Physik: Quantenmechanik – Materiewellen

Gehört zu: Physik
Siehe auch: Wellenfunktion, Quantenphysik , Quantenfeldtheorie, Potential
Benutzt: Videos von Youtube

Stand: 19.05.2022

Quantenmechanik: Materiewellen

In einem sog. “konservativen” Kraftfeld \( \vec{F}(r) \) können wir eine Potentielle Energie (bzw. ein Potential) definieren.  Der Begriff konservativ bedeutet dabei, dass der Energieerhaltungssatz gilt. Die entlang eines Weges im Kaftfeld geleistete Arbeit ist unabhängig von Weg und nur vom Anfangs- und Endpunkt des Weges abhängig. So kann eine skalares Feld, das Potential, definiert werden.

Ist das betrachtete Kraftfeld das Gravitationsfeld einer ruhenden Masse M, so ist das “Gravitationspotential” einfach:

\(  \Large V(r) = \space – G  \frac{M}{r}  \\ \)

Ist das betrachtete Kraftfeld das Elektrische Feld einer ruhenden elektrischen Ladung Q, so ist das “Coulomb-Potential” einfach:

\(  \Large V(r) = \space – \frac{1}{4\pi\epsilon_0}\frac{Q}{r}  \\ \)

Und umgekehrt ist das Kraftfeld \( \vec{F}(r) \) einfach der Gradient des Potentials. Also:

\( \vec{F}(r) = \enspace – k \enspace \nabla V(r) \)   (wobei k die Ladung bzw. Masse ist)

Materiewellen

Die Idee von Materiewellen entstand aus dem berühmten Doppelspalt-Experiment und dem von Louis de Boglie (1892-1987) postulierten Welle-Teilchen-Dualismus.

Die Ergebnisse des Doppelspalt-Experiments konnten dadurch erklärt werden, dass die Lichtteilchen (die Photonen) auch einen Wellencharakter haben. De Boglie hatte dann die kühne Idee, dass jedes Materieteilchen auch einen Wellencharakter haben muss;  z.B. auch Elektronen.

Aus der Planck-Formel:

\( E = h \nu \)

und der Einsteinschen Energie-Masse-Äquivalenz:

\( E = m c^2 \)

ergibt sich rein rechnerisch die berühmte De-Broglie-Wellenlänge eines Teilchens der Masse m bzw. einem Impuls von p bei einer Geschwindigkeit von c.:

\( \lambda = \frac{h}{p} \)

Einstein: Energie-Masse-Äquivalenz

Genaugenommen ist die aus der speziellen Relativitätstheorie bekannte Formel:

\( E = m c^2 \)

nur eine Näherung. Richtg müsste es heissen:

\( E^2 = m^2 c^4 + c^2 p^2 \)

So erfordert es die Einstein’sche Spezielle Relativitätstheorie.

Die Lösungen sind periodische ebene Wellen.

In der Quantenfeldtheorie (QFT). muss dann jedes Elementarteilchen diese Gleichung erfüllen; denn in der QFT berückrichtigen wir ja erstmals die Spezielle Reletivitätstheorie (was wir in der Quantenmechanik ja nicht taten.).

De Broglie Wellenlänge

Gemäß des Welle-Teilchen-Dualismus kann ein Teilchen mit dem Impuls p auch als Welle (Materiewelle) der De-Broglie-Wellenlänge

\( \lambda = \frac{h}{p} \)

aufgefasst werden.

Der Quantenmechaniker verwendet statt der Wellenlänge gern die sog. Wellenzahl:

\( k = \frac{2 \pi}{\lambda} \)

und statt des originären Planck’schen Wirkungsquantums h, gerne das sog. reduzierte Wirkungsquantum:

\( \hbar = \frac{h}{2 \pi} \)

Damit können wir den Impuls also schreiben als:

\( p = \hbar k \)

Die Wellenfunktion

Wenn demnach Materieteilchen auch Wellencharakter haben können, fragt man sich natürlich nach einer “klassischen” Wellenfunktion als Lösung einer Wellengleichung. Ernst Schroedinger fand später seine berühmte Schroedinger-Gleichung.