Astronomie: Okularauszug (OAZ)

Gehört zu: Astronomie, Geräteliste
Siehe auch: Teleskop, Motorfokusser, Fokussieren

Okularauszüge

Mit einem Okularauszug (“OAZ”) verstellt man die Entfernung vom Objektiv (im Tubus) zum Okular bzw. zum Sensor der Kamera. Das heisst also, man stellt die Schärfe des Bildes ein – mit anderen Worten man Fokussiert. Daher müssen die Einstellwege in einem Bereich liegen, sodaß man “in den Fokus” kommen kann. Wenn Fokus weiter draussen liegt, kann man Verlängerungshülsen nehmen, wenn der Fokus weiter innen liegt, hat man Pech gehabt.

Es gibt unterschiedliche OAZ-Größen: ich habe 2 Zoll; d.h. das Auszugsrohr ist 2 Zoll im Durmesser. Ich kann da also z.B. 2-Zoll-Okulare hineinstecken…

Der Antrieb erfolgt durch eine einfaches Einstellrad und optional durch ein zusätzliches Rad mit einer 1:10 Untersetzung –  “Dual Speed” wird dafür manchmal gesagt.

Bei Okularauszügen unterscheidet man nach Antriebsart:

  • Zahnstangenantrieb = “Rack and Pinion”
  • Crayford = “Friction”

Mein neuer Okularauszug MonorailR96

Da ich mit meiner vorhandenen Gerätschaft (OAZ TSFOCR2M und Pegasus Astro Motor Fokusser) Schwierigkeiten hatte mit meiner ASI294MC Pro sauber in den Fokus zu kommen, habe ich mich nach Abhilfe umgeschaut.

Mein erster Gedanke war, einen besseren OAZ zu nehmen; Teleskop Austria hat das etwas ganz feines. Aber in der Diskussion mit Tommy Nawratil erkannte ich auf einmal, dass es keinen Sinn macht, einen schlechten OAZ mit einem Super-MFOC zu verbinden. Meine Erkentnis war: erst ein Mal ein ordentlicher OAZ und mal ausprobieren, wie gut der wirklich ist. Danach vielleicht einen MFOC dazu. Meinen Pegasus Astro Motor Focuser habe ich abgebaut.

Heute (29.5.2020) kam von TS der neue OAZ: MonoraolR96. Der soll viel stabiler sein. Er hat einen 96mm-Anschuss – passend für meinen Orion ED80/600, ist rotierbar und er ist 3,5 mm kürzer als der alte OAZ. Das sollte doch ein erster Schritt zur Verbesserung sein.

Bildbeschreibung:  Links der kürzere MonorailR96, rechts der alte TSFOCR2M

OAZ_20200529

Mein alter Okularauszug TSFOCR2M

Mein OAZ war Bestandteil des Orion-Teleskops ED 80/600, das ich gebraucht gekauft hatte. Den OAZ hatte der Vorbesitzer extra von Teleskop-Service gekauft.

Der OAZ hat dort die Artikelnummer TSFOCR2M. Link zu diesem OAZ: https://www.teleskop-express.de/shop/product_info.php/info/p775_2–Crayford-Auszug-fuer-Refraktoren—1-10-Micro-Untersetzung.html

Es ist also ein 2-Zoll-Crayford mit 1:10 Micro-Untersetzung.

Der Anschluss zum Teleskop ist eine 96mm Flansch.

Alternativen zu meinem OAZ

TS: MonorailR96

Link: https://www.teleskop-express.de/shop/product_info.php/info/p3945_MONORAIL-2–Refraktor-Auszug-u-a–f–Skywatcher—Anschluss-96-mm.html

Manuell oder motorisch

Man kann einen Okularauszug manuell betätigen. Dann kann man durch Hinein- und Herausdrehen sehr einfach herausfinden, ob man überhaupt in den Fokus hinein kommt.

Eine motorische Betätigung des OAZ hat Vorteile:

  • Man vermeidet Erschütterungen, die bei manueller Fokussierung unvermeidbar sind
  • Man kann das Fokussieren auch REMOTE über eine ASCOM-Schnittstelle und geeignete Software auf dem Laptop vornahmen

Ich habe mir deswegen eine  Motor Fokusser, den Pegasus Astro XYZ zugelegt.

 

 

Computer: Virtual Machine mit Ubuntu MATE und INDI

Wir wollen eine Virtuelle Maschine für die Astronomie einrichten.

Wir wollen dabei nicht mit VMware arbeiten, sondern Oracle VM VirtualBox verwenden.

Wenn alles in der Vitual Machine funktioniert, könnten wir den Schritt auf einen Raspberry Pi wagen.

Das sind meine Schritte:

Download von Ubuntu MATE

Als ISO-Datei Version 20.04 für AMD64

Link:    https://www.chip.de/downloads/Ubuntu-MATE-64-Bit_124049013.html

Anlegen einer neuen VM unter Virtual Box

Name: Ubuntu MATE 20,xy

Ordner: D.\Data\VirtualMachines

Version: Linux (64-bit)

Speichergröße:  4096 MB,  2 Prozessoren

Festlatte erzeugen: 16 GB

Massenspeicher: IDE  –> die ISO-Datei

Netzwerk: Netzwerkbrücke

USB 2.0: Geräte ???

Installieren Ubuntu MATE

Installieren von der IDE CD mit der ISO-Datei

Sprache: englisch

Minimale Installation mit Updates

User = dkracht

Passwort = lotusnotes

Login = automatisch

Prüfen der Ubuntu-Installation:  Shutdown und erneuter Start

Konfigurieren/Einrichten

Menu -> Preferences -> Displays: 1024 x 768   (war zu klein)

Menu -> Preferences -> Keyboard: Deutsch (wegen der Sonderzeichen) – die Schaltfläche “OK” war nur auf dem vergrößerten Display zu sehen…

INDI-Server installieren

Im Terminal geben wir ein:

sudo apt-add-repository ppa:mutlaqja/ppa
sudo apt-get update
sudo apt-get install indi-full gsc

Der INDI-Server sollte sich dann befinden in: /usr/bin/indiserver

Man könnte den INDI-Server starten mit:

cd /usr/bin
./indiserver indi_asi_ccd       (mindestens ein INDI-Treiber muss angegeben sein…)

KStars installieren

Im Terminal geben wir ein:

sudo apt-get install kstars-bleeding

Das Programm KStars befindet sich danach im Menü unter “Education”

Starten des INDI-Servers

Der INDI-Server kann nicht einfach so (z.B. automatisch) gestartet werden, denn es muss immer mindestens ein INDI-Driver angegeben werden, der letzlich das entsprechende angeschlossene INDI-Gerät erfordert.  Deshalb ist das Arbeiten mit einem INDI-Web-Manager sinnvoll, der dann immer laufen kann und mit dem man den INDI-Server konfigurieren und starten kann.

Aber so zum Probieren ist der INDI-Starter ganz nett:

Link: https://sourceforge.net/projects/indistarter

Nach dem Downloaden der Datei “indistarter_2.3.0-159_amd64.deb” wird diese mit dem GDebi Package Installer installiert.

Der INDI-Web-Server

So wie bereits im Artikel “Raspberry Pi” beschrieben, ist der INDI-Web-Manager das Mittel der Wahl, weil er (als “Manager”) ja gerne ständig laufen kann und damit dann auch remote der INDI-Server gestartet werden kann.

Installieren: INDI Web Manager

Das nachinstallieren des INDI Web Managers unter Ubuntu MATE soll so geschehen:

  1. Terminal öffnen
  2. Eingeben: “sudo apt-get install python3-pip”
  3. Eingeben des sudo-Passworts: “raspberry”
  4. Eingeben “sudo -H pip3 install indiweb”

Dadurch wird der INDI-Web-Manager installiert in den Ordner: /usr/local/bin

Wir können den INDI-Web-Manager starten durch:

./indi-web&

und testweise aufrufen mit dem Web-Browser Mozilla Firefox unter localhost:8624

Automatisch Starten: INDI Web Manager

Im Terminal-Fenster rufen wir den Editor “pluma” auf und erstellen eine kleine Datei:

Eingabe: “sudo pluma /etc/systemd/system/indiwebmanager.service”

Inhalt der Datei:

[UNIT]
Description=INDI Web Manager
After=multi-user.target

[Service]
Type=Idle
User=pi             (oder auch: User=astroberry oder =dkracht)
ExecStart=/usr/local/bin/indi-web -v
Restart=always
RestartSec=5

[Install]
WantedBy=multi-user.target

Speichern der Datei.

Und dann, um das ganze automatisch starten zu lassen:

Eingabe: sudo systemctl enable indiwebmanager.service

reboot

Testen, ob INDI-Web-Manager läuft:

  • Mozilla Firefox:   localhost:8624

Testen, ob der INDI-Web-Manager auch remote ansprechbar ist:

  • Feststellen, welches die IP-Adresse der Virtuellen Maschine ist mit “ifconfig”
  • Ggf.  nachinstallieren mit:  sudo apt install net-tools
  • Auf dem Remote-Computer: Firefox 192.168.1.156:8624

Statt der IP-Nummer kann man auch den Hostnamen verwenden: dkracht-VirtualBox. Da der etwas unhandlich ist, habe ich ihn auf “astro” geändert:

hostnamectl set-hostname astro

Nun kann ich den INDI-Web-Manager mit Firefox einfach so aufrufen:  astro:8624

PHD2 Guiding

Wenn wir mit PHP2 Guiding autoguiden wollen, so muss das auf dem Ubuntu-Compter installiert sein und ständig laufen.

Das hatten im Artikel “RaspberryPi” schon so beschrieben:

PHD2 Guiding installieren

Ist auf dem AstroBerry standardmäßig vorhanden.

PHD2 Guiding automatisch starten

Auch PHD soll beim Hochfahren des Raspberry automatisch gestartet werden.

Menüleiste: System -> Einstellungen -> Persönlich -> Startprogramme   (System – Preferences  – Personal – Startup Applications)

Dann öffnet sich ein Fenster “Startprogrammeinstellungen”; dort auf die Schaltfläche “Hinzufügen” klicken…

Dann öffnet sich ein Fenster “Startprogramm hinzufügen”; dort eingeben:

  • Name: PHD2
  • Befehl: phd2     (klein geschieben)
  • Schaltfläche “Hinzufügen”

Schaltfläche “Schließen”

Im Terminalfenster dann eingeben: “reboot”

Auf dem Windws-Computer wieder mit dem WLAN des Rasperry verbinden und den VNC-Client (VNC Viewer) aufrufen.

Wenn der Ubuntu Desktop gekommen ist, sollte gleich das Fenster des PHD2 Guiding aufgehen….

xyz

 

Astrofotografie: Wie mache ich Flat Frames?

Gehört zu: Bildbearbeitung
Siehe auch: Problme lösen mit Stacking

Überblick: Astrofotos kalibrieren

Wir machen neben den Nutz-Fotos (den sog. Light Frames) zur Korrektur (zum Kalibrieren) noch folgende zusätzlichen “Frames”:

  • Dark Frames
  • Light Frames
  • Bias Frames (manchmal auch Offset Frames genannt)

Eine Stacking-Software, wie z.B. Deep Sky Stacker, erarbeitet diese Frame-Typen vollautomatisch zu einem Summenbild.

Die prinzipielle Vorgehenweise ist wie folgt:

  • Die Darks werden von den Lights abgezogen.
  • Da diese Darks bereits das Bias enthalten, ist damit auch schon das Bias vom Light abgezogen.
  • Es bleibt das Flat. Bevor durch das Flat dividiert wird, muss also noch aus dem Flat aus Bias abgezogen werden.

Kalibrieren mit Flat Frames

Flat Frames sollen theortisch ein gleichmäßig weisses Feld zeigen, Abweichungen von der Gleichmäßigkeit können sein:

  • Randverdunkelung (sog. Vignettierung)
  • Schatten von Staubpartikeln (sog. Donuts)
  • Helligkeitsstrahlen durch Wärme in der Kamera in Sensornähe (sog. Ampglow)

Wenn das Bild einen nicht ganz gleichmäßigen Hintergrund hat, wird das beim Stretchen schnell zu einem Problem. Also brauche ich Flats, wenn ich ein Bild stark stretchen will z.B. bei einem feinen Nebel…

Ich versuche mich erst seit neuester Zeit mit Flat Frames (T-Shirt-Methode und Flat-Frame-Folie). Manchmal waren die Ergenisse richtig gut, manchmal hatte ich eine hässliche Überkorrektur. Deswegen beschäftige ich mich jetzt etwas detaillierter mit dem Thema “Flats”.

Wie mache ich Flat Frames?

Teleskop und Kamera genauso wie bei der Aufnahme der Light Frames – also auch ggf. mit der Taukappe…

Die ISO-Einstellung bzw. die Gain-Einstellung sollte bei den Flats identisch sein zu den Lights. Wenn man die Flats mit anderen ISO-/Gain-Einstellungen machen sollte, benötigt man zusätzlich DarkFlats mit dieser anderen ISO/Gail-Einstzellung.

Belichtungszeit (und Gain bzw. ISO) so daß nichts soll “ausgebrannt” ist und die kleinen Helligkeitsunterschiede im Bild gut sichtbar sind.

Vom “Ausbrennen” spricht man, wenn bei einem Pixel die sog. “Full Well Capacity” (in Anzahl Elektronen) erreicht ist; d.h. zusätzliche Photonen können keine zusätzlichen Elektronen in diesem Pixel erzeugen und damit auch kein zusätzliches Signal (also ADUs) bewirken.

Experten empfehlen, so zu belichten, dass im Bild die hellsten Bereiche nur die Hälfte des maximal möglichen Wertes erreichen. Also die Hälfte der “Full Well Capacity”. Einfach messen können wir aber nur den ADU-Wert. Der Zusammenhang zwischen ADU-Wert und Elektronen-Anzahl ist die sog. Quanten-Effizienz, die in Prozent angibt, aus wieviel ankommenden Licht-Quanten (Photonen) beim Auslesen ein Elektron wird.

Wichtig ist, dass jeder Farbkanal für sich genommen (R-G-B) im Histogramm weder links und rechts angeschnitten wird.

Der Helligkeitswert eines Pixels im Bild wird ja in sog. ADU (Analog Digital Units) gemessen. Je nach der Bit-Tiefe des  ADC (Analog-Digital-Converter) hätten wir unterschiedliche Maximalwerte:

Bit-Tiefe Maximaler ADU-Wert Halbes Maximum
16 65536 32768
14 16384 8192
12 4096 2048
8 256 128

Flat Frames: Mono oder One Shot Color (“OSC”)?

Wenn man mit einer Mono-Kamera und Rot-Grün-Blau-Filtern arbeitet, muss man für jede Farbe extra ein Flat machen – sagen die Experten.

Ich habe “nur” OSC (= One Shot Colour), da sieht das anders aus. Ich habe ich ja immer diese Bayer-Matrix vor dem Sensor und kann aus jeder Aufnahme durch de-bayern ein Farbfoto gewinnen.

Die ganze Kalibierung soll aber immer mit den noch nicht de-bayerten Original-Fotos geschehen – sagen einige Experten…

T-Shirt-Methode

Am nächsten Tage das T-Shirt doppelt oder vierfach über das Objektiv bzw. die Taukappe.

Das wird meistens zu hell

Flat-Field-Box (EL-Leuchtfolie)

EL-Leuchtfolie von Gerd Neumann vor dem Objektiv. (T-Shirt wird meist zu hell.)

Dafür benötigt man eine gute Spannungsversorgung (bei mir 12V) und die Hellikeit der Folie sollte dimmbar sein…

Meine Zwo ASI294MC Pro

Meine Kamera Zwo ASI294MC Pro hat folgende relevante Daten:

  • Bit-Tiefe: 14 bit
  • Quanteneffizienz: 75% (bei 530 nm)
  • Full Well Capacity: 63700e

Interessante Ratschläge finde ich auch bei:

Flats und Software

Meine Astro-Aufnahme-Software unterstützt das Aufnahmen von Flats in unterschiedlicher Weise:

Flats mit SharpCap

In SharpCap muss man eine Kamera connecten und dann in der Menüleiste auf “Capture” und “Capture Flats…” klicken.

Dann stellen wir rechts in SharpCap Exposure und Gain so ein, dass im Bild ein wenig zu sehen ist.

Mit Menüleiste “Tools” und “Histogram” schalten wir noch das Histogramm dazu…

SharpCap-Flats-02

Da bin ich also mit dem Mittelwert bei 31805.6 ADU, was so ungefähr den Empfehlungen entspricht. Manche Experten halten das schon zu hell und meinen 28000 oder 25000 ADU wären besser. Die Software SharpCap merkert aber, wenn auch nur ein kleines bisschen unter 20% sinkt.

Astrofotografie: SiriL

Gehört zu: Astrofotografie, Stacking
Siehe auch: Deep Sky Stacker

Astrofotografie mit SiriL

SiriL ist eine kostenlose Software mit dem Schwerpunkt Stacking, kann aber noch einiges anderes mehr…

Aufmerksam geworden bin ich auf SiriL durch das unten angegebene YouTube-Video von Frank Sackenheim.

Als Alternative zum traditionellen Deep Sky Stacker ist das modernere SiriL vielleicht ganz interessant.

Software Download: https://www.siril.org/download/#Windows

Ein Youtube-Tutorial von Frank Sackenheim: https://www.youtube.com/watch?v=qMD2QQUtxYs

Vorteile von SiriL

  • kostenlos
  • Für Windows und Linux
  • Stacking mit vielen manuellen Einflussmöglichkeiten, aber auch “vollautomatisch” per Skript
  • Nach dem Stacken: Bildnachbearbeitung: Zuschneiden
  • Nach dem Stacken: Bildnachbearbeitung: Background Extraction
  • Nach dem Stacken: Bildnachbearbeitung: Green Noise Reduction
  • Nach dem Stacken: Bildnachbearbeitung: Color Calibration (auch photometrisch)
  • Nach dem Stacken: Bildnachbearbeitung: Color Saturation
  • Nach dem Stacken: Bildnachbearbeitung: Histogram Transformation

Erste Schritte mit SiriL

Einstellen des “Themes”: Edit -> Einstellungen -> Verschiedenes -> Aussehen: Dort können wir z.B. das “Dark Theme” auswählen.

Einstellen des Arbeits-Ordners (Arbeitsverzeichnis).  Wenn man später mit Scripts arbeiten will, müssen dort die Unter-Ordner: Biases, Lights, Darks, Flats angelegt sein

Generell geschieht das Bearbeiten unserer Bilder päckchenweise. Diese “Päckchen” heißen bei SiriL “Sequences” und müssen einen Sequence-Namen bekommen. Als erstes müssen in SiriL unsere Bild-Dateien in das FITS-Format umgewandelt werden.

Beispiel Nummer 1

Damit ich selber mal lerne, wie das mit dieser für mich neuen Software funktioniert, wende ich das was Frank in seinem Tutorial zeigt, parallel auf einen eigenen Fall an. Ich habe gerade kürzlich eine Aufnahme mit 20 Lights und 10 Darks (keine Flats und keine Biases) gemacht.

Dark Frames umwandeln

Zuerst müssen die Dark-Frames geladen und umgewandelt werden und einen Sequenz-Namen bekommen. Als Sequenz-Namen nehmen wir “Darks”.

Schaltfläche: “Umwandeln”

Die Ergebnisse einer solchen “Umwandlung” (auch “Konvertieren” genannt) werden oben im Arbeitsordner abgelegt. Zum Beispiel werden meine Darks im Arbeitsordner unter den Dateinamen  Darks_00001.fit, Darks_00002.fit etc.  abgelegt (wobei “Darks” der Sequenzname war).

Master Dark

Ich mache dann aus diesen Darks ein sog. Master-Dark.
Das geht über den Reiter “Stacking” mit folgenden Einstellungen:

  • Stacking-Methode: Median
  • Normalisierung: keine

Schaltfläche: “Starte Stacking”

Das Ergebnis ist die Datei Darks_stacked.fit im Arbeitsordner.

Light Frames umwandeln

Dann müssen die Light-Frames geladen und umgewandelt werden und einen Sequenz-Namen bekommen. Als Sequenz-Namen nehmen wir “Lights”

Schaltfläche: “Umwandeln”

Die “umgewandeten” Lights stehen nun im Arbeitsordner unter den Dateinamen Lights_00001.fit, Lights_00002.fit,…

Master Dark von den Light Frames abziehen

Nun folgt das “Pre Processing” der Lights: Es wird das Master Dark abgezogen, wir haben keine Flats und auch keine Offsets/Biases…

Reiter “Pre Processing”: Hier auswählen ob Master Dark, Master Flat, Offset  verwendet werden sollen.

Schaltfläche: “Starte Pre-Processing”

Die pre-prozessierten Lights stehen nun im Arbeitsordner unter den Dateinamen: pp_Lights_00001.fit, pp_Lights_00002.fit,…

De-Bayering der Light Frames

Das Debayering darf nicht zu früh im Workflow erfolgen. Unmittelbar vor dem Registrieren ist gut.
Dann folgt das “Debayering“der Lights:

  • Laden der Dateien: pp_Lights_00001-fit, pp_Lights_00002.fit,…,
  • Sequenz-Namen vergeben. Als Sequenz-Namen nehmen wir “db_pp_Lights”
  • Häckchen bei Debayering setzen,
  • Schaltfläche “Umwandeln” klicken.

Vorher sollten wir noch einen Blick auf die Einstellungen für das De-Bayering werfen…
Die Farb-Bilder stehen nun im Arbeitsordner unter den Dateinamen: db_pp_Lights_00001.fit, db_pp_Lights_00002.fit,…

Registrieren der Light Frames

Im Reiter “Registrieren” stellen wir ein:

  • Registrierungsmethode: “Allgemeine Sternausrichtung”
  • Registrierungs-Layer: Grün
  • Algorithmus: bikubisch

Schaltfläche:   “Führe Registrierung aus”

Die registrierten Bilder stehen nun im Arbeitsordner unter den Dateinamen: r_db_pp_Lights_00001.fit, r_db_pp_Lights_00002.fit,…

Stacken der Light Frames

Die registrieten Light Frames werden nun “gestapelt” englisch: stacked mit folgenden Einstellungen:

  • Stacking-Methode: Durchschnittswert-Stacking mit Ausschleusung
  • Normalisierung: Additiv mit Skalierung
  • Ausschleusung: Wisorized Sigma Clipping

Schaltfläche: “Starte Stacking”

Ergebnisdatei im Arbeitsordner: r_db_pp_Lights_stacked.fit

Bildnachbearbeitung: Zuschneiden

MIt der Maus auf dem Graubild ein Rechteck ziehen (wie Markieren), dann rechte Maustaste “Zuschneiden”

Bildnachbearbeitung: HIntergrund-Extraktion

Menüleiste -> Bildbearbeitung -> Hintergrund-Extraktion

Bildnachbearbeitung: Farb-Kalibrierung

Menüleiste -> Bildbearbeitung -> Farb-Kalibrierung -> Photometrische Farb-Kalibrierung

Bildnachbearbeitung: Grünrauschen entfernen

Menüleiste -> Bildbearbeitung -> Grün-Rauschen entfernen

Bildnachbearbeitung: Farbsättigung anheben

Menüleiste -> Bildbearbeitung -> Farbsättigung…

Bildnachbearbeitung: Histogramm-Transformation

Menüleiste -> Bildbearbeitung -> Histogramm Transformation

Bildnachbearbeitung: Speichern

Menüleiste -> Datei -> Speichern als…

Astronomie: Teilchenphysik

Gehört zu: Physik
Siehe auch: Quantenphysik, SVG, Kosmologie
Benötigt: WordPress Plugin Google Drive Embedder

Teilchenphysik

In der Teilchenphysik unterscheidet man Elementarteilchen und zusammengesetzte Teilchen. Wobei es sich im Laufe der Jahrhunderte immer etwas geändert hat, was als “elementar” angesehen wurde.

Die Teilchenphysik wurde von Murray Gell-Mann (1929-2019) sehr befruchtet. Er gilt als Entdecker der Quarks und schaffte Ordnung bei den Elementarteilchen.

Im Jahr 1969 wurde Gell-Mann im Alter von 40 Jahren für seine „Beiträge und Entdeckungen zur Ordnung der Elementarteilchen und ihrer Wechselwirkungen“ mit dem Nobelpreis für Physik ausgezeichnet.
Das heutige (2020) Verständnis dieser Elementarteilchen wird zusammenfassend dargestellt im sog. “Standardmodell”:

Standardmodell der Teilchenphysik

Direkt aus der Wikipedia:

Insert from URL

Symbole für Teilchen

Teilchen Symbol Bemerkungen
Photon γ Austauschteilchen der Elektromagnetischen Kraft
Gluon g Austauschteilchen der Starken Kernkraft (Farbladungen)
W-Boson W Austauschteilchen der Schwachen Kernkraft
Z-Boson Z Austauschteilchen der Schwachen Kernkraft
Up-Quark u
Down-Quark d
Charme-Quark c
Strange-Quark s
Top-Quark t
Bottom-Quark b
Elektron e
Myon μ schwereres Elektron
Tauon τ noch schwereres Elektron
Neutrino νe Elektron-Neutrino
μ-Neutrino νμ μ-Neutrino
τ-Neutrino ντ τ-Neutrino

Statt “Kraft” sagen wir auch gerne “Wechselwirkung” – also z.B. “Starke Wechselwirkung”

Anti-Teilchen

Zu jedem Teilchen kann es auch ein Anti-Teilchen geben. Anti-Teilchen werden im Allgemeinen mit einen “Quer-Symbol” versehen, z.B.  u und ū.

Antiteilchen haben die entgegengesetzte elektrische Ladung wie ihr “normales” Teilchen z.B.   e und e+ (hier benutzen wir das Quer-Symbol nicht).

Zusammengesetzte Teilchen

Danach sind Protonen und Neutronen (sog. Hadronen) sowie Mesonen keine Elementarteilchen mehr, sondern setzen sich aus Quarks zusammen:

Protonen und Neutronen bestehen aus drei Quarks:

  • Proton p: up up down
  • Neutron: n: up down down

Mesonen bestehen aus zwei Quarks:

  • Meson: ein Quark & ein Anti-Quark

Kräfte und Wechselwirkungen

Bei den Elementarteilchen unterscheidet man Fermionen (Materie) und Bosonen (Austauschteilchen für Wechselwirkungen). Die Bosonen stehen in der vierten Spalte des Standardmodells:

  • Photonen (γ) vermitteln die Elektromagnetische Kraft  (Wechselwirkung)
  • Gluonen (g) vermitteln die sog. Starke Kernkraft (Wechselwirkung), die hält beispielsweise die Protonen in einem Atomkern zusammen.
  • W-Bosonen vermitteln die sog. Schwache Kernkraft (Wechselwirkung), die kann beispielsweise aus einem Proton ein Neutron machen und umgekehrt, indem aus einem Up-Quark ein Down-Quark wird bzw. umgekehrt.

Feynman-Diagramme

In Feyman-Diagrammen läuft die Zeit von unten nach oben und der Raum von links nach rechts – allerdings ist dies nicht standardisiert.

Materie-Teilchen werden als Pfeile mit ausgezogener Linie dargestellt.
Wechselwirkungs-Teilchen werden anders dargestellt:

  • Photonen als Welle
  • Gluonen als Schraubfeder
  • Bosonen mit einer gestrichelten Linie

Zerfall bzw. Kollision zweier Objekte bilden einen sog. “Vertex”.

Beispiel 1:

Feynman Diagram: Electron absorbs a Photon

Beispiel 2: Beta-Zerfall

Feynman-Diagramm: Betazerfall (Halbwertzeit 10 Minuten)

Astrofotografie: Welche Probleme kann ich mit Stacking lösen?

Gehört zu: Bildbearbeitung, Stacking
Siehe auch: Belichtungszeit, Mein Workflow, Flat Frames

Was ist Stacking, was ist Calibration?

Für meine Astrofotografien will ich sehr häufig lange Belichtungszeiten haben; z.B. 2 oder auch 4 Stunden. Warum lange Belichtungszeiten häufig erforderlich sind, ist eine andere Geschichte. Siehe dazu: Belichtungszeiten.

Stacking bedeutet, nun dass man statt eines Fotos mit dieser langen Belichtungszeit (beispielsweise 1 Foto mit 240 Minuten), alternativ mehrere Fotos mit kürzerer Belichtungszeit macht, die in der Summe wieder der langen Belichtungszeit entsprechen (beispielsweise 120 Fotos mit 2 Minuten). Diese vielen “Einzelfotos” (sog. Subs oder Sub-Frames) werden dann per Software wieder zu einem einzigen Foto, dem Summenbild, zusammen “gestapelt” (stacking).

Beim Stacken richtet die Stacking-Software die Einzelbilder so aus, dass alles exakt übereinander passt – das wird von den Spezialisten “Registrieren” genannt. Stacking-Software unterstützt verschiedene Stacking-Methoden:

  • Mittelwert
  • Summe
  • Median
  • Sigma-Clipping (Outlier Rejection)
  • Maximum
  • etc.

“Mittelwert” und “Summe” führen zu identischen Ergebnissen, wenn die Helligkeitswerte genügend genau gerechnet werden (z.B. mit 32 Bit).

Was ist der Vorteil dieses “Stackings” bzw. welche Probleme, die bei langen Belichtungszeiten auftreten können, vermeidet man mit Stacking?

Software zum “Stacking” ist in aller Regel verbunden mit der sog. Kalibration (Calibration); d.h. bevor man “stackt” werden noch elektronische Korrekturen an den Bildern vorgenommen, wie z.B. Subtraktion bzw. Division mit Dark Frames, Flat Frames, Offset-Frames (s.u.).

Welche Probleme hat der Astrofotograf?

Bei der Astrofotografie gibt es eine Reihe von Problemen, die man durch verschiedene Techniken beheben bzw. reduzieren möchte.

  1. Stör-Objekte (z.B. Flugzeuge) im Bild
  2. Hot Pixel  -> Dithern, Dark-Abzug
  3. Vignettierung, Donuts, Amp Glow -> Flats
  4. Himmelshintergrund zu hell  (Lichtverschmutzung)
  5. Schlechte Nachführung
  6. Beobachtungsobjekt zu dunkel auf dem Foto
  7. Rauschen, Farbrauschen (schlechtes SNR) -> Kühlung, lange Gesamtbelichtungszeit (dann Stacken)
  8. Geringer Kontrast -> Stretchen
  9. Geringe Dynamik -> Histogramm analysieren, gute Belichtungszeit wählen dann Einzelbilder aufnehmen und Stacken
  10. Helle Bildteile “ausgebrannt”
  11. Luftunruhe (“Seeing”)

(1) Problem: Stör-Objekte z.B. Flugzeuge, Erdsatelliten etc.

Wenn wir irgendwelche “Störungen” im Bild haben z.B. Flugzeuge, Erdsatelliten, Verwacklung, Fremdlicht etc., ist das ganze (langbelichtete) Bild unbrauchbar.

Lösung: Viele Einzelbilder mit kürzerer Belichtungszeit, schlechte Einzelbilder aussortieren, gute Einzelbilder Stacken

(2) Problem: Hot Pixel

Fehlerhafte Pixel im Sensor unserer Kamera verfälschen unser Astrofoto.

Lösung A: Dunkelbild (“Dark”) machen und dieses vom Astrofoto subtrahieren
Lösung B: Dithering und Sigma Clipping (outlier rejection)

Dies alleine hat mit “Stacking” eigentlich nichts zu tun. Aber…

(3) Problem: Vignettierung

Über die gesamte Fläche unseres Fotos fällt die Helligkeit zu den Rändern etwas ab, möglicherweise sind auch noch Staubteilchen auf dem Sensor, die dunkle Flecken (sog. Dognuts) im Bild erzeugen.

Lösung: Flat Frame machen und das Astrofoto durch dieses dividieren

Dies alleine hat mit “Stacking” eigentlich nichts zu tun. Aber…

(4) Problem: Donuts

Möglicherweise sind dunkle runde Flecken (sog. Donuts) im Bild durch Staubteilchen auf dem Sensor…

Lösung A: Flat Frame machen und das Astrofoto durch dieses dividieren
Lösung B: Staubputzen…

Dies alleine hat mit “Stacking” eigentlich nichts zu tun. Aber…

(5) Problem: Amp Glow

Am Bildrand strahlenförmige Aufhellungen. Die Ursache sind interne Kamerateile in der Nähe des Sensors, die zu warm werden…

Lösung : Dark Frames machen und das Master Dark von den Light Frames abziehen

(6) Problem: Himmelshintergrund zu hell

Je nach Beobachtungsort haben wir am Himmel mehr oder weniger Himmelshelligkeit, z.B. durch “Lichtverschmutzung“. Je länger ich belichte, desto heller wird der Himmelhintergrund auf meinem Bild.

Lösung: Mehrere Einzelbilder mit kürzerer Belichtungszeit, Einzelbilder Stacken zu einem Summenbild.

Wir können also ausprobieren wie lange wir maximal belichten können, ohne dass die Himmelhelligkeit das Bild überstrahlt – dazu ist ein Blick auf das Histogramm hilfreich. So ermitteln wir die Begrenzung der Belichtungszeit durch die Helligkeit des Himmelshintergrunds. Wir machen dann soviele Einzelbilder, bis das Summenbild die gewünschte “effektive” Belichtungszeit hat.

(7) Problem: Schlechte Nachführung

Ohne irgend eine Nachführung kann man ja nur sehr kurz belichten, bevor die Sterne zu Strichen werden, was man meistens ja nicht will.

Wenn man auf irgendeine Art und Weise nachführt (“tracking”, “guiding”), ist die Frage nach der Qualität dieser Nachführung; schlussendlich stellt sich die Frage: “Wie lange kann ich maximal belichten und die Sterne bleiben noch punktförmig?”

Lösung: Mehrere Einzelbilder mit kürzerer Belichtungszeit, Einzelbilder Stacken zu einem Summenbild.

Die Qualität der Nachführung begrenzt also die Belichtungszeit nach oben.
Beispielsweise kann ich mit meiner Astro-Gerätschaft max. 5 Minuten belichten. Wenn ich eine Gesamtbelichtungszeit von 240 Minuten machen möchte, mache ich also 48 Fotos mit je 5 Minuten Belichtungszeit.

(8) Problem: Beobachtungsobjekte zu dunkel (kaum sichtbar) auf dem Foto

Auf dem Foto ist unser Beobachtungsobjekt nicht zu sehen oder nur sehr schwach.

Photonen aus unserem Gesichtsfeld fallen auf die Pixel unseres Sensors und werden dort in Elektronen gewandelt. Diese elektrische Ladung wird dann aus den Pixeln ausgelesen evtl. verstärkt (ISO, Gain) und durch den ADC (Analog Digital Converter) in ein digitales Signal umgesetzt. Diese digitalen Helligkeitswerte pro Pixel machen dann unser Foto aus.

Bei einer längeren Belichtungszeit fallen mehr Photonen auf ein Pixel, es werden mehr Elektronen gesammelt und es gibt damit höhere digitale Helligkeitswerte im Foto.

Lösung: längere Belichtungszeit, ggf mit Stacking

(9) Problem: Rauschen (schlechtes SNR)

Wir haben auf unserem Foto ein “Hintergrundrauschen” in dem feine Einzelheiten unseres Beobachtungsobjekts (“das Nutz-Signal”) untergehen.
Das Rauschen kommt aus mehreren Quellen:

  • Photonen-Rauschen (Schrotrauschen)
  • Sensor-Rauschen (Dunkelstrom)
  • Ausleserauschen

Photonen-Rauschen: Auch Schrotrauschen oder Schottky-Rauschen genannt. Unser Nutzsignal vom Himmelsobjekt ist mit einem Rauschen verbunden. Die Photonen vom Himmelsobjekt kommen nicht gleichmäßig auf dem Pixel an (Anzahl Photonen pro Zeiteinheit), so ähnlich wie Regentropfen pro Quadratmeter und Sekunde. Diese Photonen-Rate ist “poisson-verteilt“, denn die mittlere Rate der Ereignisse (Photonen Ankünfte) ist konstant..

Poisson-Verteilung (Copyright Wikipedia)

Die Standardabweichung einer Poisson-Verteilung mit einem Mittelwert von μ beträgt:

\(\sigma = \sqrt{\mu} \)

Das Nutzsignal ist die mittlere Ankunftsrate der Photonen μ – es ist ist proportional zur Belichtungszeit.
Das Störsignal ist proportional zu σ, also zu Wurzel aus μ; d.h. proportional zu Wurzel aus Belichtungszeit.

In Formeln ist das Signal-Rausch-Verhältnis (SNR = Signal Noise Ratio) also:

\(SNR =  \Large\frac{\mu}{\sigma} \large = \sqrt{\mu} \)

Das Signal-Rausch-Verhältnis ist also proportional zur Wurzel aus der Belichtungszeit. Beispielsweise verdoppelt sich das SNR bei einer Vervierfachung der Belichtungszeit.

In Dezibel gemessen ist das:

\(SNR = 10 \lg{\sqrt{\mu}} =5 \lg{\mu}\)   [Dezibel]

Also Lösung: Lange belichten und ggf. Stacken

Sensor-Rauschen: Elektronen in den Pixeln des Sensors werden nicht nur von den Photonen unseres “Nutzsignals” erzeugt, sondern auch durch Wärme im Sensor und bilden so ein “Störsignal”. Faustregel: Eine Kühlung um 7° halbiert dieses “thermische” Rauschen.

Dieses thermische Sensor-Rauschen verteilt sich aber zufällig auf die einzelnen Pixel des Sensors.
Dieses thermische Sensor-Rauschen ist tatsächlich zufällig und mittelt sich mit längeren Belichtungszeiten aus.
Also Lösung: Kühlen und länger belichten ggf. Stacken

Ausleserauschen: Der Ausleseverstärker soll aus der elektischen Ladung (Elektronen) eines jeden Pixels eine proportionale Spannung erzeugen, die dem ADC zugeführt wird. dabei entsteht auch ein gewisses Rauschen.

Dieses Ausleserauschen ist bei modernen digitalen Kameras zwar sehr gering, aber addiert sich mit jedem Einzelfoto, das ich mache.

Also Lösung: So belichten, dass das Ausleserauschen relativ zum sonstigen Rauschen vernachlässigt werden kann. Üblich ist etwa Ausleserauschen = 10% vom Himmelshintergrund. Man nennt das “hintergrundlimitiert”.

(10) Geringer Kontrast

Lösung: RAW-Format, Stretchen, S-Kurve

(11) Geringe Dynamik

Lösung: RAW-Format, geringeres ISO/Gain

(12) Helle Bildteile “ausgebrannt”

Lösung: HDR und/oder Postprocessing

(13) Luftunruhe “Seeing”

Lösung: Lucky Imaging

(14) …

 

Astronomie: Sphärische Trigonometrie

Gehört zu: Mathematik
Siehe auch: Tägliche Bewegung der Gestirne, Diagramm
Benötigt: WordPress Latex-Plugin, WordPress Plugin Google Drive Embedder

Was ist Sphärische Trigonometrie?

Die Ebene Trigonometrie ist die Lehre von den Dreiecken in der Ebene.

Die Sphärische Trigonometrie ist die Lehre von den Dreiecken auf einer Kugeloberfläche. Solche Dreiecke werden durch Abschnitte von Großkreisen gebildet.

Das Polar-Dreieck auf der Himmelskugel

Zur Umrechnung eines Koordinatensystems in ein anderes zeichnet man sich ein sog. Polar-Dreieck, in dem die “Pole” (“Drehpunkte”) beider Koordinatensysteme vorkommen.

Zur Umrechnung der äquatorialen Koordinaten Deklination (δ) und Stundenwinkel (t) in die horizontalen Koordinaten Höhe (h) und Azimuth (A) wird das sog. Polar-Dreieck wird gebildet durch den Himmelspol (N), den Zenit (Z) und ein Himmelsobjekt (O).

Im Polardreieck sind die Abstände (Bogenlängen):

  • vom Himmelspol zum Zenit: 90° – φ
  • vom Himmelspol zum Himmelsobjekt: 90° – δ
  • vom Zenit zum HImmelsobjekt: z = 90° – h

Im Polardreieck sind die Winkel an den Ecken des Dreiecks:

  • Winkel am Himmelspol: Stundenwinkel t (oder τ)
  • Winkel am Zenith: 180°  – A   (A = Azimuth von Süden)

Link: https://de.wikibooks.org/wiki/Astronomische_Berechnungen_f%C3%BCr_Amateure/_Druckversion#Koordinatentransformationen

MIt dem Seiten-Cosinussatz errechnet man den Cosinus der Länge einer Seite aus den Längen der beiden anderen Seiten und dem gegenüberliegenden Winkel:
\(\cos z = \cos (90° – \phi) \cos (90° – \delta) + \sin (90° – \phi) \sin (90° – \delta) \cos t\)

Was schließlich heisst:
\(\sin h = \sin \phi \sin \delta + \cos \phi \cos \delta \cos t \)

Der Cotangens-Satz im Polardreieck sagt:

\(   \cos (90° – \phi)  \cos t = \sin(90° – \phi) \cot (90° – \delta) – \sin t \cot(180° – A)  \)

Trigonometrisch umgeformt ergibt das:
\(  \sin \phi \cos t = \cos \phi \tan \delta – \Large\frac{\sin t}{\tan A}  \)

Aufgelöst nach A ergibt sich:

\(   \tan A = \Large\frac{\sin t}{\sin \phi \cos t – \cos \phi \tan \delta} \)

MIt Hilfe dieser Koordinatentransformation kann man für jedes bekannte Himmelsobjekt (Deklination und Rektaszension) die scheinbare tägliche Bewegung am Himmel berechnen – siehe dazu: Die scheinbare tägliche Bewegung der Gestirne.

 

https://drive.google.com/file/d/1KsWze0RuemuXoe755Z_glIkhA2pTGilH/view?usp=drive_web

Astronomie: Tägliche Bewegung der Himmelsobjekte

Gehört zu: Sonnensystem
Siehe auch: Tageslänge, Sphärische Trigonometrie
Benötigt: WordPress Latex-Plugin

Tägliche scheinbare Bewegung der Gestirne

Wenn wir wissen wollen, wie sich ein Himmelobjekt mit bekannter Rektaszension und Deklination im Laufe des Tages über den Himmel bewegt, so ist die einfache Formel:

  • Stundenwinkel = Sternzeit – Rektaszension
  • Deklination = const.

Damit haben wir die äquatorialen Koordinaten Stundenwinkel (t) und Deklination (δ) als Funktion der Sternzeit.

Wenn wir die azmutalen Koordinaten Höhe (h) und Azimuth (A) haben wollen, so müssen wir das wie folgt umrechnen:

(Quelle: https://de.wikibooks.org/wiki/Astronomische_Berechnungen_f%C3%BCr_Amateure/_Druckversion#Koordinatentransformationen )

\( \sin h = \sin \phi \cdot \sin \delta + \cos \phi \cdot \cos \delta \cdot \cos t \)

und

\( \tan A = \Large \frac{\sin t}{\sin \phi \cdot \cos t – \cos \phi \cdot \tan \delta}  \)

Beispiel Wega in Hamburg:

Astrofotografie: Deep Sky Objekte

Gehört zu: Welche Objekte?
Siehe auch M31

Deep Sky Objekte

Was ich mit meiner Ausrüstung ganz gut fotografieren kann, sind sog. DSO’s also Deep Sky Objekte.
Als Gegensatz zu DSO wird gerne “planetary” genannt. Da würde man mit Videos arbeiten.

Dazu gehören:

  • Galaxien
  • Emissionsnebel / Reflexionsnebel
  • Planetarische Nebel

Galaxien

Die beliebtesten Galaxien für den Hamburger Raum sind hier aufgeführt.

Datum von/bis bedeuted eine Höhe von mehr als 70 Grad um 23 Uhr.

Objekt Name Flächenhelligkeit Datum ab Datum bis Neumond-1 Neumond-2
M31 Andromeda 13,35 12.10. 20.11. 16.10.2020 14.11.2020
M51 Whirlpool 12,56 18.4. 17.6. 20.4.2020 22.5.2020
M81 Bode 13,13 10.2. 6.4. 24.2.2020 24.3.2020
M101 Feuerrad 14,82 21.4. 28.6. 20.4.2020 Welche Objekte?
NGC891 Edge-on Andromeda 13,1
NGC7606 10,8
NGC2146 Dusty Hand 12,1
NGC4449 Box Gaklaxy 12,8
NGC5005 Virgo 12,6
NGC6951 Face-on 13.5
NGC157 Cet 12,4
NGC908 Cet 13,0
NGC936 Cet 13,2
M64 Black Eye 12,4
M85 Com 13,0
M88 Com 12,6
M99 Com 13,0
M100 Com 13,0
NGC4274 Com 13,4
NGC4278 Com 13,1
NGC4314 Com 13,3
NGC4565 Needle 12,9
M102 Dra 11,9
NGC5907 Dra 13,4
M83 Southern Pinwheel 13,2
M65 Leo 12,4
M66 Leo 12,5
M96 Leo 12,9
M105 Leo 12,1

 

Astrofotografie: M31 Andromeda Galaxis

Gehört zu: Welche Objekte?
Siehe auch: Galaxien, Deep Sky Objekte

Die Andromeda Galaxis

M31 ist die uns am nächsten gelegene “große” Galaxie (d.h. abgesehen von Zwerggalaxien wie z.B. LMC).

M31 gehört zur sog. “lokalen Gruppe”.

M31 ist das klassische “Anfängerobjekt” für die Deep-Sky-Fotografie.

Edwin Hubble konnte 1933/1934 am Mount Wilson Observatorium M31 in teilweise einzelne Sterne auflösen und dabei auch sog. Delta-Cephei-Sterne finden. Die scheinbare Helligkeit des “H1” genannten Cepheiden in M31 schwankte zwischen 18,3 und 19,7 mag. Mit Hilfe der bekannten Periode-Leuchtkraft-Beziehung konnte er die absolute Helligkeit und damit die Entfernung von M31 bestimmen. Die Entfernungsbestimmung ergab seinerzeit zunächst knapp 1 Million Lichtjahre.

Bis damals war die allgemeine Überzeugung, dass es ausser unserer Galaxis, der “Milchstraße”, keine anderen Galaxien geben würde und die allerseits zu beobachtenden “Nebel” (wie M31) wohl zur Milchstraße gehören müssten.

Als Walter Baade Anfang der 1950er Jahre am gerade fertiggestellten 5m-Spiegel auf dem Mount Palomar zwei verschiedene Typen von Cepheiden nachweisen konnte (mit zwei verschiedenen Periode-Leuchtkraft-Beziehungen), musste die Entfernung auf 2,5 Mio Lichtjahre korrigiert werden.

Generelle Vorbereitungen für das Fotografieren von M31

Wann ist der günstigste Zeitpunkt; d.h. wann steht M31 schön hoch am Himmel?

  • In 2018 in Hamburg:  12. Oktober – 20. November  (h>70°)

Dann brauchen wir noch eine günstige Mondphase z.B. Neumond und gutes Wetter. Als Neumond-Daten haben wir:

  • 2018:   08. Okt.
  • 2019:   27. Okt.
  • 2020:   16. Okt.
  • 2021:   4. Nov.

Als günstigen Standort für die Beobachtung habe ich Handeloh gewählt.

  • geringere Lichtverschmutzung  (Bortle 4 /  SQM 21,0)
  • freies Sichtfeld
  • gute Erreichbarkeit per Auto

Welche Ausrüstung soll eingesetzt werden?

Mit welchen Einstellungen sollen die Fotos geschossen werden?

  • Geplante Belichtungszeit: 10 x 300 Sekunden bei ISO 800
  • Probefotos ergaben, dass bei dieser Belichtung das Histogramm der Einzelfotos “gut” aussah; d.h. deutlich vom linken Rand abgesetzt und von rechten Rand noch sehr weit entfernt
  • Aufnahmeformat: Raw d.h. CR2
  • Auto Guiding mit PHD2 Guiding

Das Foto am 14.10.2018

Im Jahre 2018 war ich mit meinen astrofotografischen Übungen dann so weit und konnte folgende Aufnahme gewinnen:

Ergebnis: M31 in der Andromeda

Autosave_0239-0248_16_CI_RGb

Die Bildbearbeitung (Post Processing)

Als all die schönen Bilder “im Kasten” waren ging es erst einmal nach Hause, wo dann in den nächsten Tagen, Wochen und Monaten die Bildbearbeitung begann.

  • Stacking mit Deep Sky Stacker. Dabei erwies sich eines der zehn Lights als verwackelt und wurde ausgeschieden. Zehn Darks wurden ebenfalls gemacht. Mit Deep Sky Stacker entstand dann das kalibrierte Summenbild im TIFF-Format.
  • Mit Regim erfolgte dann die Background Extraktion (auch Gradient Removal ganannt).
  • Weiterhin wurde mit Regim eine B-V-Farbkalibrierung vorgenommen.
  • Schließlich erfolgte mit Adobe Photoshop das Stretching durch “Tonwertkorrektur” und “Gradationskurven”.
  • Mit Noel Carboni’s Action Set “Astronomy Tools” in Photoshop wurden dann noch die Actions  “Local Contrast Enhancedment”, “Increase Star Color” ausprobiert.
  • Zum Schluss wurde der sehr helle Kern von M31 noch mit “Bild -> Korrekturen -> Tiefen/Lichter” 10% dunkler gemacht.