Astronomie: AnSvr

Gehört zu: Platesolving
Siehe auch: NovaAstrometry, All Sky Plate Solver

Die Software AnSvr

Die Software AnSvr dient zum Platesolving.

AnSvr benötigt Cygwin und läuft dann als lokaler Windows-Dienst auf dem lokalen Windows-Computer.

AnSvr ist eine lokale Version der als Internet-Dienst bekannten Nova Astrometry. Man kann mit AnSvr also “offline” d.h. ohne eine Internet-Verbindung arbeiten.

AnSvr wird lokal auf einem Windows-Computer installiert:

AnSvr als lokale Installation

Download von: http://adgsoftware.com/ansvr

Wird installiert in: D:\bin\Astrometry.net Local Server

Läuft unter Cygwin, was in den Ordner cygwin_ansvr installiert wird.

Benötigt wird eine Library mit Index-Dateien und einen Service, der gestartet werden muss.

AnSvr Service

Das Starten des Service geschieht bei Windows durch einen Eintrag im Ordner “Autostart“:  start_ansvr.bat

Durch diese bat-Datei wird der Dienst in D:\Users\<user>\AppData\Local\cygwin_ansvr gestartet.

Allerdings heisst der Autostart-Ordner unter Windows 10 jetzt Startup und kann durch “shell:Startup” aufgerufen werden. Bei mir befindet sich dieser Ordner hier:

D:\Users\<user>AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup

Test-Aufruf des AnSvr-Service

Um testweise festzustellen, ob der AnSvr-Service auch tatsächlich läuft, kann man im Web-Browser die URL http://127.0.0.1:8080/api/config aufrufen.

AnSvr Library

Der ansvs-Service muss immer seine Index-Dateien finden.  Diese werden auch Library genannt. Bei mir befinden sich diese Index-Dateien an zwei Stellen:

  • C:\cygwin\usr\share\astrometry\data
  • C:\Users\<user>\AppData\Local\Astrometry\usr\share\astrometry\data

Lokale Benutzung des AnSvr-Service

Auf Cloudy Nights hat der user Jusasi etwas fabriziert: https://www.cloudynights.com/topic/613555-astrometry-api-lite-local-astrometrynet-api-with-installer/

Astronomie: Die Lagrange-Punkte

Gehört zu: Himmelsmechanik
Siehe auch: Newtonsche Mechanik, Sonnensystem
Benutzt: SVG-Zeichnung aus Github, WordPress-Plugin MathJax-Latex, Google Docs

Das Drei-Körper-Problem

Wenn man die Bewegung der Körper im Sonnensystem untersucht, sagt einem ja die Himmelsmechanik, dass das allgemeine Dreikörperproblem nicht geschlossen analytisch lösbar ist. Aber beim sog. eingeschränkten Dreikörperproblem hat man gute Lösungen, die berühmten Lagrange-Punkte L1, L2 etc. wo ja gerne Raumsonden, wie SOHO, hingeschickt werden.

Das eingeschränkte Drei-Körper-Problem

Beim sog. “eingeschränkten Drei-Körper-Problem” geht man vereinfachend davon aus, dass eines der drei Objekte viel weniger Masse hat als die anderen beiden, so dass man seine gravitative Wirkung vernachlässigen kann. Man hat dann zwei Himmelskörper, die sowohl einander als auch den kleinen dritten Körper beeinflussen, der selbst aber keine gravitative Wirkung auf die anderen beiden ausübt. Ein gutes Beispiel dafür ist die Bewegung eines Asteroiden in der Nähe eines großen Planeten.

Lösungen des eingeschränkten Drei-Körper-Problems

Google Slides: Himmelsmechanik: Die Lagrange-Punkte

Die bekannten Lösungen sind die Lagrange-Punkte L1, L2, L3, L4 und L5

Langrange-Punkte (aus GitHub Lagrange_very_massive.svg)

Langrange-Punkte

Quelle: https://commons.wikimedia.org/wiki/File:Lagrange_very_massive.svg

Im System Sonne-Erde befindet sich der L1 bekanntlich 1,5 Millionen Kilometer entfernt von der Erde in Richtung Sonne, der L2 ist ebenfalls 1,5 Mio Kilometer entfernt von der Erde, nur in Gegenrichtung. Da sich die Erde um die Sonne bewegt, bewegen sich die Lagrangepunkte ebenfalls und folgen ihr, also mit gleicher Winkelgeschwindigkeit.

Die Punkte L1 und L2 sind mit Satelliten besetzt. In L1 befinden sich Sonnenbeobachtungssatelliten wie z.B. SOHO. An diesem Punkt haben sie immer freie Sicht auf die Sonne. L2 ist gut für Weltraumteleskope geeignet. Hinter der Erde sind sie vor der starken Sonneneinstrahlung geschützt und können ungestört ihrer Arbeit nachgehen. Der WMAP-Satellit (gestartet 30.6.2001) untersuchte von hier aus die kosmische Hintergrundstrahlung und die Satelliten Herschel und Planck (gestartet 14.5.2009) sowie Gaia (gestartet 19.12.2013) sind hier plaziert.

Berechnung des Lagrange-Punkts L1

Fragen wir uns mal, wo genau der Lagrange-Punkt L1 liegt. Der erste Gedanke ist, na ja, da wo die Anziehungskräfte von Sonne und Erde sich aufheben.
Das können wir ja mal ganz einfach durchrechnen mit dem Newtonschen Gravitationsgesetz:

\( \Large F = G \frac{m \cdot M}{r^2} \\ \)

Wir nehmen folgende Ausgangsgrößen an:

Größe Wert Einheit
Abstand Sonne-Erde 149.597.870.700 m
Gravitationskonstante 6,67259 10-11 N m2 / kg2
Masse der Sonne 1,98892 1030 kg
Masse der Erde 5,9722 1024 kg

Dann können wir die Anziehungskräfte wie folgt berechnen:

Link: https://docs.google.com/spreadsheets/d/12Gtf1ycow4J4GfH3OkF2jbuNaBcToY6B7u69bGW9ejE/edit?usp=sharing

Entfernung von der Sonne Entfernung von der Erde Gravitation der Sonne Gravitation der Erde Gravitation Summe
1,49300000 1011 2,978707 108 -5,954 10-3 +4,491 10-3 -1,462 10-3
1,49339090 1011 2,587807 108 -5,951 10-3 +5,951 10-3 -3,602 10-9
1,49400000 1011 1,978707 108 -5,946 10-3 +1,018 10-2 +4,232 10-3

In einer Entfernung von 258 781 km von der Erde in Richtung Sonne, heben sich die Gravitationskräfte von Sonne und Erde also auf. Dort ist aber nicht der Lagrange-Punkt.

Unser “erster Gedanke” zur Berechnung der Lage des Lagrange-Punkts L1 war zu einfach. Nur im “mitrotierenden Bezugssystem” hat der Lagrange-Punkt eine feste Lage. So ein “mitrotierendes Bezugssystem” ist kein Intertialsystem und es treten zusätzlich sog. Scheinkräfte (Trägkeitskräfte) auf. In jedem Falle tritt die Fliehkraft auf und bei einem sich bewegenden Objekt käme auch noch die Corioliskraft hinzu.

Begrifflich spricht man von einem “effektiven” Gravitationsfeld, wenn  man zusätzlich zur eigentlichen Gravitationskraft die Fliehkraft hinzunimmt. Für dieses “effektive” Gravitationsfeld gibt es dann ein “effektives” Potential (als skalares Feld).

Der Lagrange-Punkt L1 mit Fliehkraft

In einem rotierenden Bezugssystem haben wir eine Fliehkraft von:

\( F(r) = m \frac{v^2}{r} = m \frac{4 \pi^2}{T^2} r \\ \)

Wobei v die Bahngeschwindigkeit bzw. T die Umlaufszeit wäre.

Zur Berechnung der Fliehkraft benötigen wir also die siderische Umlaufszeit der Bahn der Erde um die Sonne:

Größe Wert Einheit
Umlaufszeit  Sonne-Erde 31.558.149,54 s

Damit können wir berechnen, wo die Summe aus den Anziehungskräften (Beschleunigungen) und der Fliehkraft (Beschleunigung) sich aufheben:

Entfernung von der Sonne Entfernung von der Erde Gravitation der Sonne Gravitation der Erde Fliehkraft Summe
1,481000 1011 1,4978707 109 -6,051 10-3 +1,776 10-4 +5,871 10-3 -2,304 10-6
1,481064 1011 1,4914707 109 -6,050 10-3 +1,791 10-4 +5,871 10-3 1,385 10-10
1,482000 1011 1,3938707 109 -6,042 10-3 +2,039 10-4 +5,875 10-3 +3,614 10-5

In einer Entfernung von 1 491 470,7 km von der Erde in Richtung Sonne, heben sich die Gravitationskräfte von Sonne und Erde zusammen mit der Fliehkraft des rotierenden Systems also auf. Dort ist der Lagrange-Punkt L1.

Eigentlich ist ja klar, dass die Fliehkraft hier eine wesentliche Rolle spielen muss. Denn wenn die Gravitation der Erde Null wäre, würde es nur noch darum gehen, wann sich die Anziehungskraft der Sonne und die Fliehkraft der Rotation aufheben würden. Das ist logischerweise in diesem Fall genau auf der Erdbahn der Fall.

Der in etwa kugelförmige Bereich um die Erde mit dem Radius 1,491 Mio km wird auch die Hill-Sphäre genannt. Dort überwiegt also die (effektive) Anziehungskraft der Erde.

Grafiken zu den Lagrange-Punkten

Effektives Potential im System Sonne-Erde

In der Wikipedia finden wir folgendes Bild zu den Lagrange-Punkten:

Lagrange_points2.svg

Lagrange_points2.svg (Copyright: Wikimedia Commons

Quelle: https://en.wikipedia.org/wiki/File:Lagrange_points2.svg

Rote Pfeile: abwärts zum Lagrange-Punkt; Blaue Pfeile: abwärts weg vom Lagrange-Punkt.

Effektives Potential in einem engen Doppelsternsystem

Die Suche nach “Langrange” und “Roche” in der Wikipedia liefert uns auch für ein enges Doppelsternsystem (binary system) eine Grafik mit den Lagrange-Punkten, dem Center of Mass “CM” einigen Äquipotentialflächen und den Mittelpunkten der beiden Sterne.

Roche_potential_contours_q%3D3.svg

Copyright: WikiMadia Commons

Link: https://upload.wikimedia.org/wikipedia/commons/d/d9/Roche_potential_contours_q%3D3.svg

Dort, wo Äquipotentialflächen des linken Sterns die Äquipotentialflächen des rechten Stern berühren (L1), wäre ein möglicher Übergangspunkt, wo Materie von einem Stern zum anderen überfließen könnte. Die tropfenförmigen inneren Bereiche um die beiden Sterne nennt man auch die Roche-Volumen (Roche Lobe) der beiden Sterne.

Wenn ein Stern größer als sein Roche-Volumen wird, fließt in der Tat Materie zum anderen Stern. Die überfließende Materie hat in der Regel auch einen Drehimpuls, der erhalten bleibt. Es bildet sich deshalb eine Akkretionsscheibe um den aufnehmenden Stern.

Astronomie: Kosmische Hintergrundstrahlung – CMB

Gehört zu: Astronomie
Siehe auch: Kosmologie, Erdsatelliten, Lagrange-Punkte
Benutzt: Google Fotos, Flickr Fotos

Die Entdeckung der Kosmischen Hintergrundstrahlung

Die sog. Kosmische Hintergrundstrahlung (engl. CMB = Cosmic Microwave Background Radiation), wurde 1964 von Robert Wilson (*1936) und Arno Penzias (*1933) von den Bell Labs zufällig (als Störstrahlung) entdeckt. Eigentlich wollten Wilson und Penzias mit einer großen Horn-Antenne in Holmdel, New Jersey, die Kommunikation über Erdsatelliten testen. Das war das “Projekt Echo”.

Horn_Antenna-Holmdel New Jersey

Horn-Antenna in Holmdel New Jersey (Copyright: Wikimedia)

Gleichzeitig haben die Astrophysiker Robert Dicke (1916-1997), James Peebles (*1935) und David Wilkinson (1935-2002) im nahe gelegenen Princton, die auf dem Gebiet der Kosmologie forschten,  ein mathematisches Modell entwickelt, was die Entstehung und Entwicklung des Universums darstellen sollte. Dieses mathematische Modell kann als Vorläufer des heute (2021) mehrheitlich akzeptierten “Lambda CDM” (CDM = Cold Dark Matter) angesehen werden.
Dieses Modell, das sog. “Big-Bang-Modell” sagte, sozusagen als “Nachhall” des Big Bangs, eine kosmische Hintergrundstrahlung voraus, die noch heute messbar sein müsste. Eine solche Strahlung musste “nur noch” praktisch nachgewiesen werden.

Wilson und Penzias erhielten 1978 den Nobelpreis für die Entdeckung der CMB.
Robert Dicke erhielt nie einen Nobelpreis, da er selbst nichts entdeckt hatte, sondern nur etwas “interpretiert” hatte.
James Peebles erhielt 2019 den Nobelpreis für seine grundlegenden Beiträge zur Kosmologie.
David Wilkinson wurde nach seinem Tode durch die Namensänderung der Raumsonde MAP zu WMAP geehrt.

Eine Strahlung aus dem intergalaktischen Raum als Folge eines Urknalls wurde in den 1940ern von George Gamow, Ralph Alpher und Robert Herman postuliert. Diesen Arbeiten wurden aber zunächst kein großes Gewicht beigemessen. Erst 1964 war es dann soweit (s.o.).

Das Projekt Echo

Die Bell Labs in USA wollten in den 1960er Jahren die Telekommunikation über Erdsatelliten testen. Die Versuche begannen mit den  sog. “passiven” Kommunikationssatelliten der Echo-Serie.

  • Ballonsatellit Echo I: gestartet 12.8.1960
  • Ballonsatellit Echo II: gestartet 25.1.1964

Den Echo II habe ich zusammen mit meinem Schulfreund Hajo damals sehr oft von der Parzelle auf dem Bremer Stadtwerder mit freiem Auge beobachten können. Ebenso konnten wir schöne Fotos von den Durchgängen des Erdsatelliten Echo II machen. Diese Fotos sind aber heute nicht mehr in meinem Besitz.

Mein Bruder Rainer hat noch ein schönes Foto von 1964 gefunden. Er hat es am 25. November 1964 um ca 18:15 UT von unserem Haus in Bremen aufgenommen. Die Unterbrechungen wurden ca. alle 5 Sekunden vorgenommen, um die Geschwindigkeiten anzuzeigen. Der helle Stern im linken oberen Quadranten ist Atair (α Aql).

MindmapThePlanets1

Bremen 1964: Echo I und Echo II

Im Internet fand ich noch ein Foto, wo neben Echo I die Radioschüssel von Goldstone zu sehen ist:

Echo 1 over Goldstone (Copyright JPL-Caltech/NASA)

Echo I over Goldstone 12.8.1960  (Copyright JPL-Caltech/NASA)

Mit Hilfe der Software Stellarium konnte ich herausfinden, welche Sterne auf diesem Bild zu sehen sind. Aufgenommen wurde es ja am 12.8.1960 in Goldstone bei Las Vegas. Die Sternspuren sagen, dass wir ungefähr nach Nordwest blicken. Stellarium zeigt dann gegen 4 Uhr morgens: Die beiden hellen Sterne sind Deneb (oben) und Wega  (unten über dem Berggipfel), die Spur von Atair ist links neben der Radioschüssel zu sehen.

Die Satelliten Echo I und Echo II waren ja als “passive” Kommunikationssatelliten konzipiert und “nur” große Ballon-Satelliten mit einer reflektierenden Oberfläche.
Nach dem erfolgreichen Start des ersten aktiven (und zivilen) Kommunikationssatelliten Telstar am 10. Juli 1962 wurde die Antenne in Holmdel frei und konnte für die Astronomie eingesetzt werden.

Der Urknall (Big Bang)

Das heute (2021) gängige Modell der Entstehung des Universums (genannt: “Standardmodell”) geht von einem sog. “Big Bang” aus; d.h. einer “Singularität” bei der die gesamte Masse und Energie des Universums in einem einzigen sehr heissen Punkt entstand und sich dann ausdehnte und abkühlte. Zunächst war das ein heisses Plasma aus Protonen, Elektronen und Photonen. In dieser frühen Phase des Universums konnte die Strahlung, also die Photonen, sich nicht frei bewegen, da die Photonen ständig von den freien Elektronen eingefangen und dann in zufällige Richtungen gestreut wurden. Dadurch leuchtete das ganze Plasma wie ein Feuerball.

Erst als das Universum soweit abgekühlt war, dass sich die Elektronen an die Protonen binden konnten (“Rekombination”) um Wasserstoffatome zu bilden, war der Weg für die Photonen frei; d.h. das Universum wurde durchsichtig. Das war bei einer Temperatur von ca. 3000 K der Fall und muss so etwa 380000 Jahre nach dem Urknall gewesen sein. Die damals frei gewordene Strahlung empfangen wir heute als “Kosmische Hintergrundstrahlung”. Diese Hintergrundstrahlung zeigt also ein Bild des Universums von der Zeit in der sich die Strahlung von der Materie entkoppelte.

Moderne Messungen der CMB

Um genauere und umfassende Messungen der CMB zu erzielen, wurden Erdsatelliten und Raumsonden verwendet:

  • COBE (1989-1993)
  • WMAP (2001-2010)
  • PLANCK (2010-2013)

Messungen der CMB durch COBE

Der Erdsatellit COBE (= Cosmic Background Explorer) hat die Kosmische Hintergrundstrahlung (Mission 1989-1993) besser und genauer vermessen.
Wilson und Penzias hatten nur auf einer Frequenz gemessen. Mit dem Erdsatelliten COBE konnte nun ein ganzes Frequenzspektrum vermessen werden. Die Strahlungsintensität in Abhängigkeit von der Frequenz ist in dem folgenden Diagramm grafisch dargestellt.

Kosmische Hintergrundstrahlung gemessen vom Erdsatelliten COBE (Copyright Wikimedia)

Kosmische Hintergrundstrahlung gemessen vom Erdsatelliten COBE (Copyright Wikimedia)

Dieser gemessene Kurvenverlauf passt genau zum Strahlungsspektrum eines Planckschen Schwarzkörpers bei einer Temperatur von 2,728 Kelvin.

Ausserdem hat COBE die räumliche Verteilung der Strahlungsintensität (Temperatur) vermessen. Die CMB ist nahezu perfekt “isotrop” d.h. aus allen Richtungen kommt die gleiche Stahlung. Wenn etwas nicht mehr “isotrop” ist, nennt man das “an-isotrop”.  Erst bei starker Steigerung der Messgenauigkeiten konnte COBE solch winzige Fluktuationen feststellen. Messungen der Anisotropie der CMB sind also Messungen der Fluktuationen. Davon stammt das bekannte Bild, das die Fluktuationen farbkodiert zeigt:

Fluktuationen in der Kosmischen Hintergrundstrahlung

COBE: Fluktuationen in der Kosmischen Hintergrundstrahlung (Copyright: Wikimedia)

Bei geringerer Genauigkeit (±0,01 K), erscheint die CMB in der Tat völlig isotrop und homogen. Die Messungen des Satelliten COBE ergeben eine mittlere Temperatur der CMB von T0 =2,726 K. Die Messungen zeigten aber erstmals, dass die CMB nicht vollkommen isotrop ist. Kleine Fluktuationen (Anisotropien) sind in dem Bild sichtbar, die allerdings nahe an der Messgenauigkeit von COBE liegen. Die Messgenauigkeit liegt bei  \( \frac{\Delta T}{T_0} \approx 10^{-3} …  10^{-6}  \)

Quelle: http://www.physik.uni-regensburg.de/forschung/gebhardt/gebhardt_files/skripten/WS1314-BB/9.Fluktuation_der_Hintergrundstrahlung.pdf

Quelle: arXiv:astro-ph/9605054.

Messungen der CMB durch WMAP

Später hat die Raumsonde WMAP (Mission 2001-2010) noch genauere Messungen vornehmen können (±10-6 K). WMAP wurde am 30. Juni 2001 gestartet und auf dem Lagrange-Punkt L2 positioniert. Ursprünglich war der Name der Raumsonde MAP (Microwave Anisotropy Probe), sie wurde nach dem Tode von David Wilkinson (s.o.) in WMAP umbenannt.

WMAP Cosmic Microwave Background Radiation

WMAP Cosmic Microwave Background Radiation (Copyright: G. Hinshaw, J. L. Weiland, R. S. Hill, arXiv:0803.0732v2)

Die Mikrowellen-Karte des Himmels, die WMAP gemessen hat. Die Farbkodierung soll kleinste Schwankungen (Fluktuationen) der Temperatur der Hintergrundstrahlung verdeutlichen. Dabei werden Schwankungen im Bereich von Millionstel Kelvin sichtbar gemacht. Rötliche Farben signalisieren “wärmere” (+200 µK) und bläuliche “kältere” (-200 µK) Regionen.

Messungen der CMB durch PLANCK

Nachfolger des 2009 abgeschalteten WMAP wurde die Raumsonde Planck.

Das Hauptziel der Planck-Mission ist, die kosmische Mikrowellenhintergrundstrahlung mit einer Winkelauflösung von 5 bis 10 Bogenminuten und einer Empfindlichkeit von einem Millionstel Kelvin abzubilden.

Im Jahre 2013 wurde PLANCK endgültig abgeschaltet, nachdem zuvor schon das flüssige Helium, das als Kühlmittel für ein Instrument (das HFI) diente, verbraucht war.

Messungen der Kosmischen Hintergrundstrahlung:

https://archive.briankoberlein.com/wp-content/uploads/cmb1.jpg

https://archive.briankoberlein.com/wp-content/uploads/cmb1.jpg

Filterung der CMB-Messungen

Um so feine Schwankungen sichtbar zu machen, mussten vorher diverse störende Muster aus dem sog. Vordergrund herausgerechnet werden – man sagt “gefiltert” werden.

Bei der Filterung wollen wir als erstes starke lokale Radioquellen, wie z.B. den Crab-Nebel und andere Supernova-Überreste modellieren und subtrahieren.

Als nächstes modelliert man die Radiostrahlung unser Milchstraße als Ganzes und subtrahiert dieses Signal.

Die verbleibenden Messwerte zeigen dann noch ein auffälliges Dipolmuster: Das Maximum der Strahlung aus einer ganz bestimmten Richtung (ungefähr entgegengesetzt der momentanen Rotationsrichtung des Sonnensystems in der Milchstraße) ist deutlich blauverschoben, in entgegengesetzter Richtung rotverschoben (Dopplereffekt). Die beobachtete Temperaturdifferenz ist 3,353 mK. Das wird damit erklärt, dass sich unser Sonnensystem mit etwa 370 km/s gegenüber einem Bezugssystem bewegt, in dem die Strahlung isotrop ist. Dieses Dipolmuster (“Dipolanisotropie”) wird subtrahiert.

Stichworte: ILC (=Internal Linear Combination), Wiener Filter,…

Link: arXiv:1006.0916v1 [astro-ph.CO]

Deutung der Temperatur-Fluktuationen in der CMB

Quelle: http://www.physik.uni-regensburg.de/forschung/gebhardt/gebhardt_files/skripten/WS1314-BB/9.Fluktuation_der_Hintergrundstrahlung.pdf

Um die sehr kleinen Temperaturdifferenzen genauer zu untersuchen, stellt man die Messungen als sog. “Leistungsspektrum”, auch “Winkelleistungsspektrum” genannt, dar. Dazu werden immer zwei Messungen in einem bestimmten Winkelabstand gemacht und die Messwerte miteinander korreliert.

Leistungsspektrum (Copyright Wikipedia)

Leistungsspektrum (Copyright Wikipedia)

Vereinfacht gesagt ist auf der x-Achse (Abszisse) der Winkelunterschied von je zwei Messungen aufgetragen und auf der y-Achse (der Ordinate) der Temperaturunterschied der beiden Messungen. Das erste Maximum ist bei einem Winkelunterschied von ca. 0,9°, das zweite Maximum liegt bei einem Winkelunterschied von ca. 0,3°.

Man kann diese Kurve nun vergleichen, mit entsprechenden Kurven, die sich aus bestimmten mathematischen Modellen der Entwicklung des Universums ergeben.
Das sog. Lambda-CDM-Modell zeigt bei bestimmter Wahl seiner Parameter eine gute Übereinstimmung mit diesem gemessenen Winkelleistungsspektrum.

Die Parameter des Lambda-CDM-Modells

Das sog. Lambda-CDM-Modell zeigt bei bestimmter Wahl seiner Parameter eine gute Übereinstimmung mit dem von PLANCK gemessenen Winkelleistungsspektrum. Es liefert u.a. folgende Werte:

Parameter Wert Bemerkung
Alter des Universums 13,8 Mia Jahre
Hubble-Konstante 67,7 km/s /Mpc
Baryonische Materie   4,9% „normale“ Materie
Dunkle Materie 25,9%
Dunkle Energie 69,1%
Zeit der Entkopplung/Rekombination 377 700 Jahre z=1090

 

Physik: Kernfusion

Gehört zu: Physik
Siehe auch: Sonne, Atomphysik

Durch die Verschmelzung (Fusion) leicherer Atomkerne (z.B. Wasserstoff) zu schwereren Atomkernen (z.B. Helium) kann Energie gewonnen werden, da ein kleiner Teil der  Masse in Energie umgewandelt wird; nach der berühmten Formel von Einstein:

\( E = m \cdot c^2 \)

Durch Fusion wird Energie gewonnen, solange die Bindungsenegie pro Nukleon mit zunehmender Nukleonenzahl im Atomkern größer wird; also bis zum Eisen (Fe), wie die Grafik zeigt. Mit schwereren Atomkernen kann man dann Energie nur durch Spaltung gewinnen.

Im Inneren von Sternen finden solche Kernfusionsprozesse statt. Man spricht gerne auch vom “Brennen”; damit ist aber immer eine Kernfusion gemeint.

https://upload.wikimedia.org/wikipedia/commons/b/bc/Binding_energy_curve_-_common_isotopes-de.svg

Mittlere Bindungsenergie pro Nukleon in Abhänggkeit von der Größe des Atomkerns (Copyright Wikimedia)

Damit es zur Verschmelzung von Atomkernen kommt, muss die Abstoßungskraft der elektrisch ja gleichartig (positiv) geladenen Kerne überwunden werden. Dazu benötigt das Plasma eine hohe Temperatur und einen hohen Druck. Die Fusion von Wasserstoff zu Helium “zündet”, wenn im Inneren des Sterns die notwendige Temperatur von ca. 10 Millionen Kelvin erreicht sind.

Bei entsprechend höheren Temperaturen “zünden” auch Fusionsprozesse mit anderen Elementen wie die nachfolgende Tabelle zeigt. Dort ist ein Stern mit 40-facher Sonnenmasse zugrunde gelegt.

Ausgangsmaterial Prozesse Endprodukte “Asche” Temperatur
Mio Kelvin
Min. Masse Dauer bei 40 Sonnenmassen
Wasserstoff p-p-Prozess Helium 10-40 0,08 10 Mio Jahre
Helium 3 Alpha Kohlenstoff 100-190 0,25 1 Mio Jahre
Kohlenstoff Sauerstoff, Neon, Magnesium 500-740 4,0 10.000 Jahre
Neon Sauerstoff, Magnesium 1.600 10 Jahre
Sauerstoff Silizium 2.100 5 Jahre
Silizium Eisen 3.400 1 Woche

Wenn der Wasserstoff vollständig zu Helium fusioniert wurde, fällt diese Energiequelle weg. Der Stern kontrahiert etwas und die Temperatur im Inneren steigt an. Wenn die Temperatur im Inneren ausreicht, kann die nächste Fusionstufe (hier: Helium) “zünden”. Durch die Helium-Fusion steigt der innere Strahlungsdruck wieder stark an und der Stern dehnt sich aus zum sog. “Riesen”.

Wenn die Temperatur nicht ausreicht, um weitere Kernfusionen zu “zünden”, kann der Stern keine Energie mehr erzeugen und kollabiert zum Weissen Zwerg, der nur noch langsam seine vorhandene Wärmeenegie abgibt…

Bei unserer Sonne endet diese Serie mit dem sog. Heliumbrennen. Der Kohlenstoffkern kann nicht mehr weiter “zünden”, da die erforderliche Temperatur nicht erreicht wird.

 

 

Astronomie: Himmelsmechanik

Gehört zu: Astronomie
Siehe auch: Newton, Keplersche Gesetze, Lagrange-Punkte

Wozu Himmelsmechanik?

Man möchte die Bahnen der Planeten im Sonnensystem verstehen und berechnen.

Historie der Himmelsmechanik

Kepler war der erste, der die Bahnen der Planeten um die Sonne mit seinen berühmten “Keplerschen Gesetzen” richtig beschrieben hat und damit dem heliozentrischen Weltbild endgültig zum Durchbruch verholfen hat. Die Gesetze für die Umlaufbahnen der Planeten um die Sonne hat Kepler empirisch, nämlich mit Hilfe der Beobachtungsdaten von Tycho Brahe, gefunden. In der Begrifflichkeit der Himmelsmechanik sind die Keplerschen Gesetze Lösungen des sog. Zwei-Körper-Problems.

Die physikalischen Gesetze, aus denen sich die von Kepler gefundenen Bewegungen der Planeten herleiten lassen, hat etwas später Isaac Newton mit seinem Gravitationsgesetz formuliert.

Ganz allgemein wird die Anwendung der physikalischen Gesetze auf die Körper des Sonnensystems “Himmelsmechanik” genannt und hat lange Zeit viele Koryphäen beschäftigt. So kann man beispielsweise zeigen, dass für das allgemeine Mehr-Körper-Problem keine geschlossene analytischche Lösung existiert.

Beim Drei-Körper-Problem hat Joseph Louis Lagrange (1736-1813) aber unter vereinfachten Annahmen spezielle Lösungen aufgezeigt, die wir heute Lagrange-Punkte nennen.

Beim sog. “eingeschränkten Drei-Körper-Problem” geht man vereinfachend davon aus, dass eines der drei Objekte viel weniger Masse hat als die anderen beiden, so dass man seine gravitative Wirkung vernachlässigen kann. Man hat dann zwei Himmelskörper, die sowohl einander als auch den kleinen dritten Körper beeinflussen, der selbst aber keine gravitative Wirkung auf die anderen beiden ausübt. Ein gutes Beispiel dafür ist die Bewegung eines Asteroiden in der Nähe eines großen Planeten.

Heutige Himmelsmechanik

In der klassischen Himmelsmechanik konne man die Periheldrehung des Planeten Merkur nicht vollständig erklären. Dies gelang erst Albert Einstein mit seiner Allgemeinen Relativitätstheorie (ART), die die Gravitation als Krümmung der Raumzeit beschreibt.

Neue Bedeutung erhielt dieses “altmodische” Gebiet der Himmelsmechanik durch die Raumfahrt. Nun mussten die Bahnen von Raumsonden sehr genau berechnet werden, beispielsweise auch sog. Swing-by Manöver

Heutzutage wird Himmelsmechanik auch nicht nur im Sonnensystem, sondern generell als die Dynamik (Bewegungen) von astronomischen Objekten verstanden. Beispielsweise also die Fragestellung nach der Rotation von Galaxien (siehe: Vera Rubin) und mehr…

Blindtext

xyz

 

Astrofotografie: Die Kleine Magellansche Wolke (SMC) mit 47 Tuc

Gehört zu: Beobachtungsobjekte
Siehe auch: Galaxien, Namibia

Eine Reise in den Süden…

Anlässlich meiner touristischen Reisen nach Südafrika, wollte ich ein paar Besonderheiten des südlichen Sternhimmels fotografisch festhalten.

Fotos von der Kleinen Magellanschen Wolke

Am 14.9.2017 auf Kiripotib in Namibia

Da ich nun regelmäßig in Namibia bin, war auch dieses Paradeobjekt des südlichen Sternhimmels auf meiner Liste:

20170914_0269-0277_Autosave001_5

Was ist die Kleine Magellansche Wolke?

Die Magellanschen Wolken sind zwei irreguläre Zwerggalaxien in nächster Nachbarschaft zur Milchstraße. Die Große Magellansche Wolke (GMW) in rund 163.000 Lichtjahren Entfernung enthält ungefähr 15 Milliarden Sterne, die Kleine Magellansche Wolke (KMW) in rund 209.000 Lichtjahren Entfernung 5 Milliarden Sterne.

Unsere Heimatgalaxie, die Milchstraße, ist eine große Spiral-Galaxie mit einem Durchmesser von ca. 100.000 Lichtjahren und 100 bis 200 Milliarden Sternen.

Die GMW ist relativ hell (0.9 mag) und kann sehr gut mit dem bloßen Auge beobachtet werden (KMW 2.7 mag, Andromedanebel 3.5 mag).

Für einen irdischen Beobachter erstreckt sich die GMW über eine Durchmesser von etwa 6º ; das ist 12 mal der Durchmesser des Vollmonds.

Den Bewohnern der Südhalbkugel waren die beiden Magellanschen Wolken wohl schon seit prähistorischer Zeit durch Beobachtungen mit dem bloßen Auge bekannt, erstmalige schriftliche Erwähnung fanden sie jedoch durch den persischen Astronomen Al Sufi in seinem Buch der Fixsterne im Jahr 964. Der erste Europäer, der die beiden Wolken beschrieb, war Ferdinand Magellan bei seiner Weltumsegelung 1519. Im Fernrohr zeigt sich ihr Charakter als Galaxie, die aus Sernen, Nebeln, Sternhaufen und anderen Objekten zusammengesetzt ist.

Neben den Magellanschen Wolken sind die Canis-Major-Zwerggalaxie (25.000 Lichtjahre entfernt) und Sagitarirus-Zwerggalaxie (70.000 Lichtjahre entfernt) die nächsten Nachbarn der Michstraße. Diese gehören mit insgesamt ca. 27 kleineren Galaxien zur sog. Milchstraßen-Untergruppe der Lokalen Gruppe.
Der etwas entferntere Andromedanebel (2.5 Mio Lichtjahre entfernt) gehört zusammen mit unserer Milchstraße zu den größten Galaxien der Lokalen Gruppe.

Quelle: Wikipedia

Lage der Magellanschen Wolken relativ zur Milchstraße

LageDerMagellanschenWolken.jpg

Wikipedia: Lage der Magellanschen Wolken

Abkürzungserklärungen:

GMW – Große Magellansche Wolke
KMW – Kleine Magellansche Wolke
GSP – Galaktischer Südpol
MSI – Erste Wasserstoffverdichtung im Magellanschen Strom
3 30 Doradus
W – Flügel (Wing) der KMW

Der grüne Pfeil deutet die Umlaufrichtung der Magellanschen Wolken um das Milchstraßenzentrum an.

Quelle: Wikipedia

Astronomie: IC 2944 Running Chicken

Gehört zu: Beobachtungsobjekte
Siehe auch: HII-Regionen, Filter, Nebel, Namibia

IC 2944 der Running-Chicken-Nebel ist ein klassisches Nebel-Objekt für Namibia.

Ein klassisches H-Alpha-Objekt für kleinere Teleskope.

  • Scheinbare Helligkeit von 4,5 mag
  • Scheinbare Ausdehnung von 40′ x 20′
  • IC 2944 ist ein Emissionsnebel und strahlt vorwiegend in H alpha.
  • Entfernung 6500 Lichtjahre.

Bei meinem Aufenthalt in Namibia im August 2019 habe ich endlich ein Foto vom Running Chicken Nebel erstellen können.

Running Chicken

Diese Fotografie habe ich von Kiripotib, Namibia geschossen. Dabei hat ein Tri-Narrowband-Filter geholfen.

Astronomie: M8 und M20 Lagoon- und Trifid-Nebel

Gehört zu: Beobachtungsobjekte
Siehe auch: HII-Regionen, Filter, Nebel, Namibia

M8 und M20 (Lagoon-Nebel und Trifid-Nebel) sind zwei nahe beieinander liegende Emissionsnebel im Schützen (Sgr).

Ein klassisches H-Alpha-Objekt für kleinere Teleskope mit einem entsprechenden Gesichtsfeld.

  • Scheinbare Helligkeit von 6,0 und 6,3 mag
  • Scheinbare Ausdehnung von 60′ x 40′ und 28′ x 28′
  • M8 ist ein Emissionsnebel und strahlt vorwiegend in H alpha.
  • Entfernung 9500 Lichtjahre.

Bei meinem ersten Aufenthalt in Namibia im September 2017 habe ich erste Fotos von M8 und M20 erstellen können. Zwei Jahre später 2019 habe ich es dann noch schöner mit einem Tri-Narrowband-Filter gemacht:

Lagoon- und Triffid-Nebel

Diese Fotografie habe ich von Kiripotib, Namibia geschossen. Dabei hat ein Tri-Narrowband-Filter geholfen.

Astronomie: NGC 6334 Katzenpfoten-Nebel

Gehört zu: Beobachtungsobjekte
Siehe auch: HII-Regionen, Eta-Carinae-Nebel, Filter, Nebel, Namibia

NGC 6334 den sog. Katzenpfoten-Nebel ist ein Emissionsnebel im Skorpion.

Er ein klassisches H-Alpha-Objekt für kleinere Teleskope.

  • Scheinbare Helligkeit von ??? mag
  • Scheinbare Ausdehnung von 35′ x 20′
  • NGC 6334 ist ein Emissionsnebel und strahlt vorwiegend in H alpha.
  • Entfernung 5500 Lichtjahre.

Bei meinem ersten Aufenthalt in Namibia im September 2017 habe ich ein erstes Foto von NGC 6334 erstellen können. Zwei Jahre später 2019 habe ich es dann noch schöner mit einem Tri-Narrowband-Filter gemacht:

NGC6334 Katzenpfoten-Nebel, Kiripotib

Diese Fotografie habe ich von Kiripotib, Namibia geschossen. Dabei hat ein Tri-Narrowband-Filter geholfen.

Astrofotografie: Nebel

Gehört zu: Welche Objekte
Siehe auch: Galaxien, Sternhaufen

Nebel: Emissionsnebel

Nebel sind ein lohnendes Beobachtungsobjekt in lichtverschmutzen Orten. Als Astro-Anfänger in Hamburg-Eimsbüttel möchte ich mit meiner Ausrüstung Astrofotos von Objekten machen, die trotzdem Eindruck schinden (zumindest bei mir selbst). Als ich mich fragte, welche Objekte ich aus der lichtverschmutzten Großstadt Hamburg heraus mit meinen bescheidenen Mitteln fotografieren könnte, blieb eines als gut möglich übrig: Sterne (also keine Nebel, keine Galaxien).

Als für mich lohnenswerte Beobachtungsobjekte kommen also schöne Sternhaufen und Doppelsterne infrage. Sternhaufen kann ich mit der Digitalkamera (kürzere Brennweiten) gut fotografieren; Doppelsterne werden meist erst im Teleskop mit längerer Brennweite gut getrennt.

Einige “Experten” empfahlen auch den Einsatz von Filtern gegen die Lichtverschmutzung, was sich bei Emissionsnebeln (z.B. Pacman-Nebel s.u.) tatsächlich als hilfreich erwies.

Welche Nebel?

Liste von für meine Ausrüstung interessanten Emissionsnebel

Meine Kriterien: Größer als 10′ und heller als 8,0 mag

Emissionsnebel können sehr groß sein, so ist z.B. der Nordamerikanebel (NGC7000).

Siehe auch: https://de.wikipedia.org/wiki/Liste_diffuser_Nebel

Typ Katalog Name Ausdehnung Helligkeit Sternbild Bemerkungen Status
Gas-Nebel M8 Lagunen-Nebel 60′ x 40′ 6,0 mag Sgr Namibia. Lagunen-Nebel Foto
Gas-Nebel M17 Omega-Nebel 11′ 6,0 mag Sgr NGC 6618, Omega-Nebel, Emissionsnebel – sehr hell – Sternbild Schütze
Gas-Nebel M20 Trifid-Nebel 28′ x 28′ 6,3 mag Sgr Namibia. NGC 6514, Emissions- und Reflexionsnebel im Sternbild Schütze. Foto
Planetarischer Nebel M27 Hantel-Nebel 8,0′ x 5,7′ 7,5 mag Vul
Emissions-Nebel M42 Orion-Nebel 85′ x 60′ 4,0 mag Ori Orionnebel, der Klassiker. Emission & Reflexion
Planetarischer Nebel M57 Ringnebel Leier 1,4′ x 1′ 8,8 mag Lyr Ringnebel in der Leier, klassischer planetarischer Nebel, aber sehr klein
Gas-Nebel NGC 281 Pacman-Nebel 35′ x 30′ 7,4 mag Cas Emissionsnebel Foto
Gas-Nebel NGC 2237 Rosetten-Nebel 80′ x 60′ 6,0 mag Mon Diffuser Emissionsnebel mit eingebettetem offenen Sternhaufen
Gas-Nebel NGC 3372 Eta-Carinae 120′ x 120′ 3.0 mag Car Namibia.
Gas-Nebel NGC 6334 Katzenpfoten 35′ x 20′ Sco Namibia. Emissionsnebel Foto
Supernova-Rest NGC 6992 ff. Cirrus 180′ 7,0 mag Cyg Cirrus-Nebel, Schleier-Nebel
Gas-Nebel NGC 7000 Nordamerika 120′ x 100′ 3,4 mag Cyg Nordamerika-Nebel – Klassiker – groß
Planetarischer Nebel NGC 7293 Helix-Nebel 16′ x 28′ 7,6 mag Aqr Dekl=-21°, Beobachtung: Okt/Nov Foto
Gas-Nebel IC 1318 Schmetterlings-Nebel 50′ x 30′ Cyg Emissionsnebel und H-II-Gebiet
Gas-Nebel IC 2944 Running Chicken 40′ x 20′ 4,5 mag Cen Namibia. Der Nebel resultiert aus einer H-II-Region der Milchstraße Foto