Physik: Quantenmechanik

Gehört zu: Physik
Siehe auch: LaTeX

Max Planck konnte im Jahre 1900 ein Strahlungsgesetz entwickeln, das zeigt welche Strahlungsenergie ein “Schwarzer Strahler” einer bestimmten Temperatur (T) in Anhängigkeit von der Wellenlänge (oder Frequenz “ν”) der Strahlung aussendet.

Die früheren Formeln (Hypothesen) z.B. von Rayleigh-Jeans waren nur Teilerfolge, da sie in der sog. “Ultraviolettkatastrophe” endeten.

Plancks Strahlungsgesetz ist eigentlich nur eine Formel wie viele andere in der Physik auch, die endlich die Verteilung der Strahlungsenergie in Abhängigkeit von der Wellenlänge/Frequenz der Strahlung “richtig” darstellt.

\( \Large \frac{8 \cdot \pi  \cdot h \cdot \nu^3}{c^3} \cdot \frac{1}{e^\frac{h \nu}{k T} – 1}\)

In Plancks Formel kommt eine vom ihm so genannte “Hilfskonstante” h vor, die später als das legendäre Plancksche Wirkungsquantum interpretiert wurde.

Häufig hört man, dass aus dieser Formel angeblich die Übertragung der Energie in sog. Quanten (ganzzahlige Vielfache  von h mal ν) folgt. Das kann man aber aus der Formel selbst überhaupt nicht ableiten. Vielmehr ist es so, dass Planck (angeblich) auf diese Formel kam indem er elektromagnetische Strahlung (das Licht) als Teilchen modellierte, die sich wie ein Gas verhalten sollten. Die unterschiedlichen Geschwindigkeiten solcher Teilchen modelliert Planck als unterschiedliche Wellenlängen der Strahlung…

Ein solches Teilchen sollte eine von der Frequenz seiner Strahlung abhängige Energie haben. Das ist die zentrale Formel (Quantenhypothese) von Planck:    \(E = h \cdot \nu \)

Die Formeln für das Strahlungsgesetz hat Planck zunächst durch Probieren herausgefunden und dann später eine Herleitung auf Basis seiner Quantenhypothese gefunden.

Planck glaubte jedoch damals noch nicht an eine allgemeine Quantelung, diese war nur eine Annahme, um die Theorie in Einklang mit den Messungen bringen zu können. Der Erfolg der Planck-Theorie brachte Niels Bohr jedoch dazu, die Quantelung des Lichts auch für die Elektronenzustände in seinem Atommodell anzunehmen.

Quelle: http://www.quantenwelt.de/quantenmechanik/historisch/schwarze_korper.html

Siehe auch: Wiensches Verschiebungs Gesetz, Stefan-Bolzmann….

Mathematik: Komplexe Zahlen

Siehe auch: Kosmologie
Benötigt: WordPress Plugin LaTeX

Ein bisschen Mathematik

Angeregt von einem Youtube-Video “Top 10 equations that changed to world” wollte ich hier die wichtigsten Errungenschaften der Mathematik und Physik sind darstellen:

  • Der Lehrsatz des Pythagoras  10
  • Der Logarithmen (Napier)   9
  • Differentialrechnung (“Calculus”) und Grenzwerte  (Newton, Leibnitz)  8
  • Das Gravitationsgesetz (Newton)  7
  • Die komplexen Zahlen (Euler,…)  6
  • Wellengleichung   (d’Alembert) 5
  • Fourier Transformation   4
  • Navier Stokes Gleichung   – Aerodynamik  –   3
  • Faraday und Maxwell Gleichungen   2
  • Black Schole Gleichung   – Finanzmathematik    2
  • Einstein Relativitätstheorie und Schrödinger Quantenmechanik  1

Der Lehrsatz des Pythagoras

Im rechtwinkligen Dreieck mit den Katheten a und b und der Hypotenuse c gilt:

a² + b² = c²

Auf dieser Basis kann man Entfernungen im Raum (sog. Metriken) mit mathematischen Formeln berechnen; z.B. im drei-dimensionalen Euklidischen Raum:

ds2 = dx2 + dy2 + dz2

Logarithmen

Vereinfachen der Multiplikation zur Addition z.B. bei komplexen astronomischen Berechnungen….

Logarithmische Skalen…

Die komplexen Zahlen

Eine komplexe Zahl schreibt man gerne als Realteil und Imaginärteil:

z = x + i*y      x = Re(z)   und   y = Im(z)

Wobei x und y reelle Zahlen sind.

Mit dem Komplexen Zahlen kann man auch die vier Grundrechnungsarten, so wie wir sie von den “normalen” d.h. reellen Zahlen her kennen, ausführen.

Darstellung mit kartesichen Koordinaten

Die Reellen Zahlen konne ich mir ja durch die sog. Zahlengerade gut veranschaulichen. Die Komplexen Zahlen würde ich mir dann durch die Punkte in einer Ebene veranschaulichen.

Polar-Darstellung

Wenn komplex Zahlen einfach als Punkte in der Ebene verstanden werden können, kann ich sie anstelle von karteschen Koordinaten, alternativ auch in durch sog. Polarkoordinaten darstellen; d.h. durch die Entfernung vom Nullpunkt r und den Winkel mit der reellen Achse φ.

Es gilt mit z = x + i*y :

r² = x² + y²

tan φ = x/y

\(\displaystyle \tan{ \phi} = \frac{x}{y} \)

Exponential-Darstellung

Die Eulerschen Formel ist:

\(\displaystyle  e^{i  \cdot \phi} = \cos \phi+i \cdot \sin \phi \)

Damit erhalten wir als sog. Exponatial-Darstellung:

\(\displaystyle z ={r} \cdot e^{i  \cdot \phi} \)

Die Eulersche Zahl

Definition der Eulerschen Zahl

Die Zahl e wurde von Leonard Euler als Grenzwert der folgenden unendlichen Reihe definiert:

\(\displaystyle e = 1 + \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} +  \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + …   \)

Oder:

\(\displaystyle e = \sum_{n=0}^{\infty} \frac{1}{n!} \)

Die Exponentialfunktion

Potenzen zur Basis e bilden die Exponentialfunktion, auch e-Funktion genannt:

f(x) = ex

Die Ableitung (Differentialquotient) der e-Funktion ist wiederum die e-Funktion:

f'(x) = ex

Damit ergibt sich als Taylorsche Reihenentwicklung um den Entwicklungspunkt x0 = 0

\(\displaystyle f(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!}  + …  + \frac{x^n}{n!} + …   \)

Allgemein wäre die Taylor-Reihe ja:

\( \displaystyle T_\infty(x;x_0) = \sum_{k=0}^{\infty} \frac{f^(k)(x_0)}{k!} (x-x_0)^k \)

Da der Funktionswert und alle Ableitungen der e-Funktion an der Stelle x0 = 0 sämtlich 1 sind, vereinfacht sich die Darstellung wie oben gezeigt.