Mathematik: Komplexe Zahlen

Gehört zu: Mathematik
Siehe auch: Quantenmechanik, Von Pytharoras bis Einstein
Benutzt: WordPress-Plugin Latex

Die komplexen Zahlen

Ausgangspunkt ist die berühmte imaginäre Einheit: i2 = -1

Eine komplexe Zahl schreibt man gerne als Realteil und Imaginärteil:

z = x + i*y      x = Re(z)   und   y = Im(z)

Wobei x und y reelle Zahlen sind.

Mit den Komplexen Zahlen kann man auch die vier Grundrechnungsarten, so wie wir sie von den “normalen” d.h. reellen Zahlen her kennen, ausführen – Die komplexen Zahlen bilden, mathematisch gesagt, einen “Körper”.

Zu jeder Komplexen Zahl gibt es die “komplex konjugierte“, die mit gern mit einem Sternchen als Superskript schreibt:

zur komplexen Zahl: z = x + i*y
ist die konjugierte:   z* = x – i*y

Jede Komplexe Zahl hat auch einen “Betrag” (kann man sich als Länge vorstellen):

|z|2 = x2 + y2

Darstellung der komplexen Zahlen mit kartesischen Koordinaten

Die Reellen Zahlen konnte ich mir ja durch die sog. Zahlengerade gut veranschaulichen. Die Komplexen Zahlen würde ich mir dann durch die Punkte in einer Ebene veranschaulichen.

Polar-Darstellung der komplexen Zahlen

Wenn komplex Zahlen einfach als Punkte in der Ebene verstanden werden können, kann ich sie anstelle von kartesischen Koordinaten, alternativ auch in durch sog. Polarkoordinaten darstellen; d.h. durch die Entfernung vom Nullpunkt r und den Winkel mit der reellen Achse φ.

Für eine Komplexe Zahl z = x + i*y  gilt:

r² = x² + y²

tan φ = x/y

\(\displaystyle \tan{ \phi} = \frac{x}{y} \)

Exponential-Darstellung der komplexen Zahlen

Die Eulerschen Formel ist:

\(\Large  e^{i  \cdot \phi} = \cos \phi+i \cdot \sin \phi \)

Damit erhalten wir als sog. Exponential-Darstellung:

\(\displaystyle z ={r} \cdot e^{i  \cdot \phi} \)

In der Quantenmechanik wird diese Exponentialdarstellung gerne benutzt, u.a. weil man damit die Multiplikation komplexer Zahlen sehr anschaulich darstellen kann:

\(\displaystyle z_1 \cdot z_2 = {r_1 \cdot r_2} \cdot e^{i  \cdot (\phi_1 + \phi_2)} \)

Sie auch Youtube-Video: https://www.youtube.com/watch?v=pBh7Xqbh5JQ

Die Eulersche Zahl

Definition der Eulerschen Zahl

Die Zahl e wurde von Leonhard Euler (1707-1783) als Grenzwert der folgenden unendlichen Reihe definiert:

\(\displaystyle e = 1 + \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} +  \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + …   \)

Oder:

\(\displaystyle e = \sum_{n=0}^{\infty} \frac{1}{n!} \)

Die Exponentialfunktion

Potenzen zur Basis e bilden die Exponentialfunktion, auch e-Funktion genannt:

f(x) = ex

Die Ableitung (Differentialquotient) der e-Funktion ist wiederum die e-Funktion:

f'(x) = ex

Damit ergibt sich als Taylorsche Reihenentwicklung um den Entwicklungspunkt x0 = 0

\(\displaystyle f(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!}  + …  + \frac{x^n}{n!} + …   \)

Allgemein wäre die Taylor-Reihe ja:

\( \displaystyle T_\infty(x;x_0) = \sum_{k=0}^{\infty} \frac{f^(k)(x_0)}{k!} (x-x_0)^k \)

Da der Funktionswert und alle Ableitungen der e-Funktion an der Stelle x0 = 0 sämtlich 1 sind, vereinfacht sich die Darstellung wie oben gezeigt.

Astronomie: Die Keplerschen Gesetze

Gehört zu: Astronomie, Sonnensystem, Himmelsmechanik

Benutzt WordPress-Plugin MathJax-Latex

Die Zeit von Johannes Kepler

Johannes Kepler (1571-1630) lebte in bewegten Zeiten:

  • 30 jähriger Krieg (1618-1648)
  • Kleine Eiszeit (etwa 1570 bis 1630)
  • Hexenverbrennungen (1550 und 1650)
  • Gallileo Galilei (1564-1642)

Flammarion Holzschnitt (Wikipedia)

Die Keplerschen Gesetze

Johannes Kepler konnte durch Analyse der Beobachtungsdaten von Tycho Brahe (1546-1601) die drei sog. “Keplerschen Gesetze”  herleiten.
Tycho Brahe hatte in einem Zeitraum von 20 Jahren sehr genaue Messungen (besser als 1 Bogenminute) der Postionen der Planeten und von ca. 800 Fixsternen gemacht.

Die bahnbrechende Erkenntnis von Kepler war, die Kreisbahnen des heliozentrischen Weltbildes von Nikolaus Kopernikus (1473-1543) durch Ellipsen zu ersetzen.

Die Fernsehsendung “Johannes Kepler, der Himmelsstürmer” im Sender arte am 08.08.2020 beleuchtete das geniale Werk von Johannes Kepler.

Tycho Brahe

Tycho Brahe: Mauerquadrant

Link: http://articles.adsabs.harvard.edu//full/1978JHA…..9…42W/0000044.000.html

1. Keplersches Gesetz (1609 Astronomia Nova)

Die Planeten bewegen sich auf elliptischen Bahnen, in deren einem Brennpunkt die Sonne steht

2. Keplersches Gesetz (1609 Astronomia Nova)

Der Fahrstrahl Sonne-Planet überstreicht in gleichen Zeiten gleiche Flächen.

3. Keplersches Gesetz (1618 Harmonici Mundi)

Die Kuben der großen Halbachsen verhalten sich die die Quadrate der Umlaufzeiten.

Das Gravitationsgesetz

Später, im Jahre 1668, formulierte Isaac Newton (1642-1727) das berühmte Gravitationsgesetz:

\( F = G \frac{m \cdot M}{r^2}  \)

aus dem sich die Keplerschen Gesetze herleiten lassen…

Das Besonere der Erkenntnis von Newton ist nicht nur die Formulierung als eine einzige Formel, sondern auch, dass die Gravitationskraft zwischen allen Körpern im Universum wirkt. Beispielsweise kreisen die Jupitermonde gemäß diesem Gesetz um den Jupiter und ebenfalls kreisen Doppelsterne etc. aufgrund der Gravitation umeinander…

Isaac Newton hat auch sehr viel über das Licht geforscht. Stichworte dazu wären: Teilreflektion, Newtonsche Ringe,…

Die Größe der Gravitationskonstante \( \gamma \) wurde erst viel später durch das berühmte Experiment “Gravitationswaage” von Henry Cavendish (1731-1810) bestimmt.

In der Wikipedia finden wir:

\( \Large G = (6{,}674\,30\pm 0{,}000\,15)\cdot 10^{-11}\,\mathrm {\frac {m^{3}}{kg\cdot s^{2}}} \)

 

Das erste Keplersche Gesetz

Eine Ellipse ist ein Kegelschnitt, der im Grenzfall (Exzentrizität = Null) ein Kreis wird.

Nach Newton (s.o.) haben wir eine Zentralkraft, die proportional zu \( \frac{1}{r^2} \) abnimmt.

Mit ein “bisschen Mathematik” ergeben sich daraus geschlossene Ellipsen als Bahnform.

In cartesischen Koordinaten ist eine Ellipse mit den Halbachsen a und b gegeben durch:

\( \Large \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2= 1 \)

 

Die Exzentrizität einer Ellipse ist ein Maß für die Abweichung von der Kreisform und wird definiert durch:

\( \Large e = \frac{r_{max} – r_{min}}{r_{max} + r_{min}}  \) (Wobei mit rmin und rmax immer die Entfernungen Sonne-Planet gemeint sind)

Das zweite Keplersche Gesetz

Das zweite Keplersche Gesetz folgt allein aus der Tatsache, dass die wirkende Kraft immer genau in Richtung auf die Sonne gerichtet ist (sog. “Zentralkraft”). Damit muss nämlich der Drehimplus des Systems Sonne-Planet konstant bleiben.

Der Drehimplus des Sytems Sonne-Planet ist bekanntlich:

\( L = m \cdot r \cdot v = m \cdot r^2 \cdot \omega   \)

Für die “überstrichene Fläche” A(t) gilt infenitesimal:

\( dA = \frac{1}{2} \cdot r(t) \cdot v(t) \cdot dt \)

Womit die “Flächengeschwindigkeit” eben konstant bleibt:

\( \frac{dA}{dt} = \frac{1}{2} \cdot r(t) \cdot v(t) = \frac{L}{2 m} = const. \)

Quelle: https://www.forphys.de/Website/mech/kepler2.html

Als Beispiel habe ich mal die Bahn der Erde um die Sonne schematisch dargestellt. Das Produkt Bahngeschwindigkeit (v) mal Entfernung Erde-Sonne (r) ist proportional zum Drehmoment.

Schematische Darstellung der Bahn der Erde um die Sonne

Das dritte Keplersche Gesetz

Das “Dritte Keplersche Gesetz” bezieht sich nicht auf die Umlaufbahn eines Planeten, sondern setzt die Umlaufbahnen mehrer Planeten zueinander in Beziehung. Insofern sagt dieses Gesetz etwas aus über den Zentralkörper: die Sonne.

Wenn wir ein wenig vorgreifen, ist es die Masse des Zentralkörpers (M), die wir aus der Bahn eines umlaufenden Himmelskörpers bestimmen können; nach der Formel:

\( \frac{a^3}{T^2} = \frac{G \cdot M}{4 \pi^2} \)

Schritt für Schritt kommen wir so zu diesem Ergebnis:

Wenn man die Umlaufszeit eines Planeten um die Sonne mit T bezeichnet und die große Halbachse seiner Bahn um die Sonne mit a, so kann man dieses Gesetz formelmäßig wie folgt formulieren:

\( \frac{a^3}{T^2} = const. \)

Die Gravitationskraft (Anziehungskraft) muss immer genau der Zentripedalkraft in der Planetenbahn entsprechen. Also:

\(  F = G \frac{m \cdot M}{r^2} = m \cdot \frac{v^2}{a}   \)

Die Masse des Planeten m kürzt sich heraus:

\(  G \frac{M}{r^2} =  \frac{v^2}{a}   \)

Die Bahngeschwindigkeit v erhalten wir als:

\( v = \frac{2 \pi a}{T} \)

Wenn wir das oben einsetzen ergibt sich:

\(  G \frac{M}{a^2} = \frac{4 \pi^2 a^2}{a \cdot T^2} \)

oder umgestellt:

\( \frac{G \cdot M}{4\pi} = \frac{a^3}{T^2} = const. \)

Quelle: https://www.schule-bw.de/faecher-und-schularten/mathematisch-naturwissenschaftliche-faecher/physik/unterrichtsmaterialien/mechanik_2/kepler/keplergravi.htm

Bestimmung der Jupitermasse

Anhand der Bahndaten des Jupitermondes Kallisto bestimmen wir die Masse des Jupiters mithilfe des Dritten Keplerschen Gesetzes.

Bahndaten Kallisto

  • Umlaufzeit 16,689 Tage  =  1.441.929,60 s
  • Große Halbachse  1882700 km =1.882.700.000 m   (zur Messung benötigt man die Entfernung)

Nach dem 3. Kaplerschen Gesetz finden wir:

\( M = \frac{4 \pi^2}{G} \cdot \frac{a^3}{T^2} = \frac{4 \pi^2}{6.77} \cdot \frac{1882700000^3}{1441929.6^2} = 1.90 \cdot 10^{27} kg\)

 

 

Astronomie: Sphärische Trigonometrie

Gehört zu: Mathematik
Siehe auch: Tägliche Bewegung der Gestirne, Diagramme, Tageslänge
Benötigt: WordPress Latex-Plugin, WordPress Plugin Google Drive Embedder

Was ist Sphärische Trigonometrie?

Die Ebene Trigonometrie ist die Lehre von den Dreiecken in der Ebene.

Die Sphärische Trigonometrie ist die Lehre von den Dreiecken auf einer Kugeloberfläche. Solche Dreiecke werden durch Abschnitte von Großkreisen gebildet.

Das Polar-Dreieck auf der Himmelskugel

Zur Umrechnung eines Koordinatensystems in ein anderes zeichnet man sich ein sog. Polar-Dreieck, in dem die “Pole” (“Drehpunkte”) beider Koordinatensysteme vorkommen.

Zur Umrechnung der äquatorialen Koordinaten Deklination (δ) und Stundenwinkel (t) in die horizontalen Koordinaten Höhe (h) und Azimuth (A) wird das sog. Polar-Dreieck wird gebildet durch den Himmelspol (N), den Zenit (Z) und ein Himmelsobjekt (O).

Im Polardreieck sind die Abstände (Bogenlängen):

  • vom Himmelspol zum Zenit: 90° – φ
  • vom Himmelspol zum Himmelsobjekt: 90° – δ
  • vom Zenit zum HImmelsobjekt: z = 90° – h

Im Polardreieck sind die Winkel an den Ecken des Dreiecks:

  • Winkel am Himmelspol: Stundenwinkel t (oder τ)
  • Winkel am Zenith: 180°  – A   (A = Azimuth von Süden)
polardreieck.svg

Polardreieck

Link: https://de.wikibooks.org/wiki/Astronomische_Berechnungen_f%C3%BCr_Amateure/_Druckversion#Koordinatentransformationen

MIt dem Seiten-Cosinussatz errechnet man den Cosinus der Länge einer Seite aus den Längen der beiden anderen Seiten und dem gegenüberliegenden Winkel:
\(\cos z = \cos (90° – \phi) \cos (90° – \delta) + \sin (90° – \phi) \sin (90° – \delta) \cos t\)

Was schließlich heisst:
\(\sin h = \sin \phi \sin \delta + \cos \phi \cos \delta \cos t \)

Der Cotangens-Satz im Polardreieck sagt:

\(   \cos (90° – \phi)  \cos t = \sin(90° – \phi) \cot (90° – \delta) – \sin t \cot(180° – A)  \)

Trigonometrisch umgeformt ergibt das:
\(  \sin \phi \cos t = \cos \phi \tan \delta – \Large\frac{\sin t}{\tan A}  \)

Aufgelöst nach A ergibt sich:

\(   \tan A = \Large\frac{\sin t}{\sin \phi \cos t – \cos \phi \tan \delta} \)

MIt Hilfe dieser Koordinatentransformation kann man für jedes bekannte Himmelsobjekt (Deklination und Rektaszension) die scheinbare tägliche Bewegung am Himmel berechnen – siehe dazu: Die scheinbare tägliche Bewegung der Gestirne.

Großkreise auf einer Kugel

Wenn ich im obigen Polardreieck h=0 setze, erhalte ich einen gekippten Großkreis (oBdA setze ich t = λ).

\(\Large \frac{\sin{\delta}}{\cos{\delta}} = – \frac{\cos{\varphi}}{sin{\varphi}} \cdot \cos{\lambda}  \)
grosskreis-01.svg

Großkreis auf der Erdoberfläche

Bei der Seefahrt bezeichnet man die Navigation auf einem Kurs entlang eines Großkreises als “Orthodrome” (Gegensatz: Loxodrome).

Mehr dazu: https://www.navigareberlin.de/onewebmedia/Grosskreisnavigation%20Ver%C3%B6ffentlichung.pdf

Metrik auf einer Kugeloberfläche

Für eine Kugel mit dem Radius r kann ich auf der Kugeloberfläche (z.B. Erdoberfläche) ein Koordinatensystem (s.o.) benutzen:

  • Koordinatensystem (λ, \( \varphi \))
  • wobei im Bogenmass: \( \Large -\frac{\pi}{2} < \varphi < \frac{\pi}{2} \)
  • und auch im Bogenmass: \( \Large 0 \leq \lambda < 2\pi \)

Zur Messung von Abständen (Längen) benötige ich ein LInienelement:

\(\Large ds^2 = r^2 d \varphi^2 + r^2 \cos{\varphi}^2 d\lambda^2 \)

Die kürzeste Verbindung zweier Punkte liegt dann auf einem sog. “Großkreis” (s.o.).

Beispiel 1 (gerade)

Die Strecke von (0.0) nach (π, 0); das ist ein halber Erdumfang am Äquator) müsste eine Länge von π r haben. Da auf der ganzen Strecke φ konstant =0 ist, ist auch dφ = 0 und es  ergibt sich als Längenintegral:

\( \Large s = r \int\limits_{0}^{\pi} d \lambda = r \cdot \left[ \lambda \right]_0^\pi  = \pi \cdot r\)

Beispiel 2 (gerade)

Die Strecke von (0,0) nach (0, π/2) ist ein Viertel Erdumfang vom Äquator zum Nordpol (ein sog. Quadrant) die Länge müsste also \(r \frac{\pi}{2} \) sein. Da auf der ganzen Strecke λ konstant =0 ist, ist auch dλ=0 und es ergibt sich als Längenintegral:

\( \Large s = r \int\limits_{0}^{\frac{\pi}{2}} d \varphi = r \cdot \left[ \varphi \right]_0^{\frac{\pi}{2}}  = r \cdot \frac{\pi}{2}\)

Beispiel 3 (schräg)

Aus dem obigen “Polardreieck” wird das “nautische Grunddreick“, wo wir wieder den Seiten-Cosinussatz anwenden können, um die Distanz zu berechnen. Die Distanz d zwischen einem Ausgangspunkt \( A = (\lambda_A, \varphi_A) \) zu einem Endpunkt \( B = (\lambda_B, \varphi_B) \) können wir also berechnen als:

\(\Large \cos{d} = \sin{\varphi_A} \sin{\varphi_B} + \cos{\varphi_A} \cos{\varphi_B} \cos{(\lambda_B – \lambda_A)} \ \\ \)

Die Strecke von (0, π/3) nach (π, 0) läuft jetzt “schräg” über unser Koordinatensystem…

\(\Large \cos{d} = \sin{\frac{\pi}{3}} \sin{0} + \cos{\frac{\pi}{3}} \cos{0} \cos{\pi}\)

Das ergibt: \( \Large \cos{d} = \frac{1}{2}\sqrt{3} \cdot 0 + \frac{1}{2} \cdot 1 \cdot (-1) = -\frac{1}{2} \\\ \)

und damit ist die gesuchte Distanz  \( d = \frac{2}{3} \pi \)

Um diese Distanz aus unserem Linienelement zu ermitteln, müssen wir das Linienelement entlang des Bogens von A nach B integrieren.

Dafür wollen wir den Weg zuerst als Funktion \( \varphi = f(\lambda) \) aufschreiben.

https://drive.google.com/file/d/1KsWze0RuemuXoe755Z_glIkhA2pTGilH/view?usp=drive_web

Astronomie: Tägliche Bewegung der Himmelsobjekte

Gehört zu: Sonnensystem
Siehe auch: Tageslänge, Sphärische Trigonometrie
Benötigt: WordPress Latex-Plugin

Tägliche scheinbare Bewegung der Gestirne

Wenn wir wissen wollen, wie sich ein Himmelobjekt mit bekannter Rektaszension und Deklination im Laufe des Tages über den Himmel bewegt, so ist die einfache Formel:

  • Stundenwinkel = Sternzeit – Rektaszension
  • Deklination = const.

Damit haben wir die äquatorialen Koordinaten Stundenwinkel (t) und Deklination (δ) als Funktion der Sternzeit.

Wenn wir die azmutalen Koordinaten Höhe (h) und Azimuth (A) haben wollen, so müssen wir das wie folgt umrechnen:

(Quelle: https://de.wikibooks.org/wiki/Astronomische_Berechnungen_f%C3%BCr_Amateure/_Druckversion#Koordinatentransformationen )

\( \sin h = \sin \phi \cdot \sin \delta + \cos \phi \cdot \cos \delta \cdot \cos t \)

und

\( \tan A = \Large \frac{\sin t}{\sin \phi \cdot \cos t – \cos \phi \cdot \tan \delta}  \)

Beispiel Wega in Hamburg:

TaeglicheBewegung.svg

Scheinbare tägliche Bewegung der Wega

 

Astrofotografie: Belichtungszeiten

Gehört zu: Astrofotografie
Siehe auch: Stacking, Nachführung, Lichtverschmutzung, SQM Sky Quality Meter
Benötigt: WordPress Latex-Plugin

Wie lange sollten die einzelnen Sub-Exposures belichtet werden?

Wir haben ja gelernt, dass wir sehr lange Belichtungszeiten für die so lichtschwachen Objekte der Astrofotografie brauchen.

Lange Belichtungszeit heisst hier aber nicht notwendig, dass ein einzelnes Foto lange belichtet werden muss, sondern wir können auch viele Einzelaufnahmen (Sub Exposures) machen und die dann aufaddieren (Stacken). Es kommt auf die Summe der Einzelbelichtungen an. Man sagt, die gesammte “Integrationszeit” ist das Wesentliche.

Diese Integrationszeit sollte in der Tat lang sein; d.h. mindestens 1 Stunde, besser 2 Stunden, besser 4 Stunden… Die Gesamtzeit (Integrationszeit) kann man ja Planen für die Bobachtungsnacht. Nehmen wir mal an, wir hätten 2 Stunden (also 120 Minuten) angesetzt. Die Frage wäre dann ja, wie lang man jedes Einzelfoto (Sub Exposure) belichten soll. Also ist 120 x 60 sec gut oder 240 x 30 sec oder 24 x 5 min oder… besser?

Auf der “Practical Astronomy Show” am 9.  März 2019 hat Dr. Robin Glover (SharpCap) dazu einen interessanten Vortrag gehalten. Der Titel des Vortrags war “Deep Sky CMOS Imaging” und er ist als Youtube-Video verfügbar.
Youtube:   https://www.youtube.com/watch?v=3RH93UvP358

Digital Imaging Circuit

Zusammenfassung (Executive Summery)

Da die technischen Zusammenhänge doch sehr komplex und vielschichtig sind, hier die “wichtigsten” Erkenntnisse vorweg (für einen gegebenen Standort mit gegebener Lichtverschmutzung):

  • Die Gesamtbelichtungszeit (Integrationszeit) muss lang sein (z.B. 2 Stunden oder mehr)
  • Die Belichtungszeit eines Einzelfotos muss immer so gewählt werden, dass im Histogramm weder links noch rechts etwas abgeschnitten (“geclippt”) wird
  • Die Einzelbelichtungszeit muss nur so groß sein, dass das Einzelbild “hintergrundlimitiert” ist; d.h.
    • Unter lichtverschmutztem Himmel die Einzelfotos (Subs) kurz belichten (z.B. 30 sec), dann aber ganz viele machen
    • Unter dunklerem Himmel können die Einzelfotos schon länger belichtet werden (z.B. 5 min), wenn das Guiding (oder: Autoguiding) das hergibt
  • Ruhig ISO bzw. Gain hochdrehen, dann wird das Ausleserauschen geringer (bei CMOS Sensoren) – aber der Dynamik-Umfang wird etwas sinken
  • Das thermische Rauschen ist häufig viel kleiner als das Rauschen aus anderen Quellen (z.B. Lichtverschmutzung). Deshalb ist extreme Kühlung manchmal garnicht so wichtig.

Haupteinflußfaktor ist die Lichtverschmutzung:

  • Das thermische Rauschen durch Kühlung reduzieren auf 10% der Lichtverschmutzung
  • Das Ausleserauschen wird irrelevant, wenn wir die Subs so lange belichten, das sie quasi “hintergrundlimitiert” werden; soll heissen dass im gestackten Bild das Ausleserauschen maximal 5% der Lichtverschmutzung ausmacht.
  • Das Dunkelstrom-Rauschen wird reduziert durch das Stacken vieler Dark-Frames zu einem Masterdark
  • Das  “Shot Noise” (Photonen-Rauschen) wird reduziert durch das Stacken vieler Light-Frames

Hintergrundlimitiert ???

Was meint man mit “hintergrundlimitiert” ?XYZ???

Mit “Hintergrund” meint man die HImmelshelligkeit (Lichtverschmutzung,  Airglow etc.). Unter “limitiert” durch den HIntergrund meint man, dass die anderen Rausch-Signale (Auslese-Rauschen und thermisches Rauschen) deutlich kleiner sind als das Signal vom Himmelshintergrund und damit vernachlässigt werden können.

Wenn man sich nach der nötigen Belichtungszeit für die Subs fragt, reicht es, wenn man gerade so lange belichtet, dass die Subs hintergrundlimitiert sind. Dann wird durch noch längere Belichtungszeiten das Signal-Rausch-Verhhältnis im Stack nicht mehr verbessert.

Signalstärke

Auf einem Astrofoto kommen verschiedene Signale zusammen:

  • Ein Signal vom eigentlichen Beobachtungsobjekt (Nutz-Signal)
  • Ein zusätzliches Signal vom Himmelshintergrund (Light Pollution)
  • Ein zusätzliches Signal durch den Dunkelstrom (abhängig von der Sensor-Temperatur)

Die Signalstärke ist eigentlich:  Anzahl Photonen pro Pixel pro Sekunde.
Die Photonen schlagen dann Elektronen aus dem Sensormaterial heraus und die Elektronen werden dann gemessen und in eine Zahl umgewandelt (ADU).
Die Quantum Efficiency (QE) ist dabei der Prozentsatz von Photonen, der ein Elektron auslöst.
Messen als Signalstärke im Sensor kann man dann:  Anzahl Elektronen pro Pixel pro Sekunde.

Rausch-Signale

Jedes Signal ist mit einem Rauschen behaftet.

Es gibt mehrere Quellen für Rausch-Signale die sich alle addieren.

  • Kamera-extern hat man (sog. Shot Noise, Photonenrauschen, Schrotrauschen):
    • Rauschen in den Light-Frames im eigentlichen, externen Signal vom Beobachtungsobjekt
    • Rauschen in den Light-Frames im Signal des Himmelshintergrunds (Lichtverschmutzung etc.)
  • Kamera-intern hat man (sog. Kamera-Rauschen):
    • Rauschen in den Light-Frames durch Wärme im Sensor (Thermisches Rauschen – nur Rauschen, kein Signal)
    • Rauschen in den Light Frames durch den Auslese-Vorgang (sog. Read Noise – nur Rauschen, kein Signal)
    • Rauschen in den Dark-Frames  (Rauschen im Dunkelstrom-Signal)
    • Rauschen in den Flat Frames

Rauschen bringt feine Details im Bild zum Verschwinden. Deshalb wollen wir das Rauschen insgesamt reduzieren.

Das Rausch-Signal ist meistens zufällig (stochastisch) und kann also dadurch bekämpft werden, dass man viele Aufnahmen macht und die dann mittelt (siehe: Stacken).

Addieren von Signalen über Stacks

Beim Stacken von Einzelaufnahmen (Sub Exposures) verhalten sich Signal und Rauschen unterschiedlich.

Konstante Signale, bei denen sich die Signalstärke von Sub zu Sub eigentlich nicht ändert, addieren sich einfach.

\((1) \hspace{1 em} S_{1+2} =  S_1 + S_2 \)

Rausch-Signale, die sich von Sub zu Sub zufällig (stochastisch) ändern, addieren sich mit einer “Quadratwurzel” ….    R 1 + R 2   = Wurzel aus (R 1 Quadrat + R 2 Quadrat)

\((2) \hspace{1 em} R_{1+2} =  \sqrt{ R_1^2 + R_2^2} \)

Das bedeutet z.B. dass bei der Addition stark unterschiedlicher Rauschsignale man das schächere “praktisch” vernachlässigen kenn.

Signal-Rausch-Verhältnis

MIt zunehmender Anzahl Subs steigt das Nutzsignal linear und das Rauschen “nur” mit der Quatradwurzel. Damit verbessert sich das Signal-Rausch-Verhältnis.

Näheres dazu weiter unten.

Dunkelstrom-Rauschen

Z.B. macht der sog. Dunkelstrom ein Dunkelstrom-Signal und ein Dunkelstrom-Rauschen.

Das Dunkelstrom-Signal kann man vom vom Nutzsignal (Light Frame) abziehen; das Dunkelstrom-Rauschen bleibt aber erhalten.

Bekämpfung: Das Dunkelstrom-Rauschen kann man nur bekämpfen indem man viele Dark Frames aufnimmt und dann das Dunkelstrom-Rauschen herausmittelt, weil das Rauschen stochastisch ist.

Auslese-Rauschen

Durch den Vorgang des Auslesen der Pixel-Informationen aus dem Sensor ensteht auch ein zusätzliches Auslese-Rauschen.

Wenn man statt ein paar wenigen Aufnahmen mit längerer Belichtung alternativ viele Aufnahmen mit kürzerer Belichtung macht, hat man auf jeder Einzelaufnahme das Ausleserauschen und das würde also bei “vielen kurzen Belichtungen” viel stärker ins Gewicht fallen. Allerdings ist das Auslese-Rauschen bei modernen CMOS-Kameras sehr gering, wenn man den Gain etwas hoch stellt, was die Dynamik evtl. herabsetzt.

Gain bzw. ISO

Das Aufdrehen des “Gain” bei CMOS-Sensoren ist einfach eine Verstärkung aller Bildsignale.

Das Ausleserauschen wird durch den Gain allerdings nicht verstärkt, da diese Verstärkung erst nach der Belichtung des Sensors stattfindet.

Zum Beispiel zeigt der Hersteller der ASI294 folgendes Diagramm:

RobinGlover-02

Bekämpfung: Das Auslese-Rauschen können wir bekämpfen einserseits durch Aufdrehen des Gain, andererseits durch Verlängern der Belichtungszeit der Subs soweit bis “Hintergrundlimitierung” (s. Lichtverschmutzung unten) erreicht ist.

Thermisches Rauschen

Im Sensor entstehen Elektronen nicht nur durch die ankommenden Photonen, sondern auch durch Wärme.

Thermisches Rauschen verdoppelt sich ungefähr bei Temperaturerhöhung um 6,5 Grad Celsius.

Je nach Sensor ergeben sich unterschiedliche Kurven für das thermische Rauschen (Copyright Dr. Robin Glover):

RobinGlover-01

Typisch für moderne CMOS-Sensoren wie Sony 294C sind 0,2 Elektronen pro Sekunde pro Pixel bei einer Sensor-Temperatur von 25 Grad Celsius.

Wenn man diese Kurven sieht, erkennt man, dass ein Herunterkühlen von 25 Grad auf 15 Grad völlig ausreicht, um das thermische Rauschen bedeutungslos zu machen.

Bekämpfung: Das thermische Rauschen bekämpfen wir durch Kühlung des Sensors.  Robin Glover empfiehlt, das thermische Rauschen auf 10% der Lichtverschmutzung zu limitieren. Bei besonders geringer Lichtverschmutzung wäre also eine entsprechende leichte Kühlung notwendig.

Unser “Standard Observer”

Da die optimale Belichtungszeit für unsere Sub Exposures von vielen Gegebenheiten abhängt, definieren wir zunächst einmal einen “Standard-Beobachter”, für den wir unsere Untersuchungen machen wollen.

Der Standard-Beobacher sei definiert durch:

  • Sensor: CMOS, monochrom, 50% QE, Pixelgröße 3,75µ, Temperatur 25 Grad Celsius
  • Öffnungsverhältnis: f/6
  • Lichtverschmutzung:  Bortle 5
  • Gesamtbelichtungszeit: 60 MInuten

Lichtverschmutzung

Die Signalstärke aus Lichtverschmutzung gemessen in Anzahl Elektronen pro Pixel pro Sekunde (nach Dr. Robin Glover) ist:

Bortle 9
Inner City
Bortle 8 City Sky Bortle 7
Urban
Bortle 5
Suburban
Bortle 3
Rural
Bortle 1
Excellent Dark
f/4 175 28 22 5,3 1,2 0,80
f/5 112 18 14 3,7 0,81 0,51
f/6 78 12,3 9,36 2,6 0,56 0,36
f/7 57 9,1 7,1 1,9 0,41 0,26
f/10 28 4,4 3,4 0,85 0,19 0,13

Dies sind Daten für einen Mono-Sensor mit 50% Quantum Efficiency und 3,75μ Pixelgröße (also für den Standard-Observer).
Für einen Colour-Sensor sind diese Zahlen durch 3 zu dividieren.
Link: https://tools.sharpcap.co.uk

Unser Standard-Observer hat demnach eine Lichtverschmutzung von:  2,6 Elektronen pro Pixel pro Sekunde

Beispiele für Lichtverschmutzung

An verschiedenen Orten haben wir ganz unterschiedliche Lichtverschmutzung:

  • Hamburg-Eimsbüttel: SQM 17,5 –> Bortle 7
  • Handeloh Aussensternwarte:  SQM 21,0 –> Bortle 4
  • Kiripotib, Namibia: SQM 21,9 –> Bortle 1
  • Elmshorn: xyz
Standort SQM Teleskop Imager Light Pollution Rate Thermal Noise Limit Erforderliche Sensor Temperatur
Eimsbüttel 17,5 ED80/510 Canon EOS 600D 3,00 0,30
Handeloh 21,0 ED80/510 Canon EOS 600D 0,30 0,03
Elmshorn
Kiripotib 21,9 APM APO 107/700 * 0,75 Canon EOS 600D 0,22 0,02

Lichtverschmutzung mit der DSLR Canon EOS 600D in Eimsbüttel

Bei einer Lichtverschmutzung von Bortle 7 hätte ich bei meiner Canon EOS 600D (Colour) an dem ED80/510 dann eine Lichtverschmutzung von 2,96 Electrons per Pixel per Second.
Robin Glover empfiehlt, das thermische Rauschen herunterzudrücken auf 10% der Lichtverschmutzung, also auf: 0,296 e

Lichtverschmutzung mit der Altair Hypercam 294 Pro Colour

Bei einer Lichtverschmutzung von Bortle 7 hätte ich mit dieser Cam an dem ED80/510 dann eine Lichtverschmutzung von 6,38 Electrons per Pixel per Second.
Robin Glover empfiehlt, das thermische Rauschen herunterzudrücken auf 10% der Lichtverschmutzung, also auf 0,638 e

Lichtverschmutzung mit der Altair GP-CAM

Für meine GP-CAM haben wir:

  • Pixelgröße: 3,75μ
  • Sensor: CMOS mono
  • Quantum Efficiency:   ca. 60%
  • Sensor: Mono

Bei einer Lichtverschmutzung von Bortle 7 hätte ich mit dieser Cam an dem ED80/510 dann eine Lichtverschmutzung von 9,88 Electrons per Pixel per Second.
Robin Glover empfiehlt, das thermische Rauschen herunterzudrücken auf 10% der Lichtverschmutzung, also auf 0,988 e

Lichtverschmutzung in Aussensternwarte Handeloh

Dort haben wir:

  • Lichtverschmutzung: SQM 21,0 –> Bortle 4
  • Sensor: CMOS colour
  • Pixelgröße: 4,3μ
  • Quantum Efficiency: 41%
  • Öffnungsverhältnis: f/6.4

In Handeloh hätte ich mit meiner Canon EOS 600D an dem ED80/510 dann eine Lichtverschmutzung von 0,30 Electrons per Pixel per Second.

Lichtverschmutzung in Kiripotib, Namibia

Dort haben wir:

  • Lichtverschmutzung: SQM 21,9 –> Bortle 1
  • Sensor: CMOS colour
  • Pixelgröße: 4,3μ
  • Quantum Efficiency: 41%
  • Öffnungsverhältnis: f/4,9   (APM APO 107/700 mit Reducer 0,75)

Auf Kiripotib hätte ich mit meiner Canon EOS 600D an einem APM APO 107/700 mit Reducer dann eine Lichtverschmutzung von 0,22 Electrons per Pixel per Second.

Das Shot-Noise

Auch im eigentlichen Nutz-Signal haben wir ja ein Rauschen, das sog. “Shot Noise”  (im Deutschen auch “Schrotrauschen” genannt). Die Ankommensrate der Photonen kann man inetwa mit Regentropfen vergleichen.

Wenn wir länger belichten, kommen mehr Photonen auf den Sensor, wenn wir kürzer belichten, kommen weniger Photonen auf den Sensor.

Bei einem schwächeren Signal ist das Shot Noise im Verhältnis größer   –   Poisson-Verteilung….

Umgekehrt: je länger wir belichten, desto geringer wird das Shot Noise im Verrhältnis. Shot Noise = k mal Wurzel aus Signalstärke

\((3) \hspace{1 em}  Shot Noise = k \cdot \sqrt{Signalstärke}  \)

Absolut gesehen, steigt das Shot Noise mit der Signalstärke, also der Belichtungszeit.
Aber relativ zum Signal wird das Shot Noise (prozentual) immer geringer:   Shot Noise / Signalstärke = k / Wurzel aus Signalstärke

\((4) \hspace{1 em}  \Large  \frac{Shot Noise}{Signalstärke} = \Large \frac{k}{\sqrt{Signalstärke}}  \)

Stacking and Noise

Wenn wir n Frames stacken verhält sich das Read Noise linear: ….

Wenn wir n Frames stacken verhält sich das Stack Noise wie folgt:

Stack Noise = Read Noise + Shot Noise   – wobei das Shot Noise praktisch gleich der Light Pullution ist

nach Robin Glover:

S1 S2 S3 S4
Frames stacked Increase in Image Signal Increase in Image Noise Increase in S/N Ratio
1 1 x 1 x 1 x
2 2 x 1,41 x 1,41 x
5 5 x 2,24 x 2,24 x
10 10 x 3,16 x 3,16 x
20 20 x 4,47 x 4,47 x
50 50 x 7,07 x 7,07 x
100 100 x 10 x 10 x

S2 = S1

\( \Large S_2 = S_1    \)

S3 = Wurzel aus S1

\( \Large S_3 = \sqrt{S_1}  \)

S4 = S2  /  S3  =    S1 / Wurzel aus S1   =   Wurzel aus S1

\( \Large S_4 = \Large\Large\frac{S_2}{S_3}  = \frac{S_1}{\sqrt{S_1}}  = \sqrt{S_1} \)

Die Schlußfolgerung

Wenn wir einfach einen gegebenen Ort, ein gegebenes Astro-Equippment und eine gegebene Zeit haben, was soll wir machen?

Dafür gibt es eine Formel. Wobei wir folgende Symbole benutzen:

R  = Read Noise    (typisch bei CMOS-Sensoren: 0,2 e pro Sekunde pro Pixel)

T = Total Imaging Time

S = Sub Exposure Time

n = Number of Subs      \(  n = \frac{T}{S}  \)

P = Light Pollution Rate   in Electrons per Sekunde per Pixel     (typisch: 2,6 für unseren Standard-Beobachter mit Bortle=5)

Single Frame

Wenn wir als “Shot Noise” einfach mal das Signal der Lichtverschmutzung nehmen (die anderen Rausch-Anteile vernachlässigen wir, da wir ja “hintergrundlimitiert” fotografieren).
dann ergibt sich:

\( SingleFrameShotNoise = \sqrt{S \cdot P} \)

und das ReadNoise in einem Sub ist:

\( SingleFrameReadNoise =  R \)

Damit ist das Gesamt-Rauschen in einem Frame:

\( SingleFrameTotalNoise = \sqrt{SingleFrameReadNoise^2 + SingleFrameShotNoise^2}    \)

Also:

\( SingleFrameTotalNoise = \sqrt{R^2 + S \cdot P}    \)

Total Stack

Dann ist das gesamte ReadNoise im gestackten BIld:

\( TotalStackReadNoise = \sqrt{n \cdot R^2} \)

und wenn wir als “Shot Noise” einfach mal das Signal der Lichtverschmutzung nehmen (die anderen Rausch-Anteile vernachlässigen wir, da wir ja “hintergrundlimitiert” fotografieren).
Dann ist das gesamte ShotNoise im gestackten Bild:

\( TotalStackShotNoise = \sqrt{T \cdot P} \)

Dann haben wir als “Stack Noise”:

\( TotalStackNoise = \sqrt{TotalStackReadNoise^2 + TotalStackShotNoise^2}    \)

also:

\(  TotalStackNoise = \sqrt{n \cdot R^2  + T \cdot P} \)

Wenn wir als “Shot Noise” einfach mal den Betrag der Lichtverschmutzung nehmen (die anderen Rausch-Anteile vernachlässigen wir, da wir ja “hintergrundlimitiert” fotografieren).

Grenzfall: “Perfekte Kamera” d.h.R=0

\( TotalStackNoise = \sqrt{T \cdot P}  \)

Grenzfall “Eine Aufnahme, ganz lang”  n=1

\( TotalStackNoise = \sqrt{R^2  + T \cdot P}  \)

Dieses stellt auch das Optimum (Minimum) für Aufnahmen mit der begrenzten Gesamtbelichtungszeit dar; also die 100%, die unten gebraucht werden.

Ergebnisse: Total Noise in the Stack Bortle=5

Diese Formel als Tabelle dargestellt ergibt:

Sub Exposure Length Total Stack Noise CMOS Total Stack   Noise
CCD
Total Stack Noise CMOS Total Stack Noise      CCD
[s] e/pixel/s e/pixel/s [%] [%]
1 178,5 431,0 184,4 444,3
2 143,6 312,3 148,3 322,0
5 117,7 211,3 121,6 217,8
10 107,7 164,3 111,3 169,4
23 101,6 130,0 105,0 134,0
30 100,5 123,5 103,9 127,3
60 98,7 110,9 101,9 114,3
100 97,9 105,5 101,2 108,7
174 97,4 101,9 100,7 105,0
1000 96,9 97,7 100,1 100,7
3600 96,8 97,0 100,0 100,0

und als grafische Darstellung:

RobinGlover-04

 

Wir sehen, dass sich das Total Stack Noise bei gegebener Gesamtbelichtungszeit (hier: 3600 Sekunden) jeweils einem Optimum (Minimum) annähert (im Beispiel: 96,8 bei CMOS und 97,0 bei CCD).

Die Kurven flachen sehr schnell ab, also können wir durchaus mit Sub Exposures arbeiten, die wesentlich kürzer sind und dabei das optimale (minimale) Rauschen nur ganz knapp erhöhen.

Wenn wir etwa ein 5% höheres Rauschen als das Minimum-Rauschen akzeptieren, landen wir bei Sub Exposures von: 30 Sekunden bei CMOS und 60 Sekunden bei CCD.

Im Beispiel sind das:

  • Standard-Beobachter CMOS 23 sec
  • Standard-Beobachter CCD 174 sec

Optimale Sub Exposures

Zum Schluss bleibt die Frage, wieviel zusätzliches Rauschen im Bild man akzeptieren will.  Wenn wir das akzeptierte zusätzliche Rauschen in Prozent des Minimum-Rauschens mit “E” bezeichnen, erhalten wir:

\( \Large S = C \cdot \frac{R^2}{P}   \)

wobei:

\( \Large C = \frac{1}{(\frac{100 + E}{100})^2 – 1}  \)

Bei E=5% ist C=10. Damit erhalten wir die Formel:

\(  S = 10 \cdot \frac{R^2}{P}   \)

 

Ergebnisse: Total Noise in the Stack Bortle=4 (Handeloh)

 

 

 

Ergebnisse: Total Noise in the Stack Bortle=1 (Namibia)

 

Physik: Quantenphysik

Gehört zu: Physik
Siehe auch: Kosmologie, Teilchenphysik, Von Pythagoras bis Einstein, Lineare Algebra
Benötigt: WordPress Latex-Plugin

Die Quantenphysik

Im Jahr 1900 formulierte Max Planck (1858-1947) sein Strahlungsgesetz und seine Quantenhypothese. Erst um 1925 entwickelte sich daraus eine Quantentheorie/Quantenmechanik, die die physikalische Systeme im Kleinen (z.B. Elementarteilchen, Atome,…). gut beschreibt. Wesentliche Punkte sind:

Verständnis der Quantenmechanik

Eine wirkliches Verständnis der Quantenmechanik ist heute noch nicht vorhanden. Man kann zwar damit “rechnen”, weiss aber eigentlich nicht, was da “im Inneren” passiert. Link: https://en.wikipedia.org/wiki/Interpretations_of_quantum_mechanics

Zitat Richard Feynman (1918-1988): “I think I can safely say that nobody understands quantum mechanics.”
Link: https://www.researchgate.net/post/I_think_I_can_safely_say_that_nobody_understands_quantum_mechanics_R_Feynman_If_that_statement_is_true_how_can_we_know_if_QM_is_true

Flammarion Holzschnitt (Wikipedia)

Das Plancksche Strahlungsgesetz

Bestimmte phsikalische Größen kommen nur in ganzzahligen Vielfachen eines “kleinsten” Wertes vor. Das nennt man Quantelung. Der Ursprung dieser Idee soll das Plancksche Strahungsgesetz sein.

Max Planck (1858-1947) konnte im Jahre 1900 ein Strahlungsgesetz entwickeln, das zeigt welche Strahlungsenergie ein “Schwarzer Strahler” einer bestimmten Temperatur (T) in Anhängigkeit von der Wellenlänge (oder Frequenz “ν”) der Strahlung aussendet.

Die früheren Formeln (Hypothesen) z.B. von Rayleigh-Jeans waren nur Teilerfolge, da sie in der sog. “Ultraviolettkatastrophe” endeten.

Plancks Strahlungsgesetz ist eigentlich nur eine Formel wie viele andere in der Physik auch, die endlich die Verteilung der Strahlungsenergie in Abhängigkeit von der Wellenlänge/Frequenz der Strahlung “richtig” darstellt.

\( \Large \frac{8 \cdot \pi  \cdot h \cdot \nu^3}{c^3} \cdot \frac{1}{e^\frac{h \nu}{k T} – 1}\)

In Plancks Formel kommt eine vom ihm so genannte “Hilfskonstante” h vor, die später als das legendäre Plancksche Wirkungsquantum interpretiert wurde. Die physikalische Größe “Wirkung” bezeichnet eine Energie (Joule), die in einer bestimmten Zeit  (Sekunden) etwas “bewirkt”. Die Planck’sch Hilfskonstante ist:

h = 6,626069 ⋅ 10-34 J ⋅ s

h = 6,626 069 10 34 J s

Dieses Youtube-Video von Rene Matzdorf  an der Uni Kassel versucht, die Herleitung der Planck’schen Formel (Strahlungsgesetz) über die Strahlung den schwarzen Körpern, sog. Hohlraumstrahlung und darin existierenden stehenden Wellen (Hohlraum-Resonator) herzuleiten: https://www.youtube.com/watch?v=mC9QJ4YFIwc
Der Zusammenhang ist für mich nicht so leicht nachvollziehbar.

Quelle: http://www.quantenwelt.de/quantenmechanik/historisch/schwarze_korper.html

Siehe auch: Wiensches Verschiebungsgesetz, Stefan-Bolzmann…

Plancks Quantenhypothese

Häufig hört man, dass aus Plancks Formel angeblich die Aussendung der Energie in sog. Quanten (ganzzahlige Vielfache  von h mal ν) folgt. Das kann man aber aus der Formel selbst überhaupt nicht ableiten. Vielmehr ist es so, dass Planck (angeblich) auf diese Formel kam indem er elektromagnetische Strahlung (das Licht) als Teilchen modellierte, die sich wie ein Gas verhalten sollten. Die unterschiedlichen Geschwindigkeiten solcher Teilchen modelliert Planck als unterschiedliche Wellenlängen der Strahlung…

Ein solches Teilchen sollte eine von der Frequenz seiner Strahlung abhängige Energie haben. Das ist die zentrale Formel (Quantenhypothese) von Planck:   \(E = h \cdot \nu \)

Die Formeln für das Strahlungsgesetz hat Planck zunächst durch Probieren herausgefunden und dann später eine Herleitung auf Basis seiner Quantenhypothese gefunden. Planck glaubte jedoch damals noch nicht an eine allgemeine Quantelung, diese war nur eine Annahme, um die Theorie in Einklang mit den Messungen bringen zu können.

Später versuchte Planck sein Strahlungsgesetz nicht durch eine “Hohlraumstrahlung” sonden durch Atome als Oszillator zu interpretieen.

Der Photoelektrische Effekt

Einfacher für mich ist die Erklärung mit dem photoelektrischen Effekt. Einstein (1879-1955) benutzte gequantelte Photonen mit der Energie \(E = h \cdot \nu \), um den photoelektrischen Effekt zu erklären.

Nach Einstein nimmt die Intensität von Licht dadurch zu, dass mehr Photonen mit der gleichen Energie pro Zeiteinheit abgestrahlt werden. Der photoelektrische Effekt wirkt aber erst dann, wenn das einzelne Photon die erforderliche Energie hat, um Elektronen aus dem Basismaterial herauszulösen. Es ist also nicht eine bestimmte hohe Intensität des Lichts erforderlich, sondern eine bestimmte hohe Frequenz, um die Auslösearbeit zu leisten…

Das Bohrsche Atommodell

Der Erfolg dieser Theorien brachte Niels Bohr (1885-1962) dazu, so eine Quantelung auch für die Elektronenzustände in seinem Atommodell anzunehmen.

Quantelung

Welche physikalischen Größen sollen den nun “gequantelt” sein; d.h. nur in ganzzahligen Vielfachen einer (kleinen) Elementargröße (=Quanten) vorkommen? Kommt jede physikalische Größe in “Quanten” oder nur bestimmte?

Ich habe in Heidelberg gehört, dass die Quantelung nur für physikalische Größen zutrifft, die konjugiert zu einer periodischen Größe sind. Was immer das heissen mag…

Das Plancksche Wirkungsquantum

Das Plancksche Wirkungsquantum als Naturkonstante wird heute zur Definition der SI-Einheit Kilogramm benutzt.

Im Zusammenhang mit dem Wirkungsquantum spricht man auch von einer einer “Planck-Länge”, einer “Planck-Zeit” etc., denn Planck hatte herausgefunden, dass man aus den Naturkonstanten G, c, h eine ganze Schaar von Einheiten ableiten kann (durch Probieren und Beachten der Dimensionen):

Planck-Länge:

\(  \Large l_p = \sqrt{\frac{\hbar \cdot G}{c^3}} = 6.616 10^{-35}m\\ \)

Was diese Planck-Länge bedeutet, ist zunächst völlig offen. Es ist “nur” eine ausprobierte Formel, die als Dimension eine Länge hat.

Im Zusammenhang mit der Heisenbergschen Unschärferelation versucht man, diesen Planck-Größen eine physikalische Bedeutung beizumessen.

 

 

 

Astronomie: SQM Sky Quality Meter

Gehört zu: Lichtverschmutzung
Siehe auch: Liste meiner Geräte, Belichtungszeiten

Benötigt: WordPress Latex-Plugin

Messung der Himmelshelligkeit

Messung der Himmelshelligkeit mit dem “Sky Qualtity Meter” von Unihedron

Die Messung der Himmelshelligkeit kann mit einem Messgerät der kanadischen Firma Unihedron erfolgen. Dieses Gerät habe ich mir am 28.10.2018 von Teleskop-Express für EUR 156,40 kommen lassen. Es misst die Leuchtdichte des Himmels in der astronomischen Einheit Größenklassen/Quadratbogensekunden (mag/arcsec2). Die Skala ist umgekehrt, hohe Werte bedeuten einen dunklen Himmel. Folgende Werte geben einen ersten Anhalt für die Skala:

SQM Bortle
21.85 1 Excellent dark sky site
21.6 2 Typical dark sky site – natürlicher Himmelshintergrund, Milchstraße bis Horizont sichtbar, Wolken schwarz
21.4 3 Rural sky – Zodiakallicht (im Frühjahr abends, im Herbst morgens) gut sichtbar, Milchstraße, Wolken über Städten am Horizont hell
20.9 4 Rural / Suburban transition – Milchstraße sichtbar mit geringem Kontrast, Wolken im Zenit hell
19.8 5 Suburban sky  – Milchstraße im Zenit schwach erkennbar
18.8 6 Bright suburban sky – wenige Sterne, Himmel stark aufgehellt
18.3 7 Suburban / Urban transition
18.0 8 City sky

Jonas Schenker schreibt dazu ( http://www.extrasolar.ch/skyqualitymeter.html ):

Der Sky Quality Meter misst die Helligkeit innerhalb eines Kegels (Öffnungswinkel 80 Grad) und berechnet daraus die mittlere spezifische Leuchtdichte Lv (in Magnituden pro Quadratbogensekunde).
Leuchtdichte Lv Anzeige: mag / (arcsec)2
SI-Einheit: cd / m2 = lm / m2 / sterad
Umrechnung:
Wert in cd/m2 = 1.08 * 10^5 * 10^(-0.4*SQM) ,  mit SQM = Anzeigewert in mag / (arcsec)2
\(  Leuchtdichte \hspace{0.5em} [cd/m²] = 1,08 \cdot 10^5 \cdot 10^{(-0,4 \cdot SQM) } \)

Bildbeschreibung: Foto eines Sky Quality Meter. Im Display steht: 11,36

sqm_kl.jpg

SQM Sky Quality Meter

Mathematik: Von Pythagoras bis Einstein

Gehört zu:  Mathematik und Physik
Siehe auch: Kosmologie , Quantenmechanik, Mathematik, Komplexe Zahlen
Benötigt: WordPress Plugin LaTeX

Ein bisschen Mathematik

Angeregt von einem Youtube-Video “Top 10 equations that changed to world” wollte ich hier die wichtigsten Errungenschaften der Mathematik und Physik sind darstellen:

  • Der Lehrsatz des Pythagoras  10
  • Der Logarithmen (Napier)   9
  • Differentialrechnung (“Calculus”) und Grenzwerte  (Newton, Leibnitz)  8
  • Das Gravitationsgesetz (Newton)  7
  • Die komplexen Zahlen (Euler,…)  6
  • Wellengleichung   (d’Alembert) 5
  • Fourier Transformation   4
  • Navier Stokes Gleichung   – Aerodynamik  –   3
  • Faraday und Maxwell Gleichungen   2
  • Die Black-Schole-Gleichung   – Finanzmathematik    2
  • Einstein Relativitätstheorie und Schrödinger Quantenmechanik  1

Der Lehrsatz des Pythagoras

Im rechtwinkligen Dreieck mit den Katheten a und b und der Hypotenuse c gilt:

a² + b² = c²

Dies ist die Basis für die Messung von Entfernungen. Hierdurch wird die Geometrie mit der Algebra verbunden.

Auf dieser Basis kann man Entfernungen im Raum (sog. Metriken) mit mathematischen Formeln berechnen; z.B. im drei-dimensionalen Euklidischen Raum:

ds2 = dx2 + dy2 + dz2

In der Kosmologie verwendet man weitergehende Metriken, z.B. die Robertson-Walker-Metrik…

Logarithmen

Vereinfachen der Multiplikation zur Addition z.B. bei komplexen astronomischen Berechnungen….

log(a · b) = log(a) + log(b)

Logarithmische Skalen z.B. bei den Helligkeiten von Himmelsobjekten…

Differentialrechnung

Die Differentialrechnung geht auf Newton (1643-1727) und Leibniz (1646-1716) zurück …

\(  \frac{dx}{dy} = \lim \limits_{h \to 0} \frac{f(x+h)-f(x)}{h} \)
Der Begriff des Grenzwerts (des Limes) wurde erst später von Bernhard Bolzano (1781-1848) und Karl Weierstrass (1815-1897) formal eingeführt.
Newton war es, der die Differentialrechnung in die Physik einführte z.B. Kraft = Masse * Beschleunigung = Impuls abgeleitet nach der Zeit

Das Gravitationsgesetz (Newton)

Die Anziehungskraft zwischen zwei Massen m1 und m2, die eine Entfernung r voneinander entfernt sind, ist:

\( F = G \cdot \frac{m_1 \cdot m_2}{r^2} \)

Wobei G die sog. Gravitationskonstante ist.

Die komplexen Zahlen

Hierzu habe ich einen separaten Blog-Artikel geschrieben: Komplexe Zahlen

Die Wellengleichung (d’Alembert)

Die Wellengleichung, auch D’Alembert-Gleichung nach Jean-Baptiste le Rond d’Alembert (1717-1783), bestimmt die Ausbreitung von Wellen wie etwa Schall oder Licht.

 

Fourier Transformation

Joseph Fourier (1768-1830)

\(\Large f(\epsilon) = \int_{-\infty}^{+\infty} f(x) e^{-2 \pi x \epsilon} dx \)

Wobei ε die Frequenz ist…

“Jede” Funktion wir dargestellt als eine Überlagerung von Sinuswellen mit unterscheidlicher Frequenz….

Navier Stokes Gleichung   – Aerodynamik

Claude Navier (1785-1836) und George Stokes (1819-1903)

Das ist nicht so einfach…

Faraday und Maxwell Gleichungen

Michael Faraday  (1791-1867) und  James Clerk Maxwell (1831-1879)

Für das elektrische Feld E gilt:
\(
\nabla \cdot \vec{E} = 0
,
\nabla \times \vec{E} = \Large -\frac{1}{c} \frac{\partial H}{\partial t}
\)
und für das Magnetfeld H gilt:
\(
\nabla \cdot \vec{H} = 0
,
\nabla \times \vec{H} = \Large \frac{1}{c} \frac{\partial E}{\partial t}
\)

Black Schole Gleichung   – Finanzmathematik

Fischer Black (1938-1995) und Myron Scholes (1941-)

Einstein Relativitätstheorie und Schrödinger Quantenmechanik

Albert Einstein  (1879-1955)  und Erwin Schödinger (1887-1961)

Eine der Voraussetzungen zum Verständnis sind sog. Vektorräume.

Vektorräume verfügen über eine Operation, die Addition genannt wird und eine kommutative Gruppe bildet. Weiterhin muss jeder Vektorraum einen Körper von sog. Skalaren haben, mit denen die Vektoren mutipliziert werden können.

Es gibt den Begriff der “Dimension” eines Vektorraumes…..

Besonders interessant ist das sog. “innere Produkt” (engl. Dot Product) zweier Vektoren….

Astronomie: Kosmologie

Gehört zu: Astronomie
Siehe auch: Mathematik, Physik, Diagramm, Teilchenphysik, Entfernungsbestimmung, Relativitätstheorie
Benötigt: WordPress Latex-Plugin

Kosmische Hintergrundstrahlung

Am 15.5.2018 nahm ich an einem Gesprächskreis über die “CMB” (Cosmic Microwave Background radiation)  teil.

Themen waren u.a.:

  • Wie kommt es, dass die kosmische Hintergrundstrahlung (CMB) heute bei uns aus allen Richtungen gleichmäßig (“isotrop”) ankommt?
  • Kann die Fluchtgeschwindigkeit von Galaxien bzw. die Expansionsgeschwindigket des Raumes schneller als die Lichtgeschwindigkeit sein?
  • Woher kommt die Rotverschiebung der Galaxien?

Stichwörter

Da fielen eine Reihe von Stichwörtern, die mir nicht so geläufig waren:

  • Minkowski-Raum d.h. ohne Gravitation  –> Minkowski-Diagramm
  • Friedmann Gleichung
  • Robertson-Walker-Metrik
  • Roger Penrose “CCC”
  • Steinhardt Princeton

Entfernungen im Universum

In der Kosmologie hat man zwei verschiedene Maße für Entfernungen im Universum (Davis & Lineweaver 2004):

Proper Distance: Entfernung eines Objekts zu einem bestimmten Zeitpunkt. Wegen der Expansion des Universums ändert sich die “Proper Distance” mit der Zeit.

Comoving Distance: Entfernung eines Objekts, die sich mit der Zeit nicht ändert – also die Expansion des Universums “herausgerechnet”. Die “Comoving Distance” wird definiert als identisch der “Proper Distance” zum jetzigen Zeitpunkt. Man spricht auch vom sog. Skalenfaktor a(t), der sich im Laufe der Zeit ändert. Zur Zeit t=heute ist a(heute)=1.

Rotverschiebung

In den Spektren von vielen Galaxien kann man eine Verschiebung der Linien zum Roten hin beobachten.

Als Rotverschiebung z definiert man den Quotienten der Differenz zwischen der Wellenlänge im Beobachtersystem (obs) und derjenigen im Emittersystem (em):

\(\displaystyle z = \frac {\lambda_{obs} – \lambda_{em}}{\lambda_{em}} \)

Edwin Hubble (1889-1953) interpretierte die Rotverschiebung z als Dopplereffekt hervorgerufen durch eine Fluchtgeschwindigkeit v der Galaxien.

\(\displaystyle z = \frac{v}{c} \)

Edwin Hubble konnte 1929 nachweisen, dass diese Fluchtbewegung mit der Entfernung D der Galaxien zunimmt.  Es waren zwar nur 18 Galaxien, die Hubble untersuchte, doch mit wachsender Zahl hat sich dieses Ergebnis bestätigt. Dieser Zusammenhang ging als Hubble-Effekt in die Kosmologie ein und wird auch zur Entfernungsbestimmung benutzt.

\(\displaystyle v = H_0 D \)

Das Hubble-Gesetz zeigt einen linearen Zusammenhang zwischen Fluchtgeschwindigkeit v und der Distanz D mit einer Proportionalitätskonstante, der Hubble-Konstanten H0. Die Linearität hat jedoch nur im nahen Universum ihre Gültigkeit, nämlich bis zu einem maximalen Abstand von gut 400 Mpc oder z  kleiner als 0,1. Für weiter entfernte Objekte bricht die Linearität zusammen.

Bei größeren Geschwindigkeiten (d.h. relativ zur Lichtgeschwindigkeit) müssen zusätzlich die relativistischen Effekte berücksichtigt werden. Das erfolgt aber erst weiter unten durch in den Abschnitten “Robertson-Walker-Metrik” und die “Friedmann-Gleichung”.

Die Hubble-Konstante / Hubble-Parameter

Nach Edwin Hubble (1889-1953)  beschreibt die nach ihm benannte Hubble-Konstante, die gegenwärtige Expansionsgeschwindigkeit des Universums.

Messungen zu Beginn des 21. Jahrhunderts ergaben Werte zwischen \(68 \frac{km}{s \cdot Mpc}\) und \(74 \frac{km}{s \cdot Mpc}\) .

Aus der Wikipedia https://de.wikipedia.org/wiki/Hubble-Konstante können wir entnehmen:

Unter Verwendung von Daten des Spitzer-Weltraumteleskops, basierend auf Beobachtungen im 3,6-μm-Bereich (mittleres Infrarot) zur Neukalibrierung der Cepheiden-Distanzskala, erhielten die Wissenschaftler des Carnegie Hubble Programs neue, hochgenaue Werte für die Hubble-Konstante. Dadurch konnte dieser nun um einen Faktor 3 genauer bestimmt werden. Er beträgt (74,3 ± 2,1) km/(s·Mpc). Damit hat die Hubble-Konstante nur noch eine Unsicherheit von drei Prozent (Stand 16. August 2012).

\({\displaystyle H_{0}\approx (74{,}3\pm 2{,}1)\ {\frac {\mathrm {km} }{\mathrm {s\cdot Mpc} }}} \)

Die Hubble-Sphäre ist der um den Beobachter gedachte kugelfömige Teil des beobachtbaren Universums ausserhalb dessen sich Objekte aufgrund der Expansion des Universums mit Überlichtgeschwindigkeit entfernen.

Der “proper” Radius einer Hubble-Sphäre (genannt Hubble-Radius oder Hubble-Länge) beträgt: \(  \Large \frac{c}{H_0} \)

Minkowski  (Raum, Diagramm, Metrik)

Hermann Minkowski (1864-1909) war Mathematiker und lehrte an den Universitäten Bonn, Königsberg, Zürich und hatte schließlich einen Lehrstuhl in Göttingen. In Zürich war er einer der Lehrer von Albert Einstein.

Auf Minkowski geht die Idee zurück, die Welt (wie Lorenztranformation und Spezielle Relativitätstheorie) als einen nicht-euklidischen vierdimensionalen Raum zu verstehen. Wobei er mit  anschaulichen Bildern (grafischen Darstellungen) anstatt mit schwerer verständlichen Formeln arbeitete.

Zwei Begriffe kommen sofort bei “Minkowski” ins Gespräch:

  • Minkowski-Raum
  • Minkowski-Diagramm

Der Minkowski-Raum ist eine “größere Geschichte”: Ein vierdimensionaler Raum mit einer speziellen Metrik, denn in einem Raum möchte man ja Abstände zweier Punkte messen, Länge von Vektoren, Winkel und Flächen bestimmen.  Eine solche Metrik kann man beispielsweise durch ein Skalarprodukt von Vektoren definieren.
Eine einfache Definition der Metrik im Minkowski-Raum ist gegeben durch (“Linienelement”):

ds²  = c² dt² – (dx² + dy² + dz²)

Soetwas schreiben die Oberspezialisten gern als einen Tensor, auch “metrischer Tensor” genannt:  \( ds^2 = g_{\mu \nu} dx^{\mu} dx^{\nu}\) (bei einem Tensor wird “implizit” summiert.)

Ein Minkowski-Diagramm ist eine ganz einfache grafische Darstellung, nämlich ein rechtwinkliges zweidimensionales Koordinatensystem mit einer Zeitachse und einer Raumachse (also der dreidimensionale Raum auf eine Dimension vereinfacht) .
Beobachter, die sich mit konstanter Geschwindigkeit bewegen (Inertialsysteme) haben dann als sog. “Weltlinie” eine Gerade.

Weltlinie eines Photons

Wenn man auf der Ordinate nicht die Zeit selbst, sondern c*t aufträgt, wird die “Weltlinie” eines Photons die 45° Gerade.

Wenn man unser Universum als Minkowski-Raum verstehen wollte, mit einer durch das Linienelement

ds²  = c² dt² – (dx² + dy² + dz²)

definierten Metrik, wäre das ein “flacher” Raum, also nicht gekrümmt (so zu sagen ohne Gravitation).

In so einem Minkowski-Raum, also mit der Minkowski-Metrik, lässt sich die Spezielle Relativitätstheorie (SRT) sehr einfach grafisch darstellen.

Expandierendes Universum

In einem expandierenden Universum kann man eine Metrik definieren durch ein Linienelement:

ds²  = c² dt² – a²(t) (dx² + dy² + dz²)

Mit a(t) als sog. Expansionsfaktor, auch “Skalenfaktor” genannt.

Robertson-Walker-Metrik

Durch die Forderung nach Isotropie erhält man aus den Einsteinschen Feldgleichungen der Allgemeinen Relativitätstheorie (ART) das Robertson-Walker-Linienelement

\( {\displaystyle \mathrm {d} s^{2}=c^{2}\mathrm {d} t^{2}-a(t)^{2}R_{\mathrm {C} }^{2}\left({\frac {\mathrm {d} x^{2}}{1-k\ x^{2}}}+x^{2}\mathrm {d} \Omega ^{2}\right)\ ,} \)

wobei der Krümmungsparameter k = + 1 , 0 , − 1 ist und \( {\displaystyle x=r/R_{\mathrm {C} }}\) .

Friedmann Gleichung

Zur sog. Friedmann-Gleichung können wir der Wikipedia (https://de.wikipedia.org/wiki/Friedmann-Gleichung) folgendes entnehmen:
\( \displaystyle \frac{\dot a}{a}=H(t) \)

und

\( \displaystyle \frac{\dot a}{a}=H_{0}(\frac{\Omega_{m0}}{a^3}+(1-\Omega_{m0}))^{\frac{1}{2}} \)

Wobei hier die sog. Hubble-Konstante H, die ja nicht wirklich konstant ist, vorkommt. In neuerer Zeit wird statt “Hubble-Konstante” auch der Begriff “Hubble-Parameter” verwendet.

Omega M = Anteil an Materie (barionisch und dunkle)

Omega groß Lambda = Anteil an dunkler Energie

Omega rad = Anteul Strahlungsenergie

k = Krümmung

Link: https://www.spektrum.de/lexikon/astronomie/friedmann-weltmodell/136

Urknall: Geschichte des Universums

Notizen zum Vortrag im DESY am 6.2.2020

Siehe auch: Kosmische Hintergrundstrahlung

CMB = Cosmic Microwave Background Radiation, also die Hintergrundsrahlung

Heute messen wir eine Plancksche Schwarzkörperstrahlung von 2,7 K  isotrop

Entdeckt wurde die CMB zufällig (als Störstrahlung) von Wilson & Penzias bei den Bell Labs New Jersey. Sie erhielten den Nobelpreis dafür.

Gleichzeitig haben Astrophysiker im nahe gelegenen Princton das Big-Bang-Modell mit einem mathematischen Modell dargestellt. Dieses Modell sagte eine kosmische Hintergrundstrahlung voraus. Man musste so eine Strahlung nur noch praktisch nachweisen.

Am Anfang war demnach ein “Big Bang”. Das Universum bestand aus sehr heißem Plasma (1032 Kelvin) und kühlte dann aber ab.
Das Universum bestand aus Materie (Protonen und freien Elektronen) sowie aus Strahlung (Photonen).
Die Photonen konnten nicht herausfliegen, weil sie extrem oft mit den freien Elektronen kollidierten.

Solange die Temperatur schön heiß war, konnten die freien Elektronen nicht dauerhaft an die Protonen gebunden werden. Die Bindungsenergie eines Elektrons im Wasserstoffatom liegt bei 13,6 eV, was so ca. einer Temperatur von 3000 K entspricht. Erst bei einer Abkühlung auf ca. 3000 K konnten dann die freien Elektronen an Protonen gebunden werden und sich so neutrale Wasserstoffatome bilden. Man nennt dieses “Rekombination” (obwohl es ja keine “erneute Kombination” war – aber der Begriff ist historisch). Nun gab es nur noch wenige freie Elektronen und der Weg war frei für die Photonen das Plasma zu verlassen.

Damit gab es zum ersten Mal “Licht” im Universum. Modellrechnungen ergaben, das diese “Rekombination” so etwa 380000 Jahre nach dem Urknall geschah.

Genauere Messungen der CMB wurden später mit Erdsatelliten gemacht.

  • 1989-1993 COBE – Cosmic Background Explorer
  • 2001-2010 WMAP – Wilkinson Microwave (im Lagrangepunkt L2)
  • 2009-2013 ESA Planck-Mision (im Lagrangepunkt L2)

Der Satellit COBE hat die CMB bei verscheidenen Frequenzen gemessen und so sehr genau die Kurve eines Planckschen schwarzen Stralers erhalten. Die Temperatur dieses Schwarzen Strahlers (Mikrowellenhintergrund) beträgt 2,735 K

Noch genauere Messungen durch WMAP und Planck zeigten in verscheidenen Richtungen minimale Schwankungen dieser Temperatur.

CMB Temperatur Fluktuationen gemessen vom WMAP

Wenn man aus diesen minimalen Schwankungen (Frequenz bzw. Temperatur) die bekannten Bewegungen (Milchstraße, Sonne etc.) herausrechnet, bleiben relativ gleichmäßg verteilte kleinste Temperaturschwankungen übrig, von denen man das sog. “Leistungsspektrum” (Stärke der Schwankung in Abhängigkeit von der Winkelausdehnung) analysiert.

Die Astrophysiker haben ein mathematisches Modell entworfen, das die Entwicklung des Universums seit dem Urknall beschreibt. Mit Hilfe der Methode der kleinsten Quadrate kann man die Modellparameter, die die beste Passung ergeben bestimmen. Das ganze nennt sich “Lambda-CDM-Modell”, was auch als “Standardmodell der Kosmologie” bezeichnet wird.

Zu den Modellparametern dieses Standardmodells gehören:

  • Anteil der baryonischen Materie:  4,9%
  • Anteil der “dunklen” Materie:       26,8%
  • Anteil der “Dunklen Energie”:       68,3%
  • Hubblekonstante…

Das Alter des Universums ergibt sich zu 13,8 Millarden Jahren.

Stark vereinfachtes Modell

Dies stark vereinfachte Modell habe ich gefunden bei:  http://scienceblogs.de/hier-wohnen-drachen/2010/09/19/wie-gross-ist-das-beobachtbare-universum/

Nur eine Raumkoordinate: x und eine Zeitkoordinate: t

Messung der Zeit in Sekunden, Messung der Raumkoordinate in Lichtsekunden

Szenario 1:

Wir beobachten 7 Galaxien (n = 1, 2, …, 7), die sich vom Beobachter mit Fluchtgeschwindigkeit entfernen.

Anfangsbedingungen (zum Zeitpunkt t=0):

  • Entfernung vom Beobachter: \( x_n(0) = n \)
  • Fluchtgeschwindigkeit bezogen auf den Beobachter: \( \dot x_n(0) = \Large \frac{n}{4} \)
  • Wir haben also zum Zeitpunkt t=0 eine Hubble-Konstante von \(  H(0)= \Large \frac{\dot x(0)}{x(0)} = \large 0,25 \)

Differentialgleichung (Bewegungsgleichung): \( \dot x_n(t) = \Large \frac{n}{4} \)

Lösung: \( x_n(t) = \Large \frac{n}{4} t + n \)

Damit wäre der Hubble-Parameter in unserem “Vereinfachten Modell”:
\( H(t) = \Large \frac{\dot x}{x} = \frac{\Large \frac{n}{4}}{\Large \frac{n}{4} \cdot t + n} = \Large \frac{1}{t+4} \)

Raum-Zeit-Diagramm der 7 Galaxien

Szenario 2:

Zusätzlich zu Szenario 1 wird zum Zeitpunkt t=0 ein Lichtsignal von Galaxis 7 in Richtung des Beobachters gesendet.

Anfangsbedingungen (zum Zeitpunkt t=0):

  • Entfernung des Signals vom Beobachter: x(0) = 7
  • Geschwindigkeit des Signals in Bezug auf den Beobachter: v(0) = c – Fluchtgeschwindigkeit der Galaxie 7 also v(0) = 1 – (7/4) = – (3/4)

Bewegungsgleichung des Lichtsignals:

  • v(t) = c – Fluchtgeschwindigkeit (x,t)
  • \(  \dot x = 1 – \Large \frac{x}{t + 4}  \)

7 Galaxien und ein Lichtsignal

 

Astrofotografie: Einnordnen – Polar Alignment

Gehört zu: Astrofotografie, Montierung einjustieren
Siehe auch: Polar Alignment mit SharpCap Pro, Polar Alignment mit ASIair, Sigma Octantis, Autoguiding, AlignMaster, AstroTortilla
Benutzt: WordPress Plugin Latex

Polar Alignment – Aufgabenstellung

Eine parallaktische Montierung muss als erstes “eingenordet” (resp. “eingesüdet”) werden; d.h. die Stundenachse der Montierung muss genau parallel zur Erdachse ausgerichtet werden damit die Nachführung richtig funktioniert. Das ist dann besonders wichtig, wenn man seine Astrofotos länger belichten will (siehe: Langzeitbelichtung).

Wenn man seine Montierung nicht dauerhaft an einem Standort aufgestellt hat, sondern für jede Beobachtung das Aufstellen und die Einnordung erneut vornehmen muss (also mobil statt statonär) ,  kommt es sehr darauf an, wie schnell, bequem und genau man die Einnordung vornehmen kann.

Wenn man das Teleskop immer am gleichen Ort z.B. auf seiner Terrasse (markiert mit Nagellack) aufstellt, ist die Polhöhe automatisch richtig und das Azimut stimmt auch fast – nur kleine Korrekturen am Azimut sind zu erwarten. In dieser Situation ist nicht einmal eine freie Sicht auf den Polarstern erforderlich….

Vorher stelle ich die Stativbeine so ein, dass sich die Auflagefläche des Polblocks schön in der Waagerechten befindet. Dazu hilft eine Wasserwaage, die ich bei abmontiertem Polkopf auf die obere Stativplatte lege. Die Länge der Stativbeine stelle ich dann so fein ein, dass  die Wasserwaage genau horizontal anzeigt. Das Stativ ist dann “im Wasser”, wie manche sagen. Nun wird eine Drehen an der Polhöhe auch wirklich nur die Polhöhe verändern und nicht auch noch das Azimuth.

Damit ich bei der späteren genauen Nordausrichtung auch einen guten Spielraum für die Einstellung durch die beiden Azimuth-Schrauben habe, löse ich die beiden Azimuthschrauben maximal und fixiere sie dann ganz leicht symmetrisch in der Mitteposition. Etwas Gleitmittel zwischen Stativ-Oberplatte und Polkopf-Unterseite erleichtert später die feinen Drehungen im Azimuth.

Welche Auswirkungen hat eine ungenaue Polausrichtung?

Je nach dem, welche Art der Nachführung wir benutzen, kann eine Abweichung in der Polausrichtung unterschiedliche Effekte haben:

  • Nachführung nur in Rektaszension: Deklinations-Drift
  • Nachführung in Rektaszension und Deklination (z.B. Autoguiding): Bildfeldrotation

Dazu gibt Frank Barrett in http://celestialwonders.com/articles/polaralignment/ Formeln zur Berechnung.

Deklinationsdrift

Der canburytech Formalismus von Edward Simonson berechnet die MDR = Maximale Driftrate in Deklination pro Sekunde (Maximum Declination Drift Rate per second) als:

MDR = φ · 2π / (24 · 3600)     [in Bogensekunden pro Sekunde]

wobei

φ = Offset der Stundenachse vom Pol  [in Bogensekunden]

mit

φ = 1′ = 60″

ergibt sich

MDR = 0,004363″/sec = 0,262″/min

Wie gesagt, die Formeln stammen von:

Die maximale Driftrate (also bei Deklination = 0) ist also:

Alignment Error [‘] Driftrate [“/min]
1 0,262
2 0,524
3 0,785
4 1,047
5 1,309
6 1,571
7 1,833
8 2,094
9 2,356
10 2,618
30 7,853

Polar Alignment – Welche Genauigkeit ist erforderlich?

Je nachdem, was man eigentlich mit Montierung und Teleskop machen will, ist die erforderliche Genauigkeit beim Polar Alignment ganz unterschiedlich.

Auf der nördlichen Hemisphäre benutzt man ja gerne den Polarstern (Alpha UMi), um auf den Himmelpol auszurichten. Der Polarstern steht heute (2019) ca. 39 Bogenminuten vom Himmelspol entfernt. Durch die Präzesssion der Erdachse läuft der Himmelspol in 25800 Jahren in einem Radius von 23 Grad um den Pol der Ekliptik. Diese Bewegung macht also 20 Bogensekunden pro Jahr aus.

Bezüglich der erforderlichen Genauigkeit der Polausrichtung kann man unterscheiden:

  • Visuelle Beobachtungen: da mögen 30 Bogenminuten reichen
  • Unguided Imaging: da muss die Genauigkeit sehr hoch sein (z.B. 4 Bogenminuten, wenn man 2 Minuten belichten will und die Drift max. 2 Bogensekunden sein darf)
  • Guided Imaging: da kann die Genauigkeit kleiner sein (weil das Autoguiding fast alle Fehler kompensiert, aber: Bildfeldrotation)
Montierung Nachführung Folge Beobachtung Genauigkeit
Äquatorial R.A. Tracking Dec. Shift Visuell 30′
Äquatorial R.A. Tracking Dec. Shift Imaging 4′
Äquatorial Guiding Field Rotation Imaging kleinere Genauigkeit

Quelle 1: https://stargazerslounge.com/topic/217079-how-accurate-do-you-polar-align/

When guiding, as Mark says, in some areas of the sky (close to polaris), I find that polar alignment is much less critical. There is an equation which might be interesting for you. It indicates the accuracy required, depending on where you are looking in the sky:

E = (45000 x S x cosD) / (T x F x A)

\(  \Large E = \frac{45000 \cdot D \cdot \cos{(D)}}{T \cdot F \cdot A}  \)

Where :

  • E is the maximum allowable polar misalignment in arcseconds
  • S is the worst case length of star trails (in microns)
  • D is the declination of the target in degrees
  • T is the exposure time in minutes
  • F is the focal length in mm
  • A is the angle between the guide star and the target in degrees

Quelle 2:  Frank Barret

…the equation comes from a paper by Frank Barret: http://celestialwonders.com/articles/polaralignment/PolarAlignmentAccuracy.pdf.

Methoden zur Polausrichtung

Generell setzten wir hier eine parallaktische Montierung voraus.

In jedem Falle ist es hilfreich, zunächt die Monierung gut in die Waagerechte zu bringen (s.o.).
Je nach der erforderlichen Genauigkeit, kann man verschiedene Methoden zur Polausrichtung (Einnorden/Einsüden) einsetzen; wobei unterschiedliche Voraussetzungen gegeben sein müssen und unterschiedliche Hilfsmittel eingesetzt werden.

  • Grobe Ausrichtung mit Kompass und geografischer Breite
  • Ausrichtung nach den Himmelspolen
  • Ausrichtung mit “Star Offset”
  • Scheinern

Methode “Geografisch”

Die Polhöhe meiner parallaktischen Motierung muss auf die geografische Breite des Beobachtungsortes eingestellt werden. Wenn die Montierung dafür keine guten Skalen hat, ist z.B. ein elektronischer Neigungsmesser hilfreich.

Für die genaue Ausrichtung nach Norden (bzw. Süden) kann man einen Kompass benutzen.

Diese “geografische” Methode kann man schon am Tage verwenden und benötigt keine besonderen Hilfsmittel evtl. einen Neigungsmesser und einen Kompass z.B. also ein SmartPhone. Dieser Methode ist im Allgemeinen relativ ungenau.

Methode “Himmelspol”

Wenn die Polausrichtung genauer werden soll, verwendet man meist die Methode, den Himmelspol genau zu identifizieren und die Stundenachse der Montierung darauf auszurichten. Dazu ermittelt man die genaue Position des Himmelspols aus bekannten Sternen in der Umgebung des Himmelspols. Dazu muss die Sicht auf den Himmelspol frei sein und die Position der benutzen Sterne relativ zum (unsichtbaren) Himmelpol irgendwie ermittelt werden.

  • Polfernrohr mit Smartphone-App (z.B. PolarFinder) zur Ermittlung der Position
  • Polfernrohr mit Kochab-Methode (Hartwig Lüthen) zu Ermittlung der Position
  • QHY PoleMaster mit Drehen der Stundenachse und Mustererkennung zur Ermittlung der Posotion
  • SharpCap Pro mit Platesolving zur Ermittlung der Position

Diese Methoden sind für parallaktische Montierungen ohne Goto-Funktion anwendbar: entweder mit Polfernrohr oder mit zusätzlicher Astro-Kamera (QHY Polemaster, SharpCap Pro). Freie Sicht auf den Himmelspol ist erforderlich. Die Genauigkeit der Polausrichtung kann gute Werte erreichen.

Methode “Star Offset”

Aus den Abweichungen einer Sternposition durch ungenaue Polausrichtung (genannt Star Offset) kann man die erforderlichen Korrekturen in Azimut und Höhe der Stundenachse ausrechnen und so zu einer Einnordung ohne Sicht auf den Himmelspol kommen.

Dies wird Software-mäßig unterstützt beispielsweise durch:

Diese Methode benutzt zwei Sterne, deren äquatorialen Koordinaten bekannt sind. Die Differenzen in Rektaszension und Deklination sind damit gegeben. Die Montierung kann mit diesem Wissen von Sternposition 1 zu Sternposition 2 schwenken (per Goto). Ein Goto-Alignment ist dazu nicht erforderlich, da die Differenzen benutzt werden. Ein Positionsfehler bei Sternposition 2 (“Star Offset” genannt) ist damit allein auf eine ungenaue Polausrichtung zurückzuführen. Der Fehler in der Polausrichtung lässt sich durch Umrechnung vom äquatorialen Koordinatensystem ins azimutale Koordinatensystem leicht berechnen.

Die erfordeliche Korrektur durch manuelles Drehen an den Polhöhenschrauben und den Azimutschrauben soll das “Star Offset” (s.o.) auf Null bringen. Ggf. sind diese manuellen Korrekturen widerholt durchzuführen.

Link: https://www.semanticscholar.org/paper/Star-Offset-Positioning-for-Polar-Axis-Alignment-Barrett/0451b854e6a1ac924cd8176ccd7545553e652f59

Diese Methode ist für parallaktische Motierungen mit Goto-Funktion anwendbar. Man benötigt keine Kamera und auch keine freie Sicht auf den Himmelpol. Die Genauigkeit ist hervorragend. Software-Unterstüzung dieser Methode setzt typischerweise ASCOM voraus.

https://www.semanticscholar.org/paper/Star-Offset-Positioning-for-Polar-Axis-Alignment-Barrett/0451b854e6a1ac924cd8176ccd7545553e652f59

Methode “Scheinern”

Die klassische (=alte) Methode – zeitaufwendig aber sehr genau…

Man benötigt zwar keine freie Sicht auf den Himmelspol, aber freie Sicht auf den Himmelsäquator im Süden und im Westen oder Osten.

Polar Alignment – Welche Geräte setzen wir zum Polar Alignment ein?

Angenommen, wir haben eine parallaktische Montierung, die wir Einnorden wollen, so können wir unterschiedliche Hilfsmittel für das Einnorden einsetzen:

Fernrohr  (Optik) und Kamera/Okular

  • Das zu unserer Montierung gehörige Polfernrohr
  • Spezielle kleine Kamera (z.B. QHY PoleMaster)  & Spezielle Windows-Software & Windows-Computer
  • Guiding Scope & Spezielle Windows-Software (z.B. SharpCap)  & Windows-Computer
  • ASIair Computer

Software

  • Spezielle Windows-Software nur für diesen Zweck z.B. QHY PoleMaster-Software,
  • Windows-Software, die wir sowieso schon haben z.B. SharpCap-Software,…
  • PemPRO

Computer

  • ohne zusätzlichen Computer
  • mit Windows-Computer
  • mit propietären Computer (Rasbery?) z.B. ASIAir
  • mit Android-Tablet
  • mit iPad
Lösung zum Polar Alignment Optik Bildgebung Montage Software / Methode Computer ca. Preis Einsetzbar auf Montierungen
Polsucher Polsucher Polsucher keine kostenlose App (Android,…)

oder “Kochab-Methode”

Vorhandenes Smartphone keiner Optron SmartEQ Pro

HEQ5 Pro

Star Adventurer Mini

QHY PoleMaster Extra Objektiv Extra Kamera Montagefuß für die jeweilige Monierung Spezial-Software Windows-Computer 400,– iOptron SmartEQ Pro

HEQ5 Pro

Star Adventurer Mini

SharpCap Vorhandenes Guiding Scope Vorhandene Guiding-Kamera Sucherfuß für die Star Adventurer Mini SharpCap Pro Windows-Computer 40,– HEQ5 Pro

Star Adventurer Mini

ASIair Vorhandenes Guideing Scope Extra ASI-Kamera keine Spezial-Software Spezieller ASIair-Computer 400,–

Meinen QHY PoleMaster habe ich im Januar 2020 gebraucht verkauft. Ich benutze jetzt SharpCap Pro mit meinem vorhandenen GuidingScope.

Polar Alignment – Lösungsmöglichkeiten

Für das Einnorden (Einsüden) gibt es verschiedene Methoden. Dazu gehören:

Polar Alignment mit SharpCap Pro auf einem Windows-Computer

Die Software SharpCap Pro, die gerne zum Fotografieren mit Astro-Kameras verwendet wird, hat seit 2019 (kostenpflichtige Pro-Version 3.1) auch eine Funktion “Polar Alignment” die das vorhandene Guiding-Fernrohr verwendet und damit Platesolving macht. Ich habe mir mal die kostenpflichtige Version “Pro” geleistet, um diese neue Funktion auszuprobieren.

Einzelheiten hierzu habe ich in diesem separaten Artikel beschrieben.

Polar Alignment mit dem QHY PoleMaster auf einem Windows-Computer

Der QHY PoleMaster ist 2016 neu auf den Markt gekommen und ermöglicht sehr einfaches und sehr schnelles Einnorden, kostet allerdings so um die 325,– Euro.
QHY Polemaster besteht aus Hardware (eine kleine Mono-Kamera mit Objektiv) und spezieller Software für den Windows-Computer zum leichten Einnorden.

Zum QHY PoleMaster habe ich einen eigenen Artikel geschrieben.

Polar Alignment mit der Software “AlignMaster” auf einem Windows-Computer

Zur Software “AlignMaster” habe ich einen eigenen Artikel geschrieben.

AlignMaster ist eine Windows-Software, die mit Hilfe eines 2-Star-Alignments die Polauswichtung für ASCOM-Menuteirungen und LX200-kompatible erleichtet.

Polar Alignment mit DLSR Logger

Mit der Software DLSR Logger kann ohne freie Sicht auf den Himmelspol (Polaris) einfach anhand von mehreren Fotos auf eine sichtbare Himmelsgegend ein Polar Alignment vornehmen.

Ich habe dazu einen eigenen Artikel geschrieben.

Polar Alignment mit dem Polfernrohr auf iOptron SmartEQ Pro

Das ist im Handbuch der iOptron SmartEQ Pro beschrieben.

Polar Alignment mit dem Polfernrohr auf iOptron SkyTracker

Das ist im Handbuch des iOptron SkyTracker beschrieben.

Polar Alignment mit der Handbox der SmartEQ Pro

Die Handbox der SmartEQ Pro bietet eine Methode zur Einnordung, die ohne Sicht auf den Polarstern funktioniert (ähnlich der Software AlignMaster).

Mit der Handbox-Funktion “Polar Align” kann man ein Alignment machen, auch wenn der Polarstern nicht zu sehen ist…..

Polar Alignment mit “Scheinern” engl. “Drift Align”

Eine von Julius Scheiner beschriebene Methode, die in der Praxis ziemlich zeitintensiv ist.

Es gibt zahlreiche Software, die auf Basis der Scheiner-Formeln das Alignment schneller ermöglicht….

Z.B. EQalign:  http://eqalign.net/e_eqalign.html