Physik: Quantenmechanik – Wellenfunktion

Gehört zu: Physik
Siehe auch: Quantenphysik
Benutzt: Videos von Youtube

Quantenmechanik: Materiewellen / Wellenfunktion / Schrödinger-Gleichung

Materiewellen

Die Idee einer Wellenfunktion entstand aus dem berühmten Doppelspalt-Experiment und dem von Louis de Boglie (1892-1987) postulierten Materiewellen (Welle-Teilchen-Dualismus).

Die Ergebnisse des Doppelspalt-Experiments konnten dadurch erklärt werden, dass die Lichtteilchen (die Photonen) auch einen Wellencharakter haben. De Boglie hatte dann die kühne Idee, dass jedes Materieteilchen auch einen Wellencharakter haben muss;  z.B. auch Elektronen.

Aus der Planck-Formel:

\( E = h \nu \)

und der Einsteinschen Energie-Masse-Äquivalenz:

\( E = m c^2 \)

ergibt sich rein rechnerisch die berühmte De-Broglie-Wellenlänge eines Teilchens der Masse m mit einem Impuls von p bei einer Geschwindigkeit von c.:

\( \lambda = \frac{h}{p} \)

 

Die Wellenfunktion

In der klassichen Mechanik (Newton etc.), wird ein Teilchen durch Ort und Implus beschrieben mit seinem sog. “Zustand”. In der Quantenmechanik macht das die Wellenfunktion Ψ. Sehr allgemein gesagt: Eine Wellenfunktion beschreibt das Zustand eines Quantenmechanischen Teilchens. Was genau mit “Zustand” und “Wellenfunktion” gemeint ist, bleibt offen; man kann damit die Aufenthaltswahreinlichkeit von Teilchen berechnen (vorhersagen) und schließlich auch messen. Daher auch der Spruch “Shut up and calculate”, angeblich auf Richard Feynman (1918-1988) zurückgehen soll…

Der Wertebereich einer Wellenfunktion sind die Komplexen Zahlen. Der Definitionsbereich sind Ort und Zeit  Ψ(r,t).
Der Wert ist also eine Komplexe Zahl, veranschaulicht durch einen Vektor, der auch “Amplitude” genannt wird.

Für Komplexe Zahlen benutzt die Quantenmechanik gerne die sog. Exponential-Darstellung:

\(\displaystyle z ={r} \cdot e^{i  \cdot \phi} \)

Damit kann man sich die Komplexe Zahl gut als Vektor einer bestimmten Länge (r) mit einem Drehwinkel (Φ) vorstellen.

Eine interessante Eigenschaft von Wellenfunktionen ist, dass ein Zustand aus mehreren einfachen Zuständen zusammensetzen werden kann. Sind die Zustände mit “exklusiv oder” verbunden (z.B. alternative Wege), werden die Wellenfunktionen addiert (sog. Überlagerung, auch Superposition genannt), Sind die Zustände mit “und” verbunden (z.B. eine Sequenz), werden die Wellenfunktionen multipliziert.

Nach der sog. Kopenhagener Deutung (1927 Niels Bohr und Werner Heisenberg)  ist die Aufenthaltswahrscheinlichkeit eines Teilchens durch den Betrag der Wellenfunktion zum Quadrat gegeben (normiert auf 1 über alles). Ggf. wird also nach einer Superposition das Quadrat der Vektorlänge genommen…

Ein ganz einfaches Beispiel für Wellenfunktionen und Superposition ist die Teil-Reflektion.

 

Die Schrödinger Gleichung

Von Ernst Schroedinger (1887-1961) stammt die grundlegende Gleichung der Quantenmechanik. Sie beschreibt in Form einer partiellen Differentialgleichung die zeitliche und räumliche Veränderung des quantenmechanischen Zustands (der Wellenfunktion) eines nichtrelativistischen Systems:

\( i \cdot \hbar \cdot \dot{\Psi} = \hat{H}  \Psi  \)

Mit dem geheimnisvollen Hamilton-Operator \(\hat{H}\).

Hintergrund dieser Schödinger-Gleichung ist der Satz von der Erhaltung der Energie.

Abbildung 1: Eine schöne Einführung gibt das Youtube-Video von Alexander FufaeV (Youtube: https://youtu.be/SqQbsBOsaA8)

Potentielle Energie

In einem sog. “konservativen” Kraftfeld können wir eine Potentielle Energie (bzw. ein Potential) definieren.  Der Begriff konservativ bedeutet dabei, dass der Energieerhaltungssatz gilt. Die entlang eines Weges im Kaftfeld geleistete Arbeit ist unabhängig von Weg und nur vom Anfangs- und Endpunkt des Weges abhängig. So kann eine skalares Feld, das Potential, definiert werden.

De Broglie Wellenlänge

Gemäß des Welle-Teilchen-Dualismus kann ein Teilchen mit dem Impuls p auch als Welle (Materiewelle) der De-Broglie-Wellenlänge

\( \lambda = \frac{h}{p} \)

aufgefasst werden.

Der Quantenmechaniker verwendet statt der Wellenlänge gern die sog. Wellenzahl:

\( k = \frac{2 \pi}{\lambda} \)

und statt des originären Planck’schen Wirkungsquantums h, gerne das sog. reduzierte Wirkungsquantum:

\( \hbar = \frac{h}{2 \pi} \)

Damit können wir den Impuls also schreiben als:

\( p = \hbar k \)

Vereinfachung: Eindimensionale Schrödinger-Gleichung

Wenn wir bestimmte Vereinfachungen vornehmen, wird die Schrödinger-Gleichung auch einfacher:

  • Die Wellenfunktion möge in einfachen Fällen nicht von der Zeit, sondern nur vom Ort abhängen  ==> zeitunabhängige Schrödinger-Gleichung
  • Der Ort wird in einfachen Fällen nicht durch drei Raumkoordinaten (Ortsvektor r), sondern nur durch eine Dimension (x-Achse) beschrieben. ==> Eindimensionale Schrödinger-Gleichung

Als (vereinfachte) eindimensionale, zeitunabhängige Schödinger-Gleichung haben wir:

\( W \Psi = -\frac{\hbar^2}{2 m} \frac{d^2 \Psi}{dx^2} + W_{pot} \Psi\)

Die dreidimensionale Schrödinger-Gleichung

Mit dreidimesionalen Ortskoordinaten ergibt sich:

\( W \Psi = -\frac{\hbar^2}{2 m} \left( \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} \right) + W_{pot} \Psi\)

Zur kompakteren Schreibweise wird der Nabla-Operator (\( \nabla^2 \) wird auch Laplace-Operator genannt) eingeführt:

\( W \Psi = -\frac{\hbar^2}{2 m}   \nabla^2 \Psi   + W_{pot} \Psi\)

Noch kompakter kann man es mit dem sog. Hamilton-Operator schreiben:

\( W \Psi = -\frac{\hbar^2}{2 m}   \left( \nabla^2 + W_{pot} \right) \Psi = \hat{H} \Psi  \)

mit dem Hamilton-Operator:

\( \hat{H} = \nabla^2 + W_{pot} \)

Die Diriac-Notation

Um mit dieser Wellenfunktion etwas “netter” umzugehen hat Jean Paul Diriac (1902-1984) die nach ihm benannte Diriac-Notation erfunden, bei der man sogenannte Bra-Vektoren und Ket-Vektoren hat; zusammen gibt das das Wort “Braket”.

Man schreibt das so:

  • Bra-Vektor:  <v |
  • Ket-Vektor: | w>
  • zusammen geschrieben:  <v | w>