Mathematik: Koordinatensysteme

Gehört zu: Tensoren
Siehe auch: Metrik-Tensor, Astronomische Koordinatensysteme
Benutzt: Latex-Plugin

Stand: 13.11.2021

Koordinatensysteme in Riemanschen Mannigfaltigkeiten

Koordinatensysteme spielen u.a. in sog. Riemanschen Manigfaltigkeiten eine Rolle.

Man hat eine Punktmenge M (Topologischer Raum?) und ordnet jedem Punkt ein-ein-deutig ein n-Tupel von Koordinaten zu. Dann kann man statt der Punkte über diese n-Tupel (also die n Koordinaten) sprechen.
So eine Koordinate ist im einfachsten Fall eine reelle Zahl, dann sind die Koodinaten also n-Tupel reeller Zahlen, also Elemente aus dem \( \mathbb{R}^n \). Im allgemeinen Fall nehmen wir für die Koordinaten einen Körper.

Wir hätten also eine ein-ein-deutige (d.h. bijektive) Abbildung zwischen Punkten und n-Tupeln:

\( M \to \mathbb{R}^n \)

Chartesische Koordinaten

Im herkömmlichen unserer Anschauung entsprechenden dreidimensionalen Raum \(\mathbb{R}^3 \) habe wir ja die klasssichen Chartesischen Koordinaten mit den Symbolen: x, y, z. Im höherdimensionalen Falle schreibt man dann eher x1, x2, x3, x4,…

Krummlinige Koordinaten

Bei nicht-chartesischen Koordinaten, die wir als “allgemeine Koordinaten” bezeichnen, verwenden wir im allgemeinen die Symbole qi (i=1,2,..). Diese “allgemeinen Koordinaten” nennt man, um den Gegensatz zu den Chartesischen Koordinaten deutlich zu machen, auch gerne krummlinige Koordinaten.

Typische Beispiele für krummlinige Koordinaten sind z.B.

  • Ebene Polarkoordinaten
  • Kugel-Koordinaten
  • Zylinder-Koordinaten

Kurven und Tangenten

Eine Kurve in einer Riemanschen Manigfaltigkeit M wird gegeben durch eine Abbildung von einem reellen Intervall auf Punkte in die Riemansche Manigfaltigkeit. Man nennt so eine Abbildung auch eine Parameterdarstellung der Kurve.

Den Parameter aus einem reellen Intervall können wir schreiben als: \( t \in [t_a, t_e] \)

Die Abbildung ist dann:

\( [t_a, t_e] \to M \\\)

Wir haben also zu jedem Parameterwert \( t \in [t_a, t_e] \) einen Punkt aus der Riemannschen Manigfaltigkeit M.

Wenn wir den Punkt durch seine Koordinaten \( \left(q^i\right) \) ausdrücken, ist die  Kurve also eine Abblidung:

\( [t_a, t_e] \to \mathbb{R}^n \\\)

Wo also die Koordinaten qi eine Funktion des Parameters t sind: \( q^i = q^i(t) \)

Wenn die Kurve differenzierbar ist (also die Koordinaten der Parameterdarstellung), hat die Kurve auch Tangentenvektoren:

\(\vec{T}(t) = \left(T^i(t)\right) = \Large \left(\frac{dq^i}{dt} \right) \)

Die Kurve selbst liegt in der Riemanschen Manigfaltigkeit; der Tangentenvektor aber nicht, er ist an die Riemannsche Mannigfaltigkeit sozusagen “angeheftet”.

Die Tangentenvektoren liegen in einem eigenen Vektorraum…

Koordinatenlinien

Bei einem n-dimensionalen Koordinatensystem erhält man eine Koordinatenlinie indem man n-1 Koordinaten festhält und genau eine Koordinate als Parameter laufen lässt.
So eine Koordinatenlinie kann man als (unendliche) Kurve auffassen.

Durch jeden Raumpunkt \( (p^i) = \left( p^1, p^2,\ldots, p^n \right)\) gehen dann n Koordinatenlinien: \( L_j\) mit \( j=1, 2,\ldots, n \).

Die Koordinatenlinie \( L_j\)  hat den Parameter \( t = q^j \) und die Werte:

\( q^i(t) = p^i \enspace (\text{falls } i \neq j)  \)
\( q^i(t) = t \enspace (\text{falls } i = j)  \)

Schöneres Latex:

\( q^i(t) = \left \{  \begin{array}{ll}   p^i & \text{falls } i \neq j \\ t & \text{falls } i = j \\    \end{array} \right. \)

Koordinaten-Hyperflächen

Bei einem n-dimensionalen Koordinatensystem bekommt man Koordinaten-Hyperflächen in dem man genau eine Koordinate festhält und alle anderen laufen lässt.

Durch jeden Raumpunkt \( (p^i) = \left( p^1, p^2,\ldots, p^n \right) \)  gehen dann n Koordinaten-Hyperflächen.

So eine Koordinaten-Hyperfläche kann man als sog. Teil-Mannigfaltigkeit auffassen.

Astronomische Koodinatensysteme

Hierzu habe ich einen eigenen Artikel Astronomische Koordinatensysteme geschrieben.

Physik: Einstein ART Allgemeine Relativitätstheorie

Gehört zu: Physik
Siehe auch: Relativitätstheorie, Kosmologie, Expansion des Universums, Metrik-Tensor
Benutzt: Latex-Plugin

Einsteins Allgemeine Relativitätstheorie (ART)

In Einsteins Allgemeiner Relativitätstheorie (ART) geht es um die Gravitation, die ja schon von Newton beschrieben wurde.

Ein Ausgangspunkt für die ART ist das sog. Äquivalenzprinzip. Es besagt, dass ein gleichmäßig beschleunigtes Bezugssystem nicht von einem Bezugssystem mit einem homogenen Gravitatiosfeld unterschieden werden kann. Formelmäßig ist dann die sog. “träge Masse” identisch mit der “schweren Masse”….

Quelle: Youtube Video https://youtu.be/hU0Mcd2-XH4

Bekannt sind seine berühmten sog. Feldgleichungen:

\( \Large R_{\mu \nu} – \frac{1}{2} R g_{\mu \nu} + \Lambda g_{\mu \nu} = \frac{8 \pi G}{c^4} T_{\mu \nu} \\\)

Die obige Gleichung kann so kompakt hingeschrieben werden, weil sog. Tensoren verwendet werden.

Der Metrik-Tensor ist \( g_{\mu \nu} \). Gemäß Konvention laufen die Indices μ und ν = 0,1, 2, 3 wobei 0 die Zeit-Koordinate bedeutet.

Den Metrik-Tensor habe ich wohl verstanden und im Einzelnen in einem separaten Blog-Post beschrieben.

\( T_{\mu \nu} \\\) ist der sog. Energie-Impuls-Tensor, den man im Vakuum einfach auf Null setzt (sog. Vakuumlösungen).

Der Engergie-Impuls-Tensor soll Massendichte, Energiedichte, Druck und ähnliches beschreiben, soll heissen alles, was für die Krümmung des Raumes Ursache sein soll. Dieser Tensor ist für die Entwicklung des Universums wichtig; siehe: Expansion des Universums.

Λ (großes Lambda) ist die sog. kosmologische Konstante, die ursprünglich (1915) nicht in der Gleichung stand, sondern später von Einstein eingeführt wurde, um dem gravitativen Kollaps des Universums entgegen zu wirken.

\( R_{\mu \nu} \) ist der sog. Ricci-Tensor – keine Ahnung, was das sein soll.

Manchmal sieht mit die Einsteinschen Feldgleichungen auch in einer etwas anderen Form:

\( \Large G_{\mu \nu}  = \frac{8 \pi G}{c^4} T_{\mu \nu} \\\)

Mit dem sog. Einstein-Tensor:

\( \Large G_ {\mu \nu}  = R_{\mu \nu} – \frac{1}{2} R g_{\mu \nu} + \Lambda g_{\mu \nu}  \\\)

Was man immer wieder hört, ist dass nach Einstein große Massen die Raumzeit krümmen. Wobei die Krümmung der vierdimensionalen Raumzeit nicht in eine weitere Dimension (die fünfte) geht, sondern die Raumzeit “in sich” gekrümmt wird, soll wohl heissen, dass nicht mehr die Euklidische Metrik gilt, sondern eine andere Metrik, eine “Nichteuklidische Metrik“.

Siehe hierzu: Krümmung der Raumzeit

 

Mathematik: Der Metrik-Tensor

Gehört zu: Vektoranalysis
Siehe auch: Allgemeine Relativitätstheorie, Koordinatensysteme, Vektorbasis, Tensoren, Gekrümmter Raum

Der Metrik-Tensor

Stand: 26.10.2021

Youtube-Videos von Prof. Paul Wagner:

Wir betrachten eine Riemansche Manigfaltigkeit; d.h. eine Punktmenge mit einem Koordinatensystem. Zu so einem Koordinatensystem, gehört ein Metrik-Tensor, der uns auch ein Linienelement definiert und damit so etwas wie eine Metrik.

Wir kommen aber nicht in einem Schritt von einem Koordinatensystem zu einem Metrik-Tensor, sondern betrachten zunächst, wie ein Koordinatensystem eine Vektorbasis definiert. Zu so einer Vektorbasis haben wir dann einen Metrik-Tensor.

Schlussendlich wollen wir ja Vektorfelder beschreiben. Dabei handelt es sich ja um eine Abbildung von Raumpunkten auf Vektoren. Dabei wird der Raumpunkt durch seine Koordinaten im Koordinatensystem und der Vektor durch seine Komponenten bezügliche “seiner” Vektorbasis beschieben. Wenn wir dann beispielsweise die Veränderung eines Vektors bei kleinen Veränderungen des Raumpunkts untersuchen, müssen wir nicht nur die Veränderung der Vektorkomponenten, sondern ggf. auch die Veränderung der Basisvektoren berücksichtigen, da die Basisvektoren ja im Allgemeinen (z.B. bei krummlinigen Koodinaten) auch vom Ort im Raum abhängig sein werden.
Das wird uns dann zur sog. Kontravarianten Ableitung führen.

Koordinatensystem und Vektorbasis

Zu einem Koordinatensystem bekommmen wir nämlich zwei möglicherweise verschiedene Vektorbasen:

1) Die Basisvektoren sind tangential zu den Koordinatenlinien: sog. kovariante Basis

2) Die Basisvektoren stehen normal (senkrecht) auf den Koordinatenhyperflächen: sog. kontravariante Basis

Bei Chartesischen Koordinaten sehen wir Besonderheiten:

  1. Kovariante Vektorbasis = Kontravarinate Vektorbasis
  2. Die Vektorbasis ist unabhängig vom betrachteten Raumpunkt, also überall die gleiche.

Bei nicht-chartesischen Koordinatensystemen (sog. krummlinigen) wird das beides anders sein.

Bei solchen nicht-chartesischen Koordinaten, die wir als “allgemeine Koordinaten” bezeichnen, verwenden wir im allgemeinen die Symbole qi (i=1,2,..). Diese “allgemeinen Koordinaten” nennt man, um den Gegensatz zu den Chartesischen Koordinaten deutlich zu machen, auch gerne krummlinige Koordinaten.

Wir betrachten nun einen Raum mit den allgemeinen (krummlinigen) Koordinaten: \( q^\alpha \) mit α =1,2,…,n und einem hilfsweise dahinterliegenden Chartesischen Koordinaten: \( x^i \) mit 1= 1,2,….n.

Als Hilfsmittel ziehen wir anfangs gerne die Chartesischen Koordinaten hinzu, wo wir dann im Fall von beliebig vielen Dimensionen die Symbole xi (i=1,2,…) verwenden, oder bei zwei und oder drei Dimensionen, manchmal auch: x,y,z.

Die kovarianten Basisvektoren nennen wir:

\(\Large {\vec{g}}_\alpha \)    wobei α=1,2,..,n

Diese Basisvektoren sind Tangenten an die Koordinatenlinien. Demnach sind die Komponenten (i=1,2,…n) dieser Basisvektoren im Chartesischen Koordinatensystem:

\(\Large \left( \vec{g}_\alpha \right)^i = \frac{\partial x^i}{\partial q^\alpha} \)

Die kontravarianten Basisvektoren nennen wir:

\(\Large {\vec{g}}^{\,\alpha} \)    wobei α=1,2,..,n

Diese Basisvektoren sind Normalen auf den Koordinatenhyperflächen. Demnach sind die Komponenten (i=1,2,…n) dieser Basisvektoren im Chartesischen Koordinatensystem:

\( \Large \left( {{\vec{g}}^{\,\alpha}} \right)^i = \frac{\partial q^\alpha}{\partial x^i} \)

Vektorbasis und Metrik-Tensor

Wenn wir eine Vektorbasis gefunden haben; z.B.:

Eine Vektorbasis: \( \vec{g}_\alpha \)  (α= 1,2,…,n)

Erhalten wir zu dieser Vektorbasis den dazugehörigen Metrik-Tensor als: \( \left(g_{ij}\right) = \vec{g}_i \cdot \vec{g}_j  \)

Merke: Zu einer Vektorbasis haben wir einen Metrik-Tensor.

Die Riemann-Metrik

Wir können auf einer Riemannschen Mannigfaltigkeit ein Tensor-Feld \( g_{ij} \) definiert haben, mit dem wir einen Abstandsbegriff (d.h. eine Metrik) definieren; genauer gesagt, mit dem wir die Länge einer Kurve in der Mannigfaltigkeit definieren wie folgt:

\(\Large s = \int\limits_{t_a}^{t_b} \sqrt{g_{ij}\frac{dq^i}{dt}\frac{dq^j}{dt}} \, dt  \)

So einen Tensor \( g_{ij} \) nennen wir Metrik-Tensor.

Allgemeine Weisheiten zum Metrik-Tensor

Der Metrik-Tensor ist also ein Tensor-Feld, das auf einer Riemannschen Mannigfaltigkeit definiert ist.

  • Wenn der Metrik-Tensor Elemente konstant sind (also nicht vom Ort abhängen) ist der Raum ein flacher Raum. Es kann dafür auch eine geeignete Koordinaten-Transformation benutzt werden.
  • Wenn die Komponenten des Metrik-Tensors aber vom Ort abhängen (keine Koordinaten-Transformation kann sie konstant machen), ist der Raum ein gekrümmten Raum.
  • So ein gekrümmer Raum kann in einen höherdimensionalen euklidischen (flachen) Raum eingebettet sein (z.B. die zweidimensionale Kugeloberfläche) muss es aber nicht.
  • Ein Euklidischer Raum, ist ein flacher Raum bei dem der Metrik-Tensor die Einheitsmatrix ist bzw. alle Diagonalelemente positiv sind.

Beipiel 1: Chartesische Koordinaten

Das Linienelement ist:

\( ds^2 = d{x_1}^2 + d{x_2}^2 + d{x_3}^2 + … \)

Also:

\( ds^2 = \sum\limits_{i=1}^{n}{{dx_i}^2} \)

Der Metrik-Tensor ist dabei ja ein Tensor vom Rang 2 und ist in diesem chartesischen Falle identisch mit der Einheitsmatrix (beispielsweise mit 3 Dimensionen):

\(\Large (g_{ij}) =  \left[ \begin{array}{rrr} 1 & 0 & 0\\  0 & 1 & 0 \\  0 & 0 & 1 \end{array} \right]  \\\)

Dieser Metrik-Tensor definiert dann unser Linienelement:

\( (ds)^2 = \sum\limits_{i=1}^n{\sum\limits_{j=1}^n{dx_i dx_j g_{ij}}} \)

Oder in der Einsteinschen kompakten Schreibweise (mit der sog. Summenkonvention):

\( (ds)^2 = g_{ij} dx^i dy^j \)

Beispiel 2: Ebene Polarkoordinaten

Im zweidimensionalen Euklidischen Raum (Ebene) haben wir als Chartesische Koordinaten: x1 = x,  x2 = y

Als krummlinigen Koordinaten nehmen wir Polarkoordinaten: q1 = r und q2 = φ

Zum Rechnen verwenden wird als Hilfsmittel gern die Chartesischen Koordinaten. Damit haben wir Koordinaten-Transformationen in beiden Richtungen:

\( x = r \cdot \cos{\phi} \\ \\ y = r \cdot sin{\phi} \)

Und in der anderen Richtung ist:

\( r = \sqrt{x^2 + y^2} \\ \phi =\arctan{\frac{y}{x}} \)

Zu diesen Koordinaten erhalten wir als kovariante Vektorbasis (Basis Vektorsystem):

\( \left( \vec{g}_\alpha \right)^i = \frac{\partial x^i}{\partial q^\alpha} \)

Zu diesen kovarianten Basisvektoren bekommen wir als kovarianten Metrik-Tensor:

\( \left(g_{ij}\right) =  \left[ \begin{array}{rr} 1 & 0 \\  0 & r^2  \end{array} \right]  \\\)

Wobei dieses Beispiel zeigt: (1) Der Metrik-Tensor ist ortsabhängig und (2) Die zugrundeliegende Vektorbasis ist zwar orthogonal, aber nicht orthonormal.

Und entsprechend das kovariante Linienelement:

\( (ds)^2 =  dr^2 + r^2 d\phi^2 \\ \)

Zu diesen Koordinaten erhalten wir als kontravariante Vektorbasis:

\( \left( {{\vec{g}}^{\,\alpha}} \right)^i = \frac{\partial q^\alpha}{\partial x^i} \\\)

Zu diesen kontravarianten Basisvektoren bekommen wir als kontravarianten Metrik-Tensor (wir können die Komponenten des kontravarianten Metrik-Tensors ausrechnen oder nehmen einfach das Inverse des kovarianten Metriktensors):

\( \left(g^{ij}\right) =  \left[ \begin{array}{rr} 1 & 0 \\  0 & \frac{1}{r^2}  \end{array} \right]  \\\)

Und entsprechend das kontravariante Linienelement:

\( (ds)^2 =  dr^2 + \frac{1}{r^2} d\phi^2   \)

Wir sehen auch, dass die beiden Metrik-Tensoren invers zueinander sind.

Beispiel 3: Zylinderkoordinaten

Im dreidimensionalen euklidischen Raum können wir neben den Chartesischen Koordinaten x ,y, z die Zylinderkoordinaten (r, φ, z) betrachten.
Dies sind also allgemeine (krummlinige) Koordinaten mit \( q^1 = r,  \, q^2 = \phi, \, q^3 = z \)

Aufgrund der Koordinaten-Transformationen bekommen wir:

Für den  kovarianten Metrik-Tensor:

\( \left(g_{ij}\right) =  \left[ \begin{array}{rrr} 1 & 0  & 0 \\  0 & r^2 & 0 \\ 0 & 0 & 1  \end{array} \right]  \\\)

Und entsprechend das kovariante Linienelement:

\( (ds)^2 =  dr^2 + r^2 d\phi^2  + dz^2 \\ \)

Und für den  kontravarianten Metrik-Tensor bekommen wir:

\( \left(g_{ij}\right) =  \left[ \begin{array}{rrr} 1 & 0  & 0 \\  0 & \frac{1}{r^2} & 0 \\ 0 & 0 & 1  \end{array} \right]  \\\)

Und entsprechend das kontravariante Linienelement:

\( (ds)^2 =  dr^2 + \frac{1}{r^2} d\phi^2 + dz^2 \)

Wiederum sehen wir auch, dass die beiden Metrik-Tensoren invers zueinander sind.

Beispiel 4: Kugelkoordinaten

Im dreidimensionalen euklidischen Raum können wir neben den Chartesischen Koordinaten x, y, z die Kugelkoordinaten (r, θ, φ) betrachten.
Dies sind also allgemeine (krummlinige) Koordinaten mit \( q^1 = r, \,  q^2 = \theta, \,  q^3 = \phi \)

Als kovariante Vektorbasis bekommen wir wieder die Tangenten an die Koordinatenlinien, also an die “Radialachse” (Zenith/Nadir), die “Meridiane” (Nord/Süd) und die “Breitenkreise” (Ost/West).

Als kovarianten Metrik-Tensor bekommen wir:

\( \left(g_{ij}\right) =  \left[ \begin{array}{rrr} 1 & 0  & 0 \\  0 & r^2 & 0 \\ 0 & 0 & r^2 \sin^2 \theta  \end{array} \right]  \\\)

Und entsprechend das kovariante Linienelement:

\( (ds)^2 =  dr^2 + r^2 d\theta^2  + r^2 \sin^2 \theta \, d\phi^2 \\ \)

Und als kontravarianten Metrik-Tensor bekommen wir:

\( \left(g_{ij}\right) =  \left[ \begin{array}{rrr} 1 & 0  & 0 \\  0 & \frac{1}{r^2} & 0 \\ 0 & 0 & \frac{1}{r^2 \sin^2 \theta}  \end{array} \right]  \\\)

Und entsprechend das kontravariante Linienelement:

\( (ds)^2 =  dr^2 + \frac{1}{r^2}d\theta^2  + \frac{1}{r^2 \sin^2 \theta}d\phi^2 \)

Wiederum sehen wir auch, dass die beiden Metrik-Tensoren invers zueinander sind.

Beispiel 5: Kugeloberfläche

Die Oberfläche einer Kugel mit dem (festen) Radius R ist ein zweidimensionaler Raum, wo wir als Koordinatensystem gut mit dem entsprechenden Teil der Kugelkkordinaten arbeiten können.

Also mit den allgemeinen (krummlinigen) Koordinaten mit \(  q^1 = \theta, \,  q^2 = \phi \), was also auf der Erdoberfläche prinzipiell der geografischen Breite und der geografischen Länge entsprechen würde.

Als kovariante Vektorbasis bekommen wir wieder die Tangenten an die Koordinatenlinien, also an die “Meridiane” (Nord/Süd) und die “Breitenkreise” (Ost/West).

Der Metrik-Tensor ergiebt sich dann ganz analog aus dem Vorigen:

Als kovarianten Metrik-Tensor bekommen wir:

\( \left(g_{ij}\right) =  \left[ \begin{array}{rr}  R^2 & 0 \\  0 & R^2 \sin^2 \theta  \end{array} \right]  \\\)

Und entsprechend das kovariante Linienelement:

\( (ds)^2 =  R^2 d\theta^2  + R^2 \sin^2 \theta \, d\phi^2 \\ \)

Der so definierte Riemansche Raum (Kugeloberfläche mit dem o.g. Koordinatensystem) ist ein Nichteuklidischer Raum, wie wir sehen werden. Zur Geometrie in solchen Nichteuklidischen Räumen haben wir ja noch nichts gesagt; aber die Standard-Weissheit ist ja die Winkelsumme im Dreieck und…

 

 

 

Physik: Wellen und Covektoren

Gehört zu: Physik
Siehe auch: Relativitätstheorie, Vektorraum

Wie werden Wellen beschrieben und wie helfen Covektoren dabei?

Vektoren und Covektoren

Ein Vektor ist wie ein Pfeil, also etwas, was eine Richtung und eine Größe hat.

Ein Covektor ist  wie ein “Stack”, also etwas was eine Richtung und eine Dichte hat.

So ein Feld von Covektoren ordnet jedem Vektor eine Zahl zu, nämlich die Zahl an “Stack-Linien”, die der Vektor in seiner Länge kreuzt; wobei da auch nicht-ganze Zahlen und auch negative Zahlen sein können. Vermutlich ist das bei genauerer Betrachtung ein Differentialquotient.

Etwas genauer gesagt ist ein Covektor also eine Abbildung, die jedem Vektor aus einem Vektorraum V über K eine Zahl aus dem Körper K zuordnet:

\( \alpha : V \to K \)

Die Kovektoren α verhalten sich “linear” bei Vektoraddition und Skalierung und bilden also selber einen Vektorraum (Symbol V*). In Formeln also:

\( \alpha(a \cdot \vec{u} + b \cdot \vec{w}) = a \cdot \alpha(\vec{u}) + b \cdot \alpha(\vec{w})  \)

Mit einer Vektorbasis kommt man zur Darstellung eines Vektors durch sog. Komponenten. Die Komponenten von (normalen) Vektoren verhalten sich “kontravariant” und wir schreiben den Index oben, die Komponenten von Kovektoren verhalten sich “kovariant” und wir schreiben den Index unten.

Beschreibung von Wellen

Bei einer Welle ändert sich eine physikalische Größe periodisch sowohl mit der Zeit als auch mit dem Ort.

Die periodische Veränderung über den Ort wiederholt sich nach eine Wellenlänge (Symbol: Lambda \( \lambda \)).
Man misst auch die Anzahl Schwingungen pro Längeneinheit, was Wellenzahl genannt wird (Symbol:  Kappa κ).

Die periodische zeitliche Veränderung wiederholt sich nach eine Periodenlänge (Symbol: T). Man misst das auch als Frequenz (Einheit: Schwingungen pro Sekunde = Hertz)

In Formeln:

\( \kappa = \frac{1}{\lambda} \)

Insofern kann man eine Welle sehr gut als Covektor-Feld beschreiben, wo wir eine Richtung haben und eine Dichte d.h. wieviel Wellen pro Zeiteinheit…

Quelle: Youtube Video: https://youtu.be/Q8SfVDr4OjU

 

Physik: Oberartikel

Gehört zu: Physik (Oberartikel)

Oberartikel zur Physik (Root article)

Obwohl ich eigentlich vorrangig an Astronomie interessiert bin, habe ich doch auch einige Fragen der Physik rechechieren müssen, um z.B. bei der Astrophysik und Kosmologie ein bisschen mehr zu verstehen…

Internet: Wikipedia

Gehört zu: Internet, World Wide Web
Siehe auch: Lexikon

Das Lexikon im Internet: Die Wikipedia

Die Wikipedia ist eine kostenlose Ezyplopädie im WordWideWeb. Gegründet 2001 konnte anfangs jeder mitmachen und beliebige “schlaue” Artikel schreiben, die nur einer gewissen Netikette genügen mussten. Nach und nach wurden die Anforderungen an den Wahrheitsgehalt und an die Nachweise hochgeschraubt. Nachwievor sollte man nicht alles glauben, was in der Wikipedia steht – aber trotzdem mit dem erforderlichen eigenen Urteilsvermögen ist die Wikipedia eine unschätzbare Quelle allen Wissens.

Speziell interessant sind dauch die Abbildungen und grafischen Darstellungen, die als “Wikimedia” größtenteils ohne ein groß einschränkendes Copyright allgemein verfügbar sind.
Abbildungen aus dieser Wikimedia kann man beispielsweise ganz leicht in seine WordPress-Artikel einzügen…

 

Physik: Energie, Arbeit und Leistung

Gehört zu: Physik
Siehe auch: Energie, Begriffslexikon

Praktische Physik: Energie, Arbeit, Leistung

Welche Arten von Energie gibt es? In welchen Maßeinheiten misst man Energie?

  • Wärme-Energie: Die Engergie, die ich brauche, um ein Kilogramm Wasser um 1 Grad Celsius zu erwärmen: Das war die gute alte Kilokalorie. Seit dem 1.1.1978 in der EG abgelöst durch die Maßeinheit Joule und Kilojoule.
  • Elektrische Engergie: Eine Gühlampe von 100 Watt soll zehn Stunden leuchten. Das ist die Energiemenge von 1 Kilowattstunde (1 kWh). Die Stadt Hamburg verbraucht im Jahr ca. 12.000.000.000.000 Wattstunden, das nennt man 12   Terawattstunden (12 TWh).
  • Mechanische Engergie ist Kraft mal Weg: Ein Gewicht von 75 Kilo um einen Meter hochheben (dafür benötige ich eine bestimmte Energiemenge) – wenn ich das innerhalb von 1 Sekunde tue, leiste ich 1 Pferdestärke (1 PS).
  • Bewegungsenergie: Wenn ich einen Körper der Masse 1 Kilogramm von Null auf eine Geschwindigkeit von 1 m/sec beschleunige, hat er eine kinetische Energie von ½mv² d.h. 0,5 Joule.
    Wenn ich das ganze in einer Sekunde vollbringe, leiste ich 0,5 Joule/s = 0,5 Watt.
    Die Beschleunigung beträgt 1 m/sec²; d.h. ich habe eine Kraft von 1 Newton aufgebracht.
  • Explosionsenergie: Die Atombombe von Hiroschima hatte eine Sprengkraft von 20 Kilotonnen TNT, die erste Wasserstoffbombe von 10 Megatonnen TNT.
  • Der Asteroid, der vor 65 Mio Jahren auf der Erde aufschlug und die Dinosaurier zum Aussterben brachte soll eine Sprengkraft von 10 Millionen Megatonnen TNT gehabt haben.
  • Vulkanausbrüche: Der Ausbruch des Vesuvs im Jahre 79 soll VEI=6 gehabt haben.
  • Atomteilchen: Wenn man ein Elektron durch eine Spannung von 1 Volt beschleunigt, hat es eine Energiemenge von 1 Elektronenvolt dazubekommen (1 eV).
  • Kinetische Energie – Potentielle Engergie
  • Masse ist Energie E = mc2, nach Einstein.

Energie und Arbeit sind im Prinzip das Gleiche. Das ist nur eine sprachliche Feinheit z.B. Ich leiste eine bestimmte Arbeitsmenge d.h. ich setze eine bestimmte Energiemenge ein, verbrauche sie – oder genaugenommen setze sie in eine andere Energieform um (Energie-Erhaltungssatz). Die offizielle Maßeinheit für Energie und Arbeit ist das Joule. Was was eigentlich ist, später.

Leistung ist sozusagen die “Arbeitsgeschwindigkeit”, also Arbeit pro Zeiteinheit oder “Engergie­verbrauchs­geschwindigkeit”, also Energie pro Zeiteinheit. Gemessen also in Joule/sec, was immer das eigentlich ist.

Zeitmessung, Zeitzonen, Atomuhr, Schaltsekunde: Zeit

Physikalische Größen, die wir bisher erwähnt haben: Temperatur (Celsius, Fahrenheit, Kelvin), Kraft/Gewicht (?), Weg (m, km), Zeit (Sekunde, Stunde, Jahre), Geschwindigkeit (km/h, m/sec) elektrische Leistung (Watt), elektrische Spannung (Volt), Masse (kg).

Generell kann jede Maßeinheit mit Vorsilben versehen werden, um größere Mengen einfacher ausdrücken zu können. Beispiel: Gramm, Kilogramm. Manche sind allgemein bekannt, andere nur in bestimmten Zusammenhängen “üblich”:

Tabelle 1: Vorsilben für Masseinheiten

Vorsilbe Zehnerpotenz Ausgeschriebene Zahl Beispiel
kilo 103 1.000 Kilometer, Kilogramm
Mega 106 1.000.000 Megabyte, Megawatt, Megahertz
Giga 109 1.000.000.000 Gigabyte, Gigahertz
Tera 1012 1.000.000.000.000 Terawatt
Peta 1015 1.000.000.000.000.000
Exa 1018 1.000.000.000.000.000.000

Physikalische Größen und ihre Maßeinheiten (sog. SI-Einheiten)

Größe Maßeinheit Symbol Andere Maßeinheiten
Zeit Sekunde s Stunde (h), Tag, Jahr
Länge (Entfernung) Meter m Meilen, Seemeilen, Astronomische Einheiten,
Parsec, Lichtjahre
Masse Gramm g Tonne (t), Atomäquivalent
Temperatur Kelvin K Grad Celsius, Grad Fahrenheit
Geschwindigkeit m/s km/h
Kraft (Gewicht) Newton N Kilopond (kp)
Leistung Watt W PS
Ernergie (Arbeit) Joule J Kalorie (cal), kWh, Megatonne TNT, VEI, Tonne Steinkohleneinheit (t SKE)

Umrechnungen

    • Masse
      • 1 Tonne = 1000 kg
    • Zeit
      • 1 h = 3600 s
    • Kraft / Gewicht
      • 1 kp = 9,80665 N
    • Leistung
      • 1 PS = 75 mkp/s = 75 * 9,80665 Nm/s = 735,49875 Watt
    • Energie
      • 1 J = 0.2388 cal
      • 1 cal = 4,186 J
    • Energie – Arbeit
      • 1 kWh = 3.600.000 Ws = 3.600.000 J = 3,6 MJ
      • 1 MWh = 3.600 MJ = 3,6 GJ
      • 1 GWh = 3.600.000 MJ = 3,6 TJ
      • 1 TWh = 3.600.000.000 MJ = 3,6 PJ
    • Energie – bei Explosionen
      • 1 Megatonne TNT = 4,6 PJ
      • 1 kt TNT = 4,6 TJ
      • 1 t TNT = 4,6 GJ
      • 1 kg TNT = 4,6 MJ
    • Temperatur

0 Kelvin = -273,15 Grad Celsius

    • Entfernung – in der Astronimie

1 Astronomische Einheit = 149,597870691 Millionen km

    • Geschwindigkeit

Lichtgeschwindigkeit im Vakuum: 299.792.458,00000000 m/s

    • Chemie

Avogadrosche Zahl: 6,02204 x 1023 (Anzahl C12-Atome in 12g)

Energieträger

  • Heizöl 40 MJ/kg
  • Benzin: 44 MJ/kg (ca. 9 kWh/l)
  • Kerosin: 42,84 MJ/kg
  • Wasserstoff: 119,88 MJ/kg
  • Steinkohle: 30 MJ/kg

Links zum Thema Energie:

Berechnung der kinetischen Energie

Ein Körper (z.B. ein Asteroid) der Masse m bewegt sich mit der Geschwindigkeit v durch die Gegend (z.B. den Weltraum). Er hat eine Bewegungsenergie von ½mv². Diese wird beim Aufschlag auf der Erde in “Zerstörungsenegie” umgesetzt, d.h. Wärme (Joule, kWh,…) oder Explosionskraft (Megatonnen TNT).

Masse:
Kilogramm
Tonnen
Geschwindigkeit: Km/h
m/s
Energie in Joule:
Energie in kWh:
Energie in Tonnen TNT:

Beispiele von Energiemengen

Objekt Grösse Dichte Masse Geschwindigkeit Energie
Steinasteroid 50 x 100 Meter 900000 t 81000 km/h 50 Megatonnen TNT
Eisenasteroid 2 x 3 km 400e+9 t 81000 km/h 25 Teratonnen TNT
Komet am Jupiter 100-1000 m 1 25-250e+9 t 60 km/s 10-100 Teratonnen TNT
Auto 4 m 1 t 120 km/h 0,5 kg TNT
Lastwagen 30 m 40 t 95 km/h 1-2 kg TNT
Boeing 767-300 Startgewicht 53 m 156 t 850 km/h 1 t TNT
Boeing 767-300 Treibstoff 50 t 465 t TNT
Space Shuttle im Orbit 37,2 m 125 t 28800 km/h 1 Kilotonne TNT
Hiroshimabombe 20 Kilotonnen TNT
Wasserstoffbombe 20 Megatonnen TNT
Atomwaffenarsenal 20 Gigatonnen TNT
Asteroid Dinosaurier 10 km 100 Teratonnen TNT
Asteroid Nördlinger Ries 1200 m 5 Teratonnen TNT
Asteroid Tunguska 80 m 30-50 Megatonnen TNT
TNT: 4000 kJ/kg
Dietrich Kracht © 2015 All rights reserved. Page last modified:

Physik: Messung der Helligkeit

Gehört zu: Physik
Siehe auch: SI-Einheiten, Himmelshelligkeit, Größenklassen
Benutzt: LateX Plugin für WordPress, Fotos aus Flickr, Grafiken aus der Wikipedia

Messung der Helligkeit

Maßeinheiten für die Helligkeit

In der Physik misst man die Helligkeit einer Lichtquelle in der SI-EinheitCandela” (Einheitenzeichen: cd).

Ausserdem kennt man noch: Lux und Lumen – was ist das denn das alles? Wir unterscheiden zwischen physikalischer Größe (z.B. Länge) und der Maßeinheit (z.B. Meter). Wir betrachten hier lichttechnische physikalische Größen und zwar:

  • Lichtstrom (flux) in Lumen – SI-Einheit – Formelzeichen Φv – Wieviel Licht (Lichtmenge) wird pro Zeiteinheit von einer Lichtquelle insgesamt abgegeben
  • Beleuchtungsstärke in Lux – SI-Einheit – Formelzeichen Ev -Wieviel Licht (Lichtmenge) trifft pro Zeiteinheit auf eine Fläche auf
  • Lichtstärke einer punktförmigen Lichtquelle in Candela – SI-Einheit – Formelzeichen Iv – Im Prinzip “Lichtstrom durch Raumwinkel”  (1 Candela = 1 Lumen pro Sterad)
  • Leuchtdichte einer flächigen Lichtquelle in cd/m² – Formelzeichen Lv -Wieviel Licht strahlt eine flächige Lichtquelle pro Flächeneinheit ab

Youtube Video: https://www.youtube.com/playlist?list=PL_LcX6eHMr3hIsiFwYkkUdqUpaecEYj4-

Hintergründe und Problematik

Traditionell wurde die Lichtstärke in verschiedenen Ländern mit einfachen technischen Geräten definiert und gemessen: z.B. in Deutschland mit Hilfe der sog. Hefnerkerze (HK).

Die Generalkonferenz für Maß und Gewicht (CGPM) wollte diese lichttechnischen physikalischen Größen und ihre Messung neu wissenschaftlich festlegen und mit den anderen bereits definierten SI-Einheiten verbinden.

Früher gab es im Prinzip nur eine Technik, Licht zu erzeugen: die sog. Glühbirne. Da konnte man das abgegebene Licht von Glühbirnen einfach anhand der aufgenommenen elektischen Leistung (Watt) vergleichen. Heutzutage gibt es viele unterschiedliche Techniken, Licht zu erzeugen (Energiesparlampen, LEDs etc.) bei denen aus der gleichen aufgenommenen elektischen Leistung in Watt ganz unterschiedlich viel Licht (und damit unterschiedliche Helligkeit) erzeugt werden kann. Deswegen wird heuzutage (2021) bei jedem Leuchtmittel die Lichtmenge angegeben, die pro Sekunde abgegeben wird: das ist der sog. Lichtstrom gemessen in Lumen.

Um Helligkeiten in einer für menschliche Zwecke brauchbaren Form zu messen, benötigt man “augenrelevante” Größen (sog. photometrische Größen), um das Helligkeitsempfinden des menschlichen Auges zu berücksichtigen.

Die Generalkonferenz (CGPM) hatte sich also einigen Herausforderungen zu stellen:

  1. Exakte Definitionen, die von der Systematik her in das SI-System passen
  2. Kompatibilität bzw. Anbindung an ältere Maßeinheiten
  3. Berücksichtigung des Helligkeitsempfindens durch das menschliche Auge

Die Definitionen stammen von der 26. General Conference on Weights and Measures (CGPM) und wurden zum Mai 2019 inkraft gesetzt.

Es werden hier also eigenständige physikalische Größen mit ihren Einheiten neu definiert. Die Lichtstärke als neue SI-Basiseinheit, gemessen in Candela und der Lichtstrom und die Beleuchtungsstärke als zwei abgeleitete SI-Einheiten, gemessen in Lumen und Lux. Die Leuchtdichte dagegen wird nicht zur SI-Einheit erhoben.

Die Lichtmenge

Bleibt die generelle Frage “Was ist genau mit Lichtmenge gemeint?”. Im Prinzip ist die “Lichtmenge” eine Engergiemenge, wobei so eine Energiemenge einerseits klar und eindeutig physikalisch gemessen werden kann (in Joule) und eine Energiemenge pro Zeiteinheit  in Joule pro Sekunde, also in Watt. Das nennt man die “Strahlungsleistung” mit dem Formelzeichen Φe.

Das menschliche Auge empfindet Licht bei unterschiedlichen Wellenlängen unterschiedlich stark. Zur photometrischen Definition betrachten wir deswegen (zunächst) monochromatisches Licht der Frequenz 540 1012 Hz (ca. 555 nm). Als Lichtstärke 1 Candela ist dann definiert eine Strahlungsleistung von 1/683 W pro Sterad. Bei anderen Lichtwellenlängen kommt dann eine sog. “phototopic luminosity function” K(λ) ins Spiel, die aber für andere Wellenlängen nicht weiter genormt ist.

Die physikalischen Größen Lichtstrom und Beleuchtungsstärke sollen geeignet sein, für die Bemessung menschlicher Angelegenheiten (z.B. Helligkeit von Leuchtmitteln, Beleuchtung von Arbeitsplätzen,…) deshalb wird die Helligkeitswahrnehmung von Licht verschiedener Wellenlängen durch das menschliche Auge hier eingebaut:
\( \Phi_v = K(\lambda) \cdot \Phi_e \) wobei K(555 nm) = 683 Lumen/Watt

Abbildung 1: Lichtstrom von 5000 Lumen bei einem industriellen Leuchtmittel (Flickr: DK_20210608_Lumen.jpg)

DK_20210608_Lumen.jpg

Wenn man die Lichtmenge als Energiemenge in Joule misst, entspricht einem Fluss von 1 Joule pro Sekunde (= 1 Watt) ein Lichtstrom von 683 Lumen bei einer Lichtwellenlänge von 555 nm.

Ursprünglich wollte die 26. General Conference on Weights and Measures (CGPM) als SI-Basiseinheit nicht mehr die Candela nehmen, sondern das Lumen. Dieses Vorhaben wurde aber zurückgestellt, um die offizielle Verabschiedung nicht hinauszuzögern. Im Folgenden stelle ich das Lumen schon als SI-Basiseinheit dar und das Candela als davon abgeleitet – ich finde, das ist einfacher…

Helligkeitsempfindlichkeit des Auges

Wenn wir von den radiometrischen (pysikalischen) Einheiten zu den photometrischen übergehen wollen, müssen wir das Helligkeitsempfinden des Auges berücksichtigen. Unser Auge nimmt Licht, also elektromagnetische Strahlung, im Bereich von ca. 400 nm bis 700 nm wahr mit einer maximalen Empfindlichkeit bei etwa 555 nm.

Abbildung 2: Spektrale Helligkeitsempfindlichkeit (Wikipedia: V-lambda-phot-scot.svg)

λ

In rot ist das Tagessehen, in blau das Nachtsehen dargestellt.
In Deutschland ist die rote Kurve in DIN 5031 genormt.
Mit dieser relativen spektralen Empfindlichkeit V(λ) wird unsere oben genannte Kurve:

K(λ) =  V(λ) * 683 lm/W

Wobei die 683 von der CGPM so gewählt wurde, das die alte Definition von Lumen bzw. Candela gut mit dieser neuen Definition übereinstimmt.

Der Lichtstrom

Tabelle 1: Strahlungsleistung und Lichtstrom

physikalisch (radiometrisch) photometrisch (biologisch)
Physikalische Größe Strahlungsleistung Lichtstrom
Formelzeichen Φe Φv
Messeinheit Watt (W) Lumen (lm)
Definition als SI-Basiseinheit ./. Eine monochromatische (λ=555 nm) Lichtquelle mit einer Strahlungsleistung von 1/683 Watt gibt einen Lichtstrom von 1 Lumen ab.
oder abgeleitete Definition ./. 1 lm = 1 cd sr

Die Lichtstärke

Tabelle 2: Strahlstärke und Lichtstärke

physikalisch (radiometrisch) photometrisch (biologisch)
Physikalische Größe Strahlstärke Lichtstärke
Formelzeichen Ie Iv
Messeinheit Watt/Sterad (W/sr) Candela (cd)
Definition als SI-Basiseinheit ./. Eine monochromatische (λ=555 nm) Lichtquelle mit einer Strahlungsleistung von 1/683 Watt in einen Raumwinkel von 1 sr hat eine Lichtstärke von Candela
oder abgeleitete Definition ./. 1 cd = 1 lm sr-1

Die Beleuchtungsstärke

Tabelle 3: Strahlstärke und Lichtstärke

physikalisch (radiometrisch) photometrisch (biologisch)
Physikalische Größe Bestrahlungsstärke Beleuchtungsstärke
Formelzeichen Ee Ev
Messeinheit Watt/m² Lux (lx)
Abgeleitete Definition ./. 1 lx = 1 lm m-2

Die Leuchtdichte

Tabelle 4: Strahldichte und Leuchtdichte

physikalisch (radiometrisch) photometrisch (biologisch)
Physikalische Größe Strahldichte Leuchtdichte
Formelzeichen Le Lv
Messeinheit Watt/m² sr cd / m²
Definition ./. ./.

Hintergrund und Schlussfolgerungen

Lumen und Photonen

Der Lichtstrom von 1 Lumen mit λ=555 nm erzeugt also einen Energiestrom (Strahlungsleistung) von 1/683 Joule pro Sekunde = 1,4641 10-3 J/s.

Der Wellenlänge λ=555 nm entspricht eine Frequenz von ν =  c/λ = 540 1012 Hz.

Ein Photon der Wellenlänge λ=555 nm hat eine Energie von E = h * ν = h * 540 1012 Hz = 6,62607 * 540 * 10-22 J = 3,579 * 10-19 J

Dem Lichtstrom von 1 Lumen bei einer Wellenlänge von 555 nm entspricht also ein Photonenstrom von 1,4641 10-3 / 3,579 10-19 = 4,09 1015 Photonen pro Sekunde.

Der Raumwinkel (Einheit: Sterad)

Ein Raumwinkel ist die Oberfläche dividiert durch die Entfernung zum Quadrat. Ein voller Raumwinkel ist also die Kugeloberfläche dividiert durch den Kugelradius zum Quadrat.

\( Kugeloberfläche = 4 \pi r^2 \\\ \)

Damit ist der volle Raumwinkel also:

\( \Omega = 4 \pi = 12,56637 sr\)

Der physikalische Größe “Raumwinkel” ist (eigentlich) dimensionslos. Man nimmt aber gerne als Einheitenzeichen “sr” um damit anzudeuten welche physikalische Größe gemeint ist.

In der Astronomie verwendet man ab und zu auch gerne die Winkeleinheiten Grad, Bogenminute und Bogensekunde und kommt damit auf:

\( 1 \enspace Quadratgrad = (\frac{2 \pi}{360})^2 = 3,0462 10^{-4} sr \)

und

\( 1 \enspace Quadratbogenminute = 1 \enspace arcmin^2 = (\frac{2 \pi}{360 \cdot 60})^2 = 8,46159 10^{-8} sr   \)

sowie

\( 1 \enspace Quadratbogensekunde = 1 \enspace arcsec^2 = (\frac{2 \pi}{360 \cdot 60 \cdot 60})^2 = 2,35044 10^{-11} sr   \)

Umrechnung Candela – Lumen

Lichtstärke (cd) und Lichtstrom (lm) beziehen sich auf einen Sender (eine Lichtquelle) – Die Beleuchtungsstärke (Lux) bezieht sich auf das, was bei einem Empfänger ankommt.

Die in Candela gemessene “Lichtstärke” und der in Lumen gemessene “Lichtstrom” sind über den Raumwinkel, in den das Licht abgestrahlt wird mit einander verbunden.

Der Lichtstrom (in Lumen) ist die gesamte Lichtmenge, die eine Lichtquelle in alle Richtungen – also in den vollen Raumwinkel von 12,56637 sr (= 4 π) – ausstrahlt; während die Lichtstärke (in Candela) einer Lichtquelle bezogen wird auf den – normalerweise kleineren – Raumwinkel, in den die Lichtquelle die Lichtmenge tatsächlich abstrahlt.

\( Lichtstärke = \frac{Lichtstrom}{Raumwinkel} \)

Ein Lichtstrom von 12,56637 Lumen würde in eine Lichtstärke von 12,56637 / 12,56637 = 1 Candela bewirken.

Lichtverschmutzung / Himmelshelligkeit

Die Qualität (Dunkelheit) des Sternhimmels messen wir ja mit dem SQM in Einheiten von Magnituden pro Quadratbogensekunde. Die Website http://clearoutside.com zeigt die Himmelsqualität neben der SQM-Zahl auch in Einheiten von Milli-Candela pro Quadratmeter an – also als “Leuchtdichte“; beispielsweise war dort heute für meinen Standort in Hamburg eine Himmelsqualität von SQM 18,61 bzw. 3,88 mcd/m² angezeigt.

Jetzt müssten wir nur noch die traditionellen Magnituden in Candela umrechnen. Also die Frage, wie war nocheinmal die “Magnitude” physikalisch definiert?

Von einem Stern der scheinbaren Helligkeit m geht ein Lichtstrom (gemessen in Lumen) aus von:

\( \Phi_v = 10^{(-m-14.2064)/2.5} Lumen \\\ \)

Diese Umrechnung verwenden wir auch bei den Betrachtungen zur Belichtungszeit von Astrofotos.

 

Physik: Ideales Gas – Thermodynamik

Gehört zu: Thermodynamik
Siehe auch: GeoGebra
Benutzt: WordPress-Plugin Latex, Grafiken von Github

Ideales Gas

ist ein hinreichend verdünntes Gas, sodass ausser bei Kollisionen von Molekülen (als elasischer Stoß) keinerlei Wechselwirkung zwischen ihnen geschieht.
Das bedeutet u.a., dass wir weit entfernt von Phasenübergängen (fest – flüssig – gasförmig) sein müssen.

Zur Idealisierung gehört auch, dass die Gasmoleküle als Punktmassen verstanden werden können. D.h. für die Bewegung hat man nur die drei Freiheitsgrade der Translation, keine Rotation und keine Oszillation.

Neben dem hier beschriebenen “Idealen Gas” gibt es natürlich auch ein Nichtideales Gas und auch ein Entartetes Gas und noch schlimmer ein Relativistisches entartetes Gas.

Links:

Boyle-Mariotte

Robert Boyle und Edme Mariotte fanden unabhängig von einander 1662 bzw. 1676  das nach ihnen benannte Boyle-Mariotte’sche Gesetz:

\( p \cdot V = const. \\\ \)

Wobei die Temperatur konstant gehalten wird und zwar dadurch dass man die Veränderungen im Volumen ganz langsam durchführt, sodass immer wieder das thermodynamisches Gleichgewicht mit der Umgebung erhalten bleibt.

Abbildung 1: Das Boyle-Mariottesche Gesetz  (Github: Boyle-Marriot-Gesetz.svg)

Boyle-Marriot-Gesetz.svg

Boyle-Marriot-Gesetz (GeoGebra Classic)

Gay-Lussac

Wenn man nun den Druck konstant hält und die Temperatur variiert, bekommt man das Gay-Lussac (1787-1850) Gesetz.
Lord Kelvin (1824-1907) hatte 1848 die absolute Temperaturskala vorgeschlagen, wodurch sich das Gay-Lussac’sche Gesetz sehr einfach in seiner heutigen Form schreiben lässt:

\( \frac{V}{T} = const. \\\ \)

Wobei hier T die absolute Temperatur ist …

Abbildung 2: Das Gay-Lussacsche Gesetz (Github: Gay-Lyssac-Gesetz.svg)

Gay-Lussac-Gesetz.svg

Gay-Lussac-Gesetz – Dietrich Kracht 21.3.2021 GeoGebra Classic

Ideale Gasgleichung

Zusammengefasst ergibt sich die Zustandsgleichung für ideale Gase:

\( \frac{p \cdot V}{T} = const.   \\\ \)

Und mit der Konstanten \(n \cdot R\) schließlich:

\( p \cdot V = n \cdot R \cdot T   \\\ \)

Dabei ist p der Druck, V das Volumen, n die Stoffmenge (messen wir in mol), R die allgemeine Gaskonstante (8,3145 Joule/(mol*Kelvin)) ist und T die absolute Temperatur ist.
Interessant dabei ist, das dies unabhängig von der Art des Gases ist – also Helium, Stickstoff etc.  Es muss einfach nur ein “ideales Gas” sein. Umgekehrt sagen wir, ein Gas ist dann “ideal”, wenn es dieser Gleichung genügt.

Wenn wir statt der Stoffmenge n die Teilchenzahl N benutzen, also:

\( N = N_A \cdot n \)

bekommen wir als Gasgleichung (mit der Avogadroschen Zahl):

\( p \cdot V = N \cdot \frac{R}{N_A} \cdot T   \\\ \)

Später werden wir sehen, dass \( \frac{R}{N_A} = k_B \) die sagenhafte Boltzmann-Konstante ist.

Kinetische Energie

Wenn wir die Kinetik der Moleküle betrachten, also die Bewegungen, entsteht der Druck durch Impulsübertrag auf die Aussenwand des Gefäßes.

Das Gesetz von Bernoulli sagt dafür:

\( p = \frac{1}{3} \cdot n \cdot \mu \cdot <v^2> \\\ \)

wobei n hier die Teilchendichte, also Anzahl Teilchen pro Volumen, ist und die spitzen Klammern für den Mittelwert stehen..

Wenn wir diese Gleichung mit V multiplizieren, erhält man:

\( p \cdot V = \frac{1}{3} \cdot N \cdot \mu \cdot <v^2> = \frac{2}{3} \cdot N \cdot <E_{kin}> \\\ \)

wobei N die Anzahl der Teilchen ist.

Die mittlere kinetische Energie eines Moleküls eines Idealen Gases (also nur translatorische Bewegung in drei Freiheitsgraden) ist:

\( <E_{kin}> = \frac{3}{2} \cdot k_B \cdot T \\\ \)

Ausblick:

  • Auf dieser Basis wird die physikalische Größe “Temperatur” dann als “thermodynamische Temperatur” beliebiger Substanzen wirklich definiert.
  • Zusätzlich zum Mittelwert von Geschwindigkeiten bzw quadrierten Geschwindigkeiten wird auch noch die Breite der Verteilung von Interesse sein, was uns zur Maxwell-Verteilung führen wird…

Flüssigkeiten

Ein weitergehendes Konzept ist das von Flüssigkeiten. Die werden im physikalischen Teilgebiet Hydrodynamik behandelt. Von einer Flüssigkeit spicht man, wenn die mittlere freie Weglänge der Teilchen sehr, sehr klein gegenüber der Größe des betrachteten Systems ist.

Das Jeans-Kriterium

Das Jeans-Kriterium, benannt nach James Jeans (1877-1946), soll ja angeben, unter welchen Bedingungen eine Gaswolke im Universum unter dem Einfluss ihrer Gravitation kontrahiert, dabei wärmer wird und ggf. eine Kernfusion “zündet”.

Zur Abschätzung der kritischen Jeans-Masse bieten sich zwei Wege an:

  1. Druck: Gasdruck = Gravitationsdruck
  2. Energie: Potentielle Energie = KInetische Energie

Gasdruck

Wir betrachten eine kugelförmige (Radius r) homogene Gaswolke der Masse M.

Der Gasdruck ist nach der idealen Gasgleichung (s.o.):

\( p = \frac{N}{V} \cdot \frac{R}{N_A} \cdot T \\\ \)

Ein Teilchen (Gasmolekül) habe nun die Masse μ. Dann gilt für die Masse:

\( M = N_A \cdot n \cdot \mu = N \cdot \mu \\\ \)

Die Dichte der Gaswolke ist demnach:

\( \rho = \frac{M}{V} = \frac{N \cdot \mu}{V} = \frac{N}{V} \mu \\\ \)

Also ist

\( \frac{N}{V} = \frac{\rho}{\mu} \)

Wenn wir das oben einsetzen ergibt sich:

\(\Large p_{Gas} = \frac{\rho}{\mu} \cdot k_B \cdot T \\\ \)

Gravitationsdruck

Der Gravitationsdruck ist (will ich noch ichtig ausrechnen, mit Integral und so):

\( \Large p_{grav} = \frac{3 G M^2}{8 \pi r^4} \\\ \)

Jeans-Masse

Wann ist der Gravitationsdruck mindestens genauso groß wie der Gasdruck?

\( M_{Jeans} = \sqrt{\frac{6}{\pi}} \sqrt{\frac{1}{\rho} (\frac{k_B T}{G \mu})^3}\\\ \)

Für eine Gaswolke aus atomaren Wasserstoff ergibt sich mit doppelt logarithmischen Skalen folgendes Bild:

Abbildung 3: Die Jeans-Masse (Github: JeansMasse.svg)

JeansMasse.svg

Jeans-Masse Dietrich Kracht 24.3.2021

Beispielsweise können wir ablesen: Eine Gaswolke (atomarer Wasserstoff) von 10 Sonnenmassen würde bei einer Dichte von 10-16 kg/m³ und einer Temperatur von 10 K anfangen sich unter ihrer eigenen Gravitation zusammen zu ziehen…