse alignment” beschrieben, die von dem Stern Acrux (alpha Crucis) ausgeht, dann geht man zu Alpha Muscae und weiter zu Gamma Musca (ist der nächst-hellste Stern). Die gerade Linie von Acrus über Gamma Mus zeigt genau zum SCP. Der Abstand auf dieser geraden Linie zum SCP  ist etwa ein gespreizte Hand breit.

Star Adventurer Manual

Method #4: Starten mit SMC, 47 Tuc und Beta Hydri

Im Internet hat Alain Maury in seinem Blog eine sehr schöne Beschreibung für den Südhmmel abgegeben: http://www.spaceobs.com/en/Alain-Maury-s-Blog/How-to-polar-align-in-the-southern-hemisphere

Da die Gegend um den Himmelssüdpol keinerlei hellere Sterne aufweist, beginnen wir das Aufsuchen mit einigen markanten, helleren Objekten: LMC, SMC, 47 Tuc, Beta Hydri und “hoppen” von Beta Hydri aus über Gamma-1-2-3 Octantis zum Trapez aus Sigma, Tau, Chi, Ypsilon Octantis.

Wir starten mit der Kleinen Magellanschen Wolke (SMC) und sehen ganz in der Nähe 47 Tuc.

Die beiden nehmen wir als Basis für ein gleichschenkliges spitzes Dreieck in Richtung des Himmelssüdpols, wo die Spitze der Stern β Hydri sein soll.

Wenn wir die Linie dieses spitzen Dreiecks weiter gehen, kommen wir zu einer kleinen Gruppe aus drei Sternen: γ1, γ2 und γ3 Octantis. Diese drei Sterne bilden ein stumpfes gleichschenkliges Dreieck. Die stumpfe Spitze zeigt auf das Trapez, was wir suchen.

Copyright: Alan Maury – Originalfoto aus seinem Blog

Üben an echten Fotos

Zum Üben dieser Auffinde-Methode eignet sich ein schönes Weitwinkel-Foto des Südhimmels, das ich in einem Reisebericht von Stefan Westphal gefunden habe:

http://www.astrofreunde-franken.de/namibia_2014_sw.html

Am Ende des Berichts findet sich ein Link auf seine Fotosammlung, wo dann das Foto “Nächtliche Stimmungsaufnahme” sehr schön zum Auffinden von Sigma Octantis geeignet ist:

Copyright: Stefan Westphal – Nächtliche Stimmungsaufnahme – Kiripotib

 

Astronomie: Einnorden – Polar Alignment mit dem Polfernrohr

Zur Erzielung einer guten Nachführung für die Astrofotografie muss die Montierung genau eingenordet werden.

Polar Alignment mit einem Polfernrohr  (SmartEQ Pro, SkyTracker,…)

Voraussetzungen: Wo ist der Himmelspol?

Voraussetzung: bei Nacht und freier Sicht auf den Polarstern bzw. Sigma Octantis

Das Polfernrohr muss grob auf den Himmelspol ausgerichtet sein, sodaß  Polaris (im Norden) bzw. Sigma Octantis (im Süden) im Gesichtsfeld des Polfernrohrs (FoV = 6 °) stehen.

Wie man Polaris (am nördlichen Himmel) findet, ist sehr bekannt und einfach: die hinteren beiden Sterne des “Großen Wagen” (Alpha und Beta UMa 2,0 mag und 2,3 mag) 5 mal nach oben verlängern und schon hat man Polaris (Alpha UMi 1,95 mag) gefunden. Alle diese Sterne sind recht hell, sodass man sie problemlos mit bloßem Auge finden kann.

Sigma Octantis (und das “Trapez”) am Südlichen Sternhimmel ist nicht so leicht zu finden, da es sich um relativ schwache Sterne handelt (Sigma Oct 5,45 mag). Hierzu habe ich einen separaten Artikel geschrieben.

Makierungen im Polfernrohr

Die SmartEQ Pro hat ähnlich wie ich es von dem “iOptron SkyTracker” her kenne, ein beleuchtetes Polfernrohr mit konzentrischen Kreisen, die als Zifferblatt mit 12-Stundenteilung dargestellt sind (andere Fabrikate können leicht anders aussehen):

PolarScope

Bild 1: PolarScope bei iOptron

Der Himmelsnordpol soll in der Mitte sein. Dafür muss Polaris im aktuellen Abstand vom Pol auf den entsprechenden Kreis gesetzt werden und die Position auf dem Kreis (12 Stunden-Zifferblatt) muss der aktuellen Position von Polaris (Stundenwinkel oder so ähnlich – s.u.) entsprechen. Man muss also die aktuelle Position von Polaris zum Zeitpunkt des Einnordens kennen (s.u.).

Wenn man nun eine halbwegs bequeme Stellung für den lockeren Blick durch das Polfernrohr gefunden hat, kann man die Polausrichtung leicht durchführen. Das Okular meines Polfernrohrs hat bei normal ausgezogenem Stativ eine Höhe von 1,07 Meter über dem Boden. Wenn ich auf meinem “normalen” Klappstuhl für astronomische Beobachtungen sitze, habe ich eine Augenhöhe von 1,16 m über Boden. Ich müsste also einen Beobachtungsstuhl haben, dessen Sitzfläche 9 cm niedriger ist; d.h. statt 45 cm müssten es 36 cm sein. Vielleicht nehme ich da einen höhenverstellbaren Klavierschemel oder eine stabile Holzkiste, die eine Kantenlänge von 36 cm hat.

Bestimmung der aktuellen Polaris-Position

Für die Einstellung im Polfernrohr benötigt man die aktuelle Position von Polaris bezogen auf den Himmelsnordpol. Diese Position kann mit unterschiedlichen Mitteln bestimmt werden.

Polaris-Position per Kochab-Methode

Als “Kochab-Methode” habe ich von Astrohardy gelernt, schaut man einfach, welche Position Kochab (Beta UMi) in Bezug auf den Himmelpol einnimt. Polaris steht genau gegenüber von Kochab, bezogen auf den Himmelspol d.h. die Verbindungslinie Kochab-Polaris geht genau durch den Himmelspol. Im umkehrenden Polfernrohr muss Polaris also auf seinen 40′-Kreis gesetzt werden und zwar genau in Richtung (Zifferblatt) von Kochab, wie man ihn mit dem blossen Auge sieht.

Kochab-03

Bild 2: Kochab (unten, links), Polaris (oben, Mitte) in Stellarium

Auf diesem Bild ist die Position von Kochab  auf einem Zifferblatt in Bezug auf den Himmelspol etwa “5 Uhr”.

Polaris-Position in Stellarium

Auch das schöne Planetariumprogram Stellarium zeigt ja für jeden Ort und jede Zeit die Position von Polaris an – auch als Stundenwinkel und Deklination.

Beispiel: Ort:  53° 34′ N 9° 58′ E, Datum und Zeit:  26.02.2017 um 19:00 Uhr MEZ (UTC+1)

Wenn man jetzt Stellarium auf Polaris schwenkt und Polaris anklickt, zeigt Stellarium viele Daten von Polaris an:

Stellarium zeigt Daten zu Polaris an

Bild 3: Stellarium zeigt Daten zu Polaris an

Die Zeile mit “Stundenwinkel/DE” ist für uns interessant.
Die Deklination von Polaris soll also 89° 19′ 35.9″ sein; d.h. sein Abstand vom Himmelsnordpol ist:  r = 40′ 24.1″
Der Stundenwinkel von Polaris ist 2h 11m 55.75s, wobei dieser normale Stundenwinkel als Nullpunkt den Südmeridian hat und nach Westen (rechts) zunimmt.

Um aus dem Stundenwinkel die Zifferblatt-Position von Polaris zu ermitteln, sind folgende Schritte erforderlich:

  • Unser Zifferblatt-Kreis ist nicht 24h, sondern 12h, also den Stundenwinkel t ersteinmal halbieren:  t/2  = 1h 05m 57.6s
  • Statt nach Süden blicken wir nach Norden. Der Nullpunkt liegt zwar oben, aber Westem liegt jetzt links; also ist die Zifferblattposition:    – t/2  (+ 12h) = 10h 54m 02.4s
  • Das Polfernrohr kehrt um: oben/unten und rechts/links; also plus 6h:  – t/2 + 12h  + 6h = 16h 54m 02.4s

Da wir die Zifferblatt-Position Modulo 12 nehmen wollen, ergibt sich als vollständige Formel:

Zifferblatt-Position = (18h – t/2) mod 12h   — was man mathematisch auch als (6h – t/2) mod 12h schreiben könnte

Also 4h 54m, was mit unserem Kochab-Wert von “ca. 5h” gut übereinstimmt.

Polaris-Position per App (Android & iOS)

Für mein iPad habe ich die kostenlose App “Polar Scope Align” von Dimitros Kechagias geholt.

Für mein Android-Tablet nehme ich das kostenlose “Polar Finder” von TechHead (jol@netavis.hu).

Beide Apps bieten die Möglichkeit sich die Ansicht der gängigsten Polsucherfernrohre einzustellen (Kreise und Skalen von iOptron, Skywatcher,…).

PolarFinder_Android

Bild 4: Android App: Polar Finder

PolarScopeAlign_iOS

Bild 5: iOS App: Polar Scope Align

Polaris-Position in der Handbox

Die Handbox liefert als Komfort auch noch eine Anzeige der Polaris-Position:

Handbox: Menue -> Align -> Pole Star Position

Pole Star Position

Bild 6: Pole Star Position

Dann wird die Position von Polaris für eine aktuellen Ort und die aktuelle Zeit im Hand-Controller wie folgt angezeigt:

Position of Polaris

Bild 7: Position of Polaris

Dazu muss die Go2Nova Handbox (Hand-Controller) selbstverständlich genau auf geografische Koordinaten und Uhrzeit eingestellt sein.

Astronomie: Einnorden – Polar Alignment mit QHY PoleMaster

Generelles zu Einnordung / Einsüdung / Polar Alignment

Gehört zu: Einnorden

Siehe auch: SharpCap

Eine parallaktische Montierung muss “eingenordet” sein, damit das Goto und die Nachführung richtig funktionieren.

Hat man keine fest aufgebaute Montierung, sondern eine mobile Montierung, die jedesmal wieder neu aufgestellt werden muss, so hat man die Prozedur des Einnordens immer wieder erneut durchzuführen und man fragt sich, wie man das einfach, genau und bequem gestalten kann.

Einnorden muss man also immer, wenn man parallaktisch per Motor nachführen will – wegen längerer Belichtungszeiten.

Zur “Einnordung” gibt es verschiedene Methoden, die ich im Überblick in diesem Artikel dargestellt habe. Dies sind:

  • Scheinern – Drift Alignment
  • Polfernrohr mit Fadenkreuz und Sternenmaske
  • Spezielle Funktion von computerisierten Montierungen (per Handbox)
  • Software “AlignMaster” mit ASCOM Goto Montierungen
  • QHY PoleMaster (Hardware und Software)
  • Software “SharpCap
  • xyz – Plate Solving

Ich benutze zum Einnorden meiner Montierungen SkyWatcher HEQ5 Pro und iOptron SmartEQ Pro den QHY PoleMaster. Das Einnorden/Einsüden meines NanoTrackers versuche ich ebenfalls mit QHY PoleMaster ggf. muss ich mit SharpCap Aufnahmen machen, die dann für ein Plate Solving auf dem Windows-Notebook zur Verfügung stehen. um definitiv zu wissen, welche Stern im Gesichtsfeld stehen.

Polar Alignment mit PoleMaster QHYCCD

Warum QHY PoleMaster?

Im Rentenalter wollte ich mein Astronomie-Hobby aus der Jugendzeit wieder aufnehmen, nachdem ich fast 40 Jahre garnichts astronomisches gemacht hatte.

Ich schielte von Anfang an auf die Astrofotografie und wollte mit einer kleinen mobilen parallaktischen Montierung anfangen, mit der ich aber auch die in den letzten Jahrzehnten möglich gewordenen neuen Dinge wie GoTo und Autoguiding mal praktisch ausprobieren wollte. Meine Wahl fiel vor zwei Jahren auf eine iOptron SmartEQ Plus. Mittlerweile (2017) habe ich eine gebrauchte Skywatcher HEQ5 Pro….

Mein hauptsächlicher Beobachtungsort ist die Innenterrasse meiner Erdgeschosswohnung in Hamburg-Eimsbüttel (also Lichtverschmutzung durch Stadtlicht). Ich habe dort keine fest eingerichtete Terrassensternwarte, sondern muss die Montierung für jede Beobachtungsnacht neu aufstellen und einjustieren.

Für die Füße des Dreibeinstativs habe ich auf den Terrassenfliesen Markierungen mit Nagellack gemacht.

Ich habe gelesen, dass man für vernünftige Astrofotos sehr lange belichten soll (Poisson-Verteilung der ankommenden Photonen). Beispielsweise so etwa mindestens 30 Einzelaufnahmen (sub exposures) mit je 300 sec Belichtungszeit.

Die maximal mögliche Belichtungszeit (bei festem ISO von z.B. 800) muss man experimentell herausfinden. Je heller der HImmel ist (Linchverschmutzung) desto kürzer wird die maximale Belichtungszeit werden (Histogramm ganz rechts, Bild ganz hell) . In Handeloh kann ich z.B. 300 Sekunden bei ISO 800 belichten.

Damit die für solche Belichtungszeiten benötigte Nachführung gut funktioniert, ist eine sehr exakte Aufstellung der Montierung erforderlich. D.h.

  • Waagerechte Aufstellung
  • Einnordung (Polar Alignment)

Die Auflageplatte der Montierung soll exakt waagerecht liegen, also muss der Polkopf abgeschraubt werden und eine Wasserwaage daher, um die Stativbeine genau auf eine waagerechte einzustellen. Dann kommt der Polkopf (Achsenkreuz) wieder drauf und die Stundenachse muss genau auf den Himmelspol ausgerichtet werden…

Danach erst kann das Star Alignment geschehen, damit ich meine Beobachtungsobjekt leicht per Goto in die Bildmitte einstellen kann und damit die Nachführung dann gut funktioniert.

Die Nachführung durch die Montierung selbst sollte für 30-60 Sekunden gut sein. Falls das noch weiter verbessert werden soll, wäre schließlich ein Autoguiding angezeigt.

Für das sog. Einnorden gibt es ja viele Techniken. Meine schöne iOptron SmartEQ Pro Montierung (die HEQ5 Pro auch) hat dafür in der Stundenachse ein beleuchtetes Polfernrohr mit konzentrischen Ringen und einer Zifferblatt-Mimik. In der Praxis war das aber für mich viel zu unbequem (Foto: Kniefall).

DK_20170223_1

Bild 1: Der Kniefall: So bequem schaut man durch das beleuchtete Polfernrohr

Deswegen war ich begeistert, als ich von dem neuen Produkt „QHY PoleMaster“ lass und Erfahrungsberichte dazu in Google und Youtube fand.

Was ist QHY PoleMaster?

Was der QHY PoleMaster genau ist und wie er funktioniert haben andere schon sehr schön im Web erklärt.

Kurzgesagt ist es eine kleine USB-Kamera mit einem lichtstarken Objektiv (f=25mm) und einem Sensor 1280×960 (MT9M034, 1/3″, 3,75µ) wie bei der QHY5L II, die auf die Montierung gesteckt wird und mit der man die Gegend um den Himmelpol fotografiert (FoV 11×8 Grad). Die kleine Kamera wird per USB mit einem Notebook-Computer verbunden auf dem eine spezielle PoleMaster-Software von QHY installiert ist.

Installation der Software für QHY PoleMaster auf dem Windows-Notebook

Zunächst ist ein Treiber für die im QHY PoleMaster enthaltene Kamera erforderlich. Was mitgeliefert wird ist ein proprietärer Treiber, der eine vom Hersteller erfundene Gruppe “AstroImaging Equipment” im Windows-Gerätemanager aufmacht: PoleMasterDriverLatestEdition.zip

Nach erfolgreicher Installation des Treibers erscheint die Kamera im Windows-Gerätemanager wie folgt:

PoleMaster-02

Bild 2: QHY PoleMaster Driver

z6t

Das Herzstück der PoleMaster-Lösung ist dann die spezielle Software, die das Bild der Kamera auf dem Window-Notebook anzeigt und dann durch die Prozedur des Polar Alignments führt.

Rotationskreis der Stundenachse

QHY PoleMaster

Himmelspol und Rotationszentrum zur Deckung bringen:

QHY PoleMaster

Wie funktioniert das Einnorden mit QHY PoleMaster?

Im ersten Schritt richtet man die Kamera auf die Polgegend, identifiziert Polaris durch Doppelklick und die Software errechnet aufgrund des Sternfeldes insgesamt, wo sich genau der Himmelspol befindet.

Im zweiten Schritt soll man die Montierung mehrfach um die Stundenachse drehen und dabei die Drehung eines  “anderen” Sterns verfolgen und Doppelklicks machen um die Position an die Software zu übergeben. Daraus ermittelt die Software den Rotationskreisbogen und damit genau wohin die Rotationsachse (Stundenachse) der Montierung zeigt.

Im dritten Schritt muss man die  Montierung so im Azimut und in der Polhöhe einstellen, das beides zur Deckung kommt – was auf dem Bildschirm durch zwei Markierungen angezeigt wird.

Das ganz soll nur 3 Minuten dauern und eine Genauigkeit von 30″ liefern.

Zusammenfassung Schritt für Schritt:

  1. USB-Stecker an Kamera soll nach rechts schauen, USB-Kabel mit Laptop-Computer verbinden
  2. Montierung auf Home-Position stellen
  3. PoleMaster-Programm auf Laptop-Computer starten.
  4. Oben links auf “Connect” klicken.
  5. Zoom einstellen
  6. Region Selection: North
  7. Belichtungszeit aufdrehen bis auch die dunkleren Sterne (dunkler als Polaris) auf dem Display sichtbar werden.
  8. Ggf. Fokussierung des PoleMasters überprüfen
  9. Doppelklick auf Polaris und softwaremäßiges Rotieren einer Maske von Umgebungssternen bis sie übereinanderliegen (damit ist der Himmelspol identifiziert)
  10. Selektieren eines anderen Sterns als Polaris mit Doppelklick (dieser Stern dient dazu, den Drehpunkt der Stundenachse zu messen, muss also bei Rotation im Bildfeld bleiben)
  11. Physisches Drehen um die Rotationsachse des Geräts zweimal um jeweils 30-40 Grad und Doppelklick auf den “anderen” Stern. Daraus berechnet die Software den Drehkreis des “anderen” Sterns und damit ist der Drehpunkt der Montierung identifiziert
  12. Montierung zurück in die Home-Position fahren. Dabei muss der “andere” Stern entlang des berechneten Kreises laufen.
  13. Die Software zeigt jetzt die errechneten Positionen des Himmelspols (grüner Kreis) und des Drehpunkts der Montierung (roter Kreis) an. Diese müssen an der Montierung durch manuelles Verstellen von Azimut und Polhöhe zur Deckung gebracht werden.

Befestigung der QHY PoleMaster auf der Montierung SmartEQ Pro

Problem ist „nur“ noch: Wie wird die PoleMaster Kamera auf der Montierung befestigt? Die Kamera selbst hat unten drei M3 Schrauben kreisförmig in Winkeln von 120 Grad angeordnet. Die werden von oben auf eine Adapter-Scheibe geschraubt, die mit ihrer unteren Seite auf der Öffung des Polfernrohrs ihrer Montierung befestigt wird. Je nach Montierung gibt es verschiedne Adapter-Unterteile z.B. für:

  • EQ6/AZEQ6
  • HEQ5
  • iOptonCEM60 ZEQ25/CEM25 iEQ45  iEQ30
  • AZEQ5
  • Celestron AVX  CGEM
  • EM200/EM11
 Ich habe ja, wie gesagt, eine Montierung, die nicht ganz so „Mainstream“ ist, nämlich einen iOpton SmartEQ Pro. Mein deutscher Lieferant konnte keinen passenden Adapter liefern. Ich spielte schon mit dem Gedanken, meine Montierung zu wechseln (etwa CEM25), dann fand ich aber im Internet bei der englischen Firma „Modern Astronomie“ den Adapter für die SmartEQ Pro. Den habe ich mal als erstes alleine bestellt, um die prüfen, ob das Ding auch das tut, was ich für den PoleMaster benötige. Gestern kam das Paket mit dem Adapter aus England hier an. Man montiert das Teil auf die vordere Öffung des Polfernrohrs, die damit blockiert ist (anders als bei anderen Adaptern). Es passt auf meine Montierung und sieht insgesamt gut aus.
DK_20170303_1315

QHY PoleMaster Adapter on SmartEQ Pro

Da der Adapter OK war, habe ich nun auch den eigentlichen PoleMaster bestellt (ohne Adapter). Mein deutscher Lieferant hatte den auf Lager und lieferte extrem schnell.
DK_20170303_1316

QHY PoleMaster on SmartEQ Pro

Befestigung der QHY PoleMaster auf dem NanoTracker

5. April 2017: Um den QHY PoleMaster auf einem ganz normalen 3/8-Zoll Fotogewinde zu befestigen, gibt es von der Firma Cyclops Optics einen speziellen Adapter namens “Universal Portable Mount Adapter PM-ST”.

https://www.cyclopsoptics.com/adapter/cyclops-optics-universal-portable-mount-adapter-t6061-cnc-for-polemaster/

Die eine Scheibe befestigt man mit drei kleinen Schrauben hinten am PoleMaster; diese Scheibe hat nach unten ein 3/8-Zoll Innengewinde. Mit einem 3/8-Zoll auf 1/4-Zoll Zwischengewinde kann ich das dann auf den NanoTracker schrauben. Die zweite Scheibe dient dann als (große) Kontermutter, um die Verbindung nach unten in der gewünschten Richtung (hier: USB nach rechts) zu fixieren

DK_20170628_1742

QHY PoleMaster mit Spezialadapter auf NanoTracker

Am 8. Juli 2017 konnte ich damit ein Polar Alignment meines NanoTrackers auf dem Fotostativ “Sirui ET-1204” mit einem Stativkopf “Rollei MH-4“erfolgreich durchführen.

Den Stativkopf Rollei MH-4 habe ich am 16. Mai 2017 bei Amazon für Euro 24,99 gekauft (Belastbarkeit 2,5 kg).

Das Fotostativ Sirui ET-1204 habe ich am xxx gekauft (für die Flugreise: Carbon, 4 Segmente,…)

Für das Polar Alignment mit der PoleMaster-Software waren erforderlich:

  • Stabile Aufstellung des Fotostativs: Das ging durch beschweren der Mittelsäule mit einer Plastiktüte mit schwerem Inhalt
  • Nivellieren in die Waagerechte: Das ging mit einer kleinen Wasserwage
  • Drehen der Kamera um die Rotationsachse des Motors: Das ging, wenn man die Kontermutter etwas lockerte
  • Kleine Bewegungen der “Montierung” im Azimut und Polhöhe: Das ging mit Hilfe des Neigekopfs MH-4

Den Rollei Stativkopf (Neigekopf) MH-4 habe ich eigens zur einfacheren Einnordung angeschafft:

DK_20170711_1789

Neigekopf MH-4

 

Befestigung der QHY PoleMaster auf einer Skywatcher HEQ-5 Pro

11. Juli 2017: Ich plane nun von meiner SmartEQ Pro auf eine Skywatcher HEQ-5 Pro Synscan umzusteigen.

Für diese Montierung gibt es einen passenden Adapter, den ich z.B. bei Teleskop Express gefunden habe.

Um den QHY PoleMaster auf einer Montierung Skywatcher HEQ5 Pro  zu befestigen, gibt es (z.B. bei Teleskop-Express) den Adapter “PoleMaster Adapter für Skywatcher H-EQ5 Montierung” (AL70410 für EUR 39,00).

http://www.teleskop-express.de/shop/product_info.php/info/p8803_ALccd-PoleMaster-Adapter-fuer-Skywatcher-H-EQ5-Montierung.html

xxxxx

Astronomie: Universe2Go – Orientierung am Sternenhimmel

Siehe auch: Planetarium-Software

Was ist Universe2Go?

Universe2Go ist eine Plastikbrille, durch die ich den Sternenhimmel betrachten kann, wobei mir über einen halbdurchlässigen Spiegel Zusatzinformationen (Bild, Schrift, Ton) zu der durch Lagesensoren erkannten Himmelsposition über eine SmartPhone-App eingeblendet werden. – Wir sehen also den echten Sternhimmel (=Reality) ergänzt um Zusatzinfos (=augmented) d.h. “Augmented Reality

Universe2go ist also eine Art “Hand-Planetarium”.

So sieht das Gerät aus:

universe2go_1704b

universe2go_1705a

universe2go_1708a

universe2go_1709a

Die App für das SmartPhone

Man muss sich als erstes die Universe2Go-App für sein SmartPhone (z.B. iPhone oder Android)  herunterladen und installieren.

Die App muss Berechtigungen haben zum Zugriff auf:

  • Gyroskop
  • Kompass
  • Geolocation
  • Mikrofon
  • Sound

Einlegen des SmartPhones

Man startet dann die App im sog. “planetarium mode” und muss sie “aktivieren”

Dann das SmartPhone mit dem Display nach unten und in Pfeilrichung nach vorn in das obere Fach des Geräts einlegen. Es können verschieden große SmartPhones eingelegt werden und mit Schaumstoffstückchen fixiert werden.

Menüsteuerung (grundsätzlich)

  • Das Menü wird durch zwei Bewegungen angeschaltet. Zuerst bewegen wir den Kopf zum Boden bis ein grüner Pfeil erscheint, der aber zunächst noch durchgestrichen ist (wie ein Verkehrsschild). Dann bewegen wir den Kopf  zurück in den Geradeausblick. Nun ist das Menü angeschaltet. Es erscheint eine kleine Hand mit dem Zeigefinder. Dies ist der Cursor. Es werden diese zwei Bewegungen gebraucht, damit das Menü nicht aus Versehen eingeschaltet wird.
  • Navigation im Menü: Nachdem das Menü eingeschaltet wurde und wir den Cursor sehen, können wir durch leichtes bewegen des Kopfes noch unten/oben durch die Liste der Menüpunkte gehen.

Augenabstand einstellen

Wenn in den Settings “Both Eyes” gesetzt wurde (was der Normalfall sein sollte) ist eine Kalibrierung des Augenabstands erforderlich.

Hierzu muss man in das Menü (s.o.) gehen und im Hauptmenü “Modus-Auswahl” den Punkt “Augen-Kalibrierung” auswählen.

  • Hierzu wird die Stimmerkennung per Microfon benutzt.
  • Stimmenkommandos: “Start” und “Stopp”

Stern-Kalibrierung

Nun muss man am echten Sternhimmel drei helle Sterne anvisieren und darauf “kalibrieren”…..

Universe2Go im Gebrauch

Generell kann man nun mit dem Gerät auf ein Himmelsobjekt zielen – mit dem kleine grünen Zielkreis in der Mitte. Wenn das Objekt 2 Sekunden im Zielkreis steht, werden Zusatzinformationen angezeigt bzw. Audios und Videos abgerufen.

Was genau angezeigt wird, können wir in den sog. Options einstellen:

  • Beginner Mode
  • Discovery Mode
  • Mythology Mode
  • Deep Sky Mode
  • 3D Mode
  • Quiz Mode
  • Search
  • Expert Mode

 

Astrofotografie: Einnordnen – Polar Alignment

Polar Alignment – Aufgabenstellung

Gehört zu: Montierung einjustieren

Eine parallaktische Montierung muss als erstes “eingenordet” (resp. “eingesüdet”) werden; d.h. die Stundenachse der Montierung muss genau parallel zur Erdachse ausgerichtet werden damit die Nachführung richtig funktioniert. Das ist dann besonders wichtig, wenn man seine Astrofotos länger belichten will (siehe: Langzeitbelichtung).

Vorher muss man aber die Stativbeine so einstellen, dass sich die Auflagefläche des Polblocks schön in der Waagerechten befindet.

Wenn man seine Montierung nicht dauerhaft an einem Standort aufgestellt hat, sondern für jede Beobachtung das Aufstellen und die Einnordung erneut vornehmen muss,  kommt es sehr darauf an wie schnell, bequem und genau man die Einnordung vornehmen kann.

Wenn man das Teleskop immer am gleichen Ort z.B. auf seiner Terrasse (markiert mit Nagellack) aufstellt, ist die Polhöhe automatisch richtig und das Azimut stimmt auch fast – nur kleine Korrekturen am Azimut sind zu erwarten.

Polar Alignment – Lösungsmöglichkeiten

Für das Einnorden (Einsüden) gibt es verschiedene Methoden. Dazu gehören:

Polar Alignment mit dem QHY PoleMaster

Der QHY PoleMaster ist 2016 neu auf den Markt gekommen und ermöglicht sehr einfaches und sehr schnelles Einnorden, kostet allerdings so um die 325,– Euro.

Zum QHY PoleMaster habe ich einen eigenen Artikel geschrieben.

Polar Alignment mit dem Polfernrohr auf SmartEQ Pro

xxxx

Polar Alignment mit dem Polfernrohr auf SkyTracker

xxx

Polar Alignment mit DLSR Logger

xxx

Polar Alignment mit SharpCap

xxxx

Polar Alignment mit der Handbox der SmartEQ Pro

Die Handbox der SmartEQ Pro bietet eine Methode zur Einnordung, die ohne Sicht auf den Polarstern funktioniert (ähnlich der Software AlignMaster).

Mit der Handbox-Funktion “Polar Align” kann man ein Alignment machen, auch wenn der Polarstern nicht zu sehen ist…..

Polar Alignment mit der Software “AlignMaster” mit ASCOM Goto Montierungen

Autor: Matthias Gazarolli

Download: http://www.alignmaster.de

YouTube AstronomyShed: https://youtu.be/dNRFm3LtCrE

Polar Alignment mit “Scheinern” engl. “Drift Align”

Eine von Julius Scheiner beschriebene Methode, die in der Praxis ziemlich zeitintensiv ist.

Es gibt zahlreiche Software, die auf Basis der Scheiner-Formeln das Alignment schneller ermöglicht….

Z.B. EQalign:  http://eqalign.net/e_eqalign.html

 

Astrofotografie: Sternhaufen

Warum Sternhaufen?

Als Astro-Anfänger im lichtverschmutzen Eimsbüttel möchte ich mit meiner Ausrüstung Astrofotos von Objekten machen, die trotzdem Eindruck schinden (zumindest bei mir selbst). Als ich mich fragte, welche Objekte ich aus der lichtverschmutzten Großstadt Hamburg heraus mit meinen bescheidenen Mitteln fotografieren könnte, blieb eines als gut möglich übrig: Sterne  (also keine Nebel, keine Galaxien).

Als für mich lohnenswerte Beobachtungsobjekte kommen also schöne Sternhaufen und Doppelsterne infrage. Sternhaufen kann ich mit der Digitalkamera (kürzere Brennweiten) gut fotografieren; Doppelsterne werden meist erst im Teleskop mit längerer Brennweite gut getrennt.

Einige “Experten” empfahlen auch den Einsatz von Filtern gegen die Lichtverschmutzung, was sich bisher als kaum erfolgreich herausstellte.

Welche Sternhaufen?

Liste von für meine Ausrüstung interessanten Offenen Sternhaufen

Meine Kriterien: Größer als 10′ und heller als 8,0 mag

Lfd.Nr. Kurzbezeichnung Ausdehnung Helligkeit Sternbild Erläuterungen
 M36  12′  6,0 mag Auriga  beste Sichtbarkeit: Nov-Apr
 M37  24′  5,6 mag Auriga  Hellster Haufen im Auriga
 M38  21′  7,4 mag Auriga  beste Sichtbarkeit: Nov-Apr
 NGC 1502  20′  6,9 mag Camelopadalis  Kemble’s Cascade läuft durch NGC1502
 M44  95′  3,1 mag  Cancer  Praesepe, Krippe, Bienenstock – zweithellster offener Sternhaufen
 M67  30′  6,9 mag  Cancer
 M41  38′  4,5 mag  CMa  Unterhalb von Sirius
 NGC 457  20′   6,4 mag  Cassiopea  ET- oder Eulen-Haufen
 NGC 7789  16′  6,7 mag  Cassiopea  Herschels Spiralhaufen
 NGC 663  15′  7,1 mag  Cassiopea
 Coma Berenice  Com  ist ein komplettes Sternbild
 Mel 111  270′  1,8 mag  Com  Coma Berenices
 M39  32′  4,6 mag  Cyg
 M35  28′  5,1 mag  Gem  Herrlicher offener Sternhaufen bei Eta Geminorum
 NGC 2244  24′  4,8 mag  Mon  Offener Sternhaufen im Rosetten-Nebel
 NGC 2264  Mon  Der Weihnachtsbaum-Sternhaufen
 NGC 2232  45′  4,2 mag  Mon
 M50  16′  5,9 mag  Mon
 NGC869 & NGC884  30′ / 30′  5,3 / 6,1 mag  Perseus  Chi und h im Perseus
 NGC 1528  18′  6,4 mag  Perseus
 Melotte 20  180′  1,2 mag  Perseus Alpha Persei und Umgebung
 M46  27′  6,1 mag  Pup
 M47  30′  4,4 mag  Pup
 M23  27′  5,5 mag  Sgr
 M18  10′  7,1 mag  Sgr
 M25  32′  4,6 mag  Sgr
 M11  14′  5,8 mag  Scutum  Wildentenhaufen
 M7  80′  3,3 mag  Skorpion  der dritthellste Fleck der ganzen Milchstraße
 IC 4756  40′  4,6 mag  Serpens  Graff’s Cluster
Caldwell 41 330′ 0,5 mag  Taurus  Hyaden – Sternbild Stier
 M45  110′  1,6 mag  Taurus  Plejaden, Siebengestirn, Six Sisters

Liste von für meine Ausrüstung interessanten Kugelsternhaufen

Meine Kriterien: Größer als 10′ und heller als 8,0 mag

Lfd.Nr. Kurzbezeichnung Ausdehnung Helligkeit Sternbild Bemerkungen Status
 M3   18′  6,3 mag Jagdhunde  im Frühjahr sichtbar
 M2  16′  6,3 mag Wassermann  Dekl=0°, sichtbar Sep, Okt, Nov
  M4
  M30  12′  7,7 mag  Capricornus  Dekl= -23°, Aug – Okt
 M13  20′  5,8 mag  Herkules  Abendhimmel: Apr, Mai, Juni
 M92  14′  6,3 mag  Herkules  Abendhimmel: Apr, Mai, Juni
 M48  54′  5,8 mag  Hydra
 M10  20′  6,6 mag  Oph
 M12  16′  6,1 mag  Oph  der hellste Kugelhaufen im Oph
 M15  18′  6,2 mag  Peg
 M22  32′  5,5 mag  Sgr
 M4   36′   5,8 mag  Skorpion  Dekl=-26°, bei Antares, sichtbar Mai= am Morgenhimmel, Juni= ab Mitternacht
 M80   10′  8,7 mag  Skorpion  Dekl=-23°
 M5  23′  5,6 mag  Serpens  Dekl=+2°, Beobachtung: April-September
 Galaxie  NGC 247  19,9’x5,4′  8,9 mag  Cetus Gute Sichtbarkeit:  Sept-Jan
 Supernova-Rest  NGC 6992 ff.  180′  7,0 mag  Cyg  Cirrus-Nebel, Schleier-Nebel
 Gas-Nebel  NGC 7000  120′ x 100′  Cyg  Nordamerika-Nebel
 Emmissions-Nebel IC 1318 Cyg Gamma-Cygni-Nebel, Schmetterligs-Nebel
Galaxie M83 12,9′ x 11,5′ 7,5 mag Hydra Große Balkenspirale
 Gas-Nebel  NGC 2237  Mon  Rosetten-Nebel
 Emissions-Nebel  M42  85′ x 60′  4,0 mag  Ori  Orion-Nebel
 Gas-Nebel  M8  60′ x 40′  6,0 mag  Sgr  Lagunen-Nebel
 Galaxie  M33  70′ x 40′  5,7 mag  Tri  Dreiecks-Nebel. Drittgrößte Galaxie der Lokalen Gruppe nach M31 und uns.
 Galaxie  M81  27′ x 14′  7,0 mag  UMa  Bodes Galaxie
 Galaxie  M82  11,2′ x 4,3′  8,6 mag  UMa  Zigarren-Galaxie
 Planetarischer Nebel  M27  8,0′ x 5,7′  7,5 mag  Vul  Hantel-Nebel

Ende Kugelsternhaufen

Meine Fotos von Sternhaufen

26.9.2015 Die Plejaden

Ich hatte gerade ein schönes altes Objektiv Takumar 1:3,5/135 mit M42-Gewinde bekommen. Das musste ich sofort mit meiner Kamera Sony NEX-5R ausprobieren.

26.09 2015, 22:04-22:07 UTC Plejaden: 12x5 sec, ISO1600, f=135, 1:3,5

26.09 2015, 22:04-22:07 UTC Plejaden: 12×5 sec, ISO1600, f=135, 1:3,5

 

Astrofotografie: Asterismen – kleine Sternmuster

Was sind “Asterismen” ?

Als Einsteiger in die Astrofotografie bin ich auf der Suche nach mit meinen Mitteln erreichbaren interessanten Beobachtungsobjekten (Fotomotiven). Da bin ich auf die sog. “Asterismen” (Sternmuster) gestossen.

Asterismen sind Gruppen von eigentlich unzusammenhängen Sternen, die ein interessantes Muster ergeben. Meist ist es ein kleines markantes Teil eines Sternbilds. Es kann aber auch etwas großes, sternbildübergreifendes sein. Ein Sternbild selbst ist kein Asterismus.

Es gibt in diesem Sinne ein paar ganz große Asterismen: z.B. das Sommerdreieck, der Gürtel des Orion, der Große Wagen etc.  (ein Muster aus Sternen, das kein Sternbild ist)

Die meisten Asterismen sind aber keinere, meist Feldstecher-Objekte…

Link: https://www.bisque.com/tom/asterisms/list.asp

Fotografieren von Asterismen

Asterismen sind typischerweise klein und bestehen auf Sternen, die man mit blossem Auge nicht sehen kann.

Ich kann aber die Goto-Funktion meiner Montierung iOptron SmartEQ verwenden, wenn ich einen SAO-Stern im Asterismus oder ganz in der Nähe habe.

Name Goto Beschreibung Hinweise
 Kemble 2  SAO 9181  Ein kleines “W” wie die Cassiopeia im Sernbild Draco  f≥135mm
 Little Orion  SAO 50228  Im Schwan, neben dem “Golf von Mexiko” im Nordamerikanebel  f=135mm
 Kemble’s Kaskade  SAO 12969  Links von der Cassiopeia, eine gerade Linie von Sternen  f≥135mm
 The broken engagement ring  SAO 27788  Rechts von Merak (Beta UMa Kasten rechts unten)  f=135mm
 Kleiderbügel  5 Vul  8° südlich von Arbireo  f=135mm

Beispiele von Asterismen

Beispiel 1:  Die kleine Cassiopeia “Kemble 2”

Fotos vom 24.9.2017 in Hamburg mit GuideScope f=180mm  und Altair GP-CAM

dk_20160924_180mm_kemble2_3

Beispiel 2: Little Orion

Fotos vom 29.8.2017 in Kollase – Sony NEX-5R mit Takumar 135mm (der helle Stern links vom Nordamerikanebel ist ξ Cyg)

Asterism "Little Orion" rechts vom Nordamerikanebel (NGC7000), also neben dem "Golf von Mexiko"

Asterism “Little Orion” rechts vom Nordamerikanebel (NGC7000), also neben dem “Golf von Mexiko”

Beispiel 3: Kemble’s Cascade

Fotos vom 13.11.2017 in Hamburg-Eimsbüttel – Sony NEX-5R mit Beroflex 300mm (Gesichtsfeld 4,5° x 3,0 °, Goto auf SAO 12969)

dk_20161113_09616-09619-flat_3_text

Astrofotografie: Beobachtungsplanung

Beobachtungsplanung

Wenn sich eine sternklare Nacht abzeichnet, muss ich mich fragen, was will ich da heute Abend sinnvolles (für mich) tun?

Gibt es Techniken, die ich probieren bzw. üben will   (z.B. Polar Alignment, Fokussierung, Plate Solving, Auto Guiding, Filter, Objektive, Nachführungen,…) ?

Welche Beobachtungsobjekte sind sichtbar und kämen infrage? Welche Objekte sollen es konkret heute sein?

Welche Geräte (Optik? Computer? Batterien? Lampen? Kleidung?,…) benötige ich zur Durchführung?

Zielsetzung der Beobachtung

Was soll das Ergenbis der heutigen Beobachtung sein?

  • Ergebnis der Erprobung einer technischen Funktionalität und Vorgehensweise mit Dokumentation der Ergebnisse bzw. Erkenntnisse  (z.B.: funktioniert nicht / funktioniert / funktioniert aber mit Besonderheiten / Lessons learned)
  • Fotografie eines Himmelsobjekts, Bildbearbeitung und Dokumentation

Informationsquellen zur Beobachtungsplanung

Eine drehbare Sternkarte

Eine Zeitschrift z.B der Sternkieker der GvA.

Internet:   http://www.calsky.com

Fertige Sternkarten und Informationen bekommt man z.B. unter: http://freestarcharts.com

Eine Planetariums-Software wie Stellarium oder Guide oder Cartes du Ciel

Wetterdienste

Software zur Beobachtungsplanung

Wer gerne mit Computern arbeitet, findet Hilfe zur Beobachtungsplanung z.B. bei:

Welche Objekte will ich beobachten?

Für mich persönlich infrage kommende Beobachtungsobjekte habe ich separat zusammen gestellt.

Zur Planung von Beobachtungsobjekten gibt es auch Software z.B. “AstroPlanner” von Paul Rodman

Was will ich technisch erproben?

Was kann ich aus meiner vorhandenen Ausrüstung herausholen?

Wie genau und reproduzierbar kann ich das bewerkstelligen?

Was kann ich besser machen?

Beispiele zu Beobachtungsplanung

Plan 1: Altair GP-CAM mit All Sky Plate Solver und ASCOM

  1. Zweck der Beobachtungseinheit
    1. Erprobung der ASCOM-Schnittstellen zur Kamera und zur Goto-Montierung
    2. Beanwortung der Fragen zur Software “All Sky Plate Solver
      1. Kann die Software sich per ASCOM mit meiner Kamera verbinden?
      2. Kann die Software sich per ASCOM mit meiner Montierung verbinden?
      3. Wird von der Software  tatsächlich eine Aufnahme ausgelöst?
      4. Wird für diese Aufnahme ein erfolgreiches Plate Solving durchgeführt?
      5. Wird die Montierung erfolgreich mit den Koordinaten des Bildmittelpunkts ge-synch-t ?
  2. Ort und erforderliche Beobachtungsbedingungen
    1. Kann von der Terasse in Hamburg gemacht werden
    2. Eine hohe Himmelsqualität ist nicht erforderlich – es müssen Sterne fotografierbar sein
  3. Erforderliche Geräte und Vorbereitungen
    1. Montierung iOptron mit Stromversorgung und Handbox
    2. Wasserwaage
    3. Kamera Altair GP-CAM
      1. mit 12mm-Objektiv  – Gesichtsfeld ermitteln: 23° x 17°
      2. ggf. Fernauslöser (IR-Gerät oder über WLAN mit iPad oder Windows-Computer)
      3. auf Prismenschiene
      4. mit USB-Kabel zum Computer
      5. Ausprobieren, ob Kamera vom Windows-Computer angesteuert werden kann (Live View, Capture,…)
    4. Windows-Computer
      1. mit Software “All Sky Plate Solver”, “Altair Capture” und “SharpCap”
      2. Index-Dateien für “All Sky Plate Solver” (f=12mm, Pixelsize 3,75, Chip Array 1280×960) aus dem Internet geladen
      3. Akku voll aufgeladen
    5. Serielles Kabel zwischen Handbox und Computer (mit Seriell-USB-Adapter)
    6. Tischchen für Computer
    7. Taschenlampe mit Rotlicht
    8. Kochab-Position zum Zeitpunkt der Beobachtung ermitteln (z.B. mit Stellarium)
  4. Arbeitsschritte
    1. Montierung waagerecht aufstellen in grober Nordrichtung
    2. Kamera auf Montierung befestigen
    3. Mit dem beleuchteten Polfernrohr: Einnorden d.h. Ausrichtung auf den Himmelsnordpol (Kochab-Methode)
    4. Handbox Go2Nova: Einstellungen überprüfen (Uhrzeit, Zeitzone, geografische Koordinaten)
      • Breite 53° 34′ 18,2″    Länge 9° 58′ 15,6″
    5. Fokussierung der Kamera über Windows-Computer und Capture-Software (SharpCap oder Altair Capture)
    6. Three-Star-Alignment
      1. Mögliche Alignment-Sterne für den Standort  aussuchen
      2. Im Beispiel: Cheph (Himmels-W ganz rechts), Aldemarin (Cepeus-Quadrat oben rechts), Scheat (Pegasus-Quadrat rechts oben)
      3. Fadenkreuz in SharpCap anschalten
      4. Über die Handbox das Three-Star-Alignment durchführen und mit Fotos dokumentieren
    7. Software “All Sky Plate Solving” aufrufen
      1. ASCOM-Schittstelle für Kamera aktivieren
      2. ASCOM-Schnittstelle der Montierung aktivieren
      3. Test an einem Himmelsobjekt durchführen
        1. Mit Goto anfahren
        2. Kamera GP-CAM per Software “All Sky Plate Solver” auslösen und solven….(Belichtungszeit?)
        3. Montierung per Software “All Sky Plate Solver” Sync-en
      4. Test an zweitem Himmelsobjekt
    8. Dark Frames und Flat Frames aufnehmen
    9. Dokumentation der Ergebnisse
    10. Geräte abbauen

Plan 2: Filter an Kamera Sony NEX-5R ausprobieren

  1. Zweck der Beobachtungseinheit
    1. Erprobung des neu erworbenen Light Pollution Filters an meiner Sony-Kamera
  2. Ort und erforderliche Beobachtungsbedingungen
    1. Soll von der Terasse in Hamburg gemacht werden bei typischer Hamburger Lichtverschmutzung
    2. Sternklar (keine Wolken) – Mond ?
  3. Erforderliche Geräte und Vorbereitungen
  4. Arbeitsschritte