Mathematik: Körper (Grundlagen)

Gehört zu: Mathematik
Siehe auch: Gruppentheorie, Vektorraum, Taylor-Entwicklung

Stand: 25.12.2023

Axiomatische Definition eines Körpers

Ein Körper ist eine Menge K mit zwei (zweistelligen) Verknüpfungen, die meist Addition und Multiplikation genannt werden. Für die folgende Axiome gelten:

(1) Bezüglich der Addition genannten Verknüpfung soll die Menge eine abelsche Gruppe sein – das Neutrale Element schreiben wir als: 0.

(2) Bezüglich der Multiplikation genannten Verknüpfung soll die Menge K ohne das Element 0 eine abelsche Gruppe sein – das Neutrale Element schreiben wir als: 1.
Es gibt also zu jedem Element \( k \in K  \text{ aber } k \neq 0 \)  ein Inverses, geschrieben \( k^{-1} \); also: \( k \cdot k^{-1} = 1 \).

(3) Distributivgesetz: \( a \cdot (b + c) = (a \cdot b) + (a \cdot c) \)

Beispiele

Die Menge der Ganzen Zahlen \( \mathbb{Z} \) bildet keinen Körper, sonder (nur) einen Ring.

Die Menge der Rationalen Zahlen \( \mathbb{Q} \) bildet einen Körper.

Die Menge der Reellen Zahlen \( \mathbb{R} \) bildet einen Körper.

Die Menge der Komplexen Zahlen \( \mathbb{C} \) bildet einen Körper.

Ordnungsrelation auf \( \mathbb{Q} \)

Im Körper der Rationalen Zahlen \( \mathbb{Q} \)  können wir eine Ordnungsrelation definieren durch:

\( \Large \frac{a}{b} \ge \frac{c}{d} \normalsize \text{ genau dann, wenn: } a d \ge c b \text{ in } \mathbb{Z}  \)

Norm in \( \mathbb{Q} \)

Für ein Element  \( a \in \mathbb{Q} \) können wir eine Norm |a| definieren:

\( |a| = a \text{ wenn } a \geq 0, -a \text{ wenn } a  \lt 0  \\ \)

Diese Norm ist abgeschlossen in \( \mathbb{Q} \), denn es gilt:

\( a \in \mathbb{Q} \Rightarrow -a \in \mathbb{Q} \\\)

Folge und Grenzwert

Als Folge in einem Körper K wir bezeichnet eine Abbildung:

\( \mathbb{N} \to K \)

Meist geschrieben als: a1, a2, a3,… mit ai aus K.

Cauchy-Folge

Eine Folge ai heisst Cauchy-Folge wenn für jedes (noch so kleine)  ε > 0 eine natürliche Zahl Nε exisistiert, sodass:

\( | a_n – a_m | < ε \text{ für alle } n,m \in \mathbb{N} \text{ mit } n, m > N_\epsilon \\\)

Die Elemente einer Cauchy-Folge rücken also beliebig dicht aneinander.

Grenzwert einer Folge

Eine Folge ai hat einen Grenzwert g ∈ K wenn für jedes ε > 0 eine natürlche Zahl Nε exisistiert, sodass:

\( | a_n – g | < ε \text{ für alle } n \in \mathbb{N} \text{ mit } n \gt N_\epsilon\\\)

Die Elemente der Folge kommen dem Grenzwert beliebig nahe.

Falls so ein Grenzwert exisitiert, schreiben wir:

\( \lim  \limits_{i \to \infty}  {a_i} = g \\\)

Vektorraum

Jeder Körper K ist auch ein Vektorraum über K (also über sich selbst).

Mathematik: Äquivalenzrelation

Gehört zu: Mathematik
Siehe auch: Gruppentheorie
Benutzt: Latex-Plugin für WordPress

Stand: 10.09.2023

Eine Äquivalenzrelation

Bei meiner Beschäftigung mit der Gruppentheorie bin ich auf das klassische Thema Äquivalenzklassen gestoßen.

Eine Äquivalenzrelation in der Mathematik ist ersteinmal eine “Relation”. Dann soll diese Relation inetwa die Eigenschaften haben, die wir von der klassischen Äquivalenz her kennen: Gleichheit oder Ungleichheit.

Allgemein: Was ist eine Relation?

Auf einer Menge M können wir eine Relation R einfach definieren als eine Teilmenge der geordneten Paare. Also

\( R \subseteq M \times M \\\)

So eine Relation wird dann Äquivalenzrelation genannt, wenn sie noch zusätzlich drei wichtige von der Gleichheitsrelation bekannten Eingenschaften besitzt: reflexiv, symmetrisch, transitiv.

Reflexiv: \( (a,a) \in R \text{ für alle } a \in M \\\)

Symmetrisch:  \( \text{Wenn } (a,b) \in R \text{ dann ist auch } (b,a) \in R \\\)

Transitiv: \( \text{Wenn } (a,b) \in R \text{ und } (b,c) \in R \text{ dann ist auch } (a,c) \in R \\\)

Wenn es aus dem Kontext klar ist, welche Relation gemeint ist, schreibt man auch einfach: \( a \sim b\text{  für } (a,b) \in R \)

Äquivalenzklassen

Wenn ich eine Äquivalenzrelation R auf einer Menge M habe, kann ich damit zu jedem Element m ∈ M eine Teilmenge von M definieren:

\( [m]_R =  \{ x \in M \,|\, (m,x) \in R \} \\\)

Diese Teilmenge nennt man Äquivalenzklasse von m (bezüglich der Relation R auf M). Wenn man zwei Äquvalenzklassen betrachtet, sind diese entweder identisch oder disjunkt.
Da jedes Element der Menge M auch in einer (genau einer) Äquivalenzklasse vorkommt, bilden die Äquivalenzklassen also eine (disjunkte) Partition von M.

Faktor-Mengen

Wenn wir die Menge der Äquivalenzklassen betrachten ist aus unserer ursprünglichen Relation dort die Gleichheitsrelation geworden.
Die Menge der Äquivalenzklassen zu einer Relation R über M bezeichnet man auch als Faktor-Menge oder Quotienten-Menge und schreibt:

\( M/R = \{ [m]_R \,|\,  m \in M \} \\ \)

Beispiele von Konstruktionen mit Hilfe von Faktormengen

Generell kann man mit diesem Mechanismus viele interessante mathematische Gebilde konstruieren…

Die Menge der ganzen Zahlen: \( \mathbb{Z} = (\mathbb{N}^2 \times \mathbb{N}^2) / R_1 \)
Wobei die Relation R1 definiert wird als: (n1, n2) ∼ (m1, m2) genau dann wenn n2 + m1 = m2 + n1

Die Menge der rationalen Zahlen: \( \mathbb{Q} = (\mathbb{Z}^2 \times \mathbb{Z}^2) / R_2 \)
Wobei die Relation R2 definiert wir als: (n1, n2) ∼ (m1, m2) genau dann wenn n2 · m1 = m2 · n1

Äquivalenzklassen in der Gruppentheorie

In der Gruppentheorie kann man mittels einer Untergruppe H einer Gruppe G sog.  “Cosets” zu jedem Element g aus G bilden:

\(  gN = \{ x \in G \, | \, \exists h \in H \text{ with } x = g \cdot h \} \\\)

Diese Cosets (deutsch: Nebenmengen) bilden eine disjunkte Überdeckung der Gruppe G.

Ich kann mir auch ganz einfach eine Äquivalenzrelation R definieren, die diese gleichen Nebenmengen als Äquivalenzklassen erzeugt. Dazu muss ich nur definieren, wann zwei Elemente x und y aus G  zueingabder in Relation stehen sollen…

Ich versuche es einmal mit: \( R = \{ (x,y) \, | \, \exists h \in H : h\cdot x = h \cdot y \} \\ \)

Ist das wirklich eine Äquivalenzrelation (1) und erzeugt sie tatsächlich die gewünschen Äquivalenzklassen (2)?

Ad (1): Als Äquivalenzrelation wäre zu überprüfen:

Reflexivität; d.h. ist (x,x) immer in R? Offensichtlich stimmt das.

Symmetrie: d.h. wenn (x,y) in R liegt, liegt dann auch (y,x) in R?

Wenn demnach (x,y) in R liegt, existiert ein h in H sodass hx = hy. Dann ist mit dem gleichen h aus H auch hy = hx. Also ist R symmetrisch.

Transitivität:

Wenn (x.y) und (y,z) in R liegen, so heisst das: Es gibt ein h1 und ein h2 in H sodass gilt: h1 x = h1 y und h2 y = h2 z.
Man könnte es mit h = h1 h2 versuchen, was bei einer kommutativen (abelschen) Gruppe funktionieren würde…

Vertiefung

YouTube-Video:https://www.youtube.com/watch?v=E8gItS9vGKg

YouTupe-Video zum Tensor-Produkt:https://www.youtube.com/watch?v=KnSZBjnd_74

Mathematik: Gruppentheorie

Gehört zu: Mathematik
Siehe auch: Standardmodell der Elementarteilchenphysik, Symmetrien, Äquivalenzrelation
Benutzt: Latex-Plugin für WordPress

Stand: 30.8.2023

Was ist eine Gruppe?

Bei meiner Beschäftigung mit dem Standardmodell der Elementarteilchen bin ich auf das klassische Thema der Gruppentheorie gestoßen.

Eine Gruppe in der Mathematik ist eine Menge mit einer “inneren” Verküpfung (die man gerne mit dem Symbol “+” schreibt) und die bestimmten, unten aufgeführten Axiomen genügt.

Die Verknüpfung

Die Menge bezeichnen wir mal mit M und nehmen dann zwei Elemente aus dieser Menge:

\( a \in M \) und \( b \in M \)

Dann soll die Verknüpfung (geschieben als +) von a und b wieder in der Menge M liegen:

\( a + b \in M \)

Die Axiome

Damit das ganze dann eine Gruppe ist, müssen folgende Axiome gelten:

Assoziativgesetz:

\( (a + b) + c = a + (b + c) \\ \)

Existenz eines “neutralen Elements” e, sodass:

\( \exists e \in M \space \forall a \in M: a + e = a \\\)

Existenz eines inversen Elements zu jedem Element der Gruppe:

\( \forall a \in M \space \exists b \in M : a + b = e \\ \)

Beispiel 1: Die ganzen Zahlen

Die Menge der ganzen Zahlen \(\mathbb{Z}\) mit der Addition als Verknüpfung bildet eine Gruppe.

Beispiel 2: Die Kleinsche Vierergruppe

Die Kleinsche Vierergruppe (nach Felix Klein 1849-1925) besteht aus vier Elementen, wobei jedes Element mit sich selbst invers ist.

Die Menge schreiben wir als:
V = {e, a, b, c}

Die Verknüpfung definieren wir über eine Verknüpfungstafel (auch Cayley Table genannt):

e a b c
e e a b c
a a e c b
b b c e a
c c b a e

Wie man leicht sieht, werden mit der so definierten Verknüpfung die Gruppenaxiome erfüllt.

Beispiel 3: Die komplexen Zahlen auf dem Einheitskreis

In der komplexen Zahlenebene \(\mathbb{C}\) ist er Einheitskreis einfach die Teilmenge S der komplexen Zahlen, die wir definieren als:

\(S = \{ z \in \mathbb{C} \space : \space  |z| = 1  \} \\ \)

Als Verknüpfung auf dieser Menge nehmen wir die Multiplikation der komplexen Zahlen; geometrisch können wir uns das als Drehungen vorstellen.

Damit wird das Ganze eine Gruppe.

Symmetrien und Drehungen

Gruppen kann man also ganz axiomatisch Definieren, wie oben; in der Praxis sind die Elemente einer Gruppe typischerweise die Symmetrien eines Objekts.

Ganz allgemein bilden die Symmetrien eines Objekts eine Gruppe. Eine speziell Art von Symmetrien sind Drehungen.

Die Leute, die sich mit den verschiedenen Arten von “Drehungsgruppen” als Spezialgebiet beschäftigen, bezeichnen die Gruppe der komplexen Zahlen auf dem Einheitskreis auch gerne als U(1); wobei die “1” bedeuten soll, dass wir nur eine Drehachse haben und das “U” steht für “unitär”, was man gerne zu einer Verknüpfung (Abbildung) sagt, wenn die Länge gleich bleibt (“längentreu”) – allerdings müsste man dann den Begriff “Länge” noch definieren.

Solche Gruppen, die aus Drehungen bestehen, spielen später im Standardmodell der Elementarteilchenphysik eine wichtige Rolle. Wobei eine Drehung auch als sog. “kontinuierliche Symmetrie” bezeichnet wird.

Da solche Drehungen ja “kontinuierlich” (im Gegensatz zu Spiegelungen) um auch beliebig kleine Winkel stattfinden können, kommt man damit auch in das Gebiet der Differentialgeometrie und letztlich zum Begriff der Lie-Gruppen (nach Sophus Lie, 1842-1899).

Vergleiche hierzu auch das YouTube-Video von Josef Gassner: https://www.youtube.com/watch?v=zFhjF6sfY4o

Nur für Mathematiker:
Drehungen im n-dimensionalen komplexen Raum sind lineare Abbildungen und damit als eine spezielle Art von nxn-Matrizen darstellbar.
\(U(n) = \{ U \in \text{ nxn Matrix } | \space U^\dagger U = I \} \)
Die nxn-Matrizen werden auch “General Linear Group” genannt und man schreibt sie als: \(GL(n,\mathbb{C}) \), wobei man zusätzlich fordert: det(U)>0 damit jede Matrix U invertierbar ist und so \(GL(n,\mathbb{C}) \) eine Gruppe ist.

Direktes Produkt von Gruppen

Wenn wir zwei Gruppen G und H haben, können wir das sog. “Direkte Produkt” dieser zwei Gruppen bilden, indem wir von den Mengen das cartesische Produkt \(G \times H\) nehmen und eine Verknüpfung auf diesem cartesischen Produkt komponentenweise definieren.
Wenn wir die Verknüpfungen mit dem Zeichen “+” schreiben, wäre das also:

\((g_1,h_1) + (g_2,h_2) = (g_1+g_2,h_1+h_2) \text{ wobei } g_1, g_2 \in G \text{ und } h_1,h_2 \in H\\\)

Wobei uns klar ist, dass das Symbol “+” hier für drei verschiedene Verknüpfungen benutzt wird.
Die Menge \(G \times H\) ausgestattet mit der so definierten Verknüpfung bezeichnet man als “Direktes Produkt” der Gruppen G und H und schreibt das als \(G \oplus H\).

Computer: Differentialoperatoren

Gehört zu: Mathematik
Siehe auch: Lineare Algebra, Kraftfeld, Arbeit, Schrödinger, Maxwell

Stand: 03.12.2013

Differentialoperatoren: Gradient

Bei einer Funktion von \(\mathbb{R} \to \mathbb{R} \) ist ja klar, was eine Ableitung (Differentialquotient) ist: Anschaulich die Änderungsrate des Funktionswerts an einer bestimmten Stelle…
Wenn der Definitionsbereich einer Funktion nicht mehr \(\mathbb{R}\) sondern \(\mathbb{R}^3\) ist, nennt man eine solche Funktion auch ein “Skalarfeld”, weil durch die Funktion jedem Punkt im Raum \(\mathbb{R}^3\) ein skalarer Wert zugeordnet wird (Beispiel: Temperatur). Eine “Änderungsrate” einer solchen Funktion wäre dann ja von der Richtung abhängig, in die ich gehe; also muss so eine “Änderungsrate” ein Vektor werden. So eine “Änderungsrate” eines Skalarfeldes nennt man dann den “Gradienten” s.u.

Sei also \( \Phi \) eine Funktion \(\Phi: \mathbb{R}^3 \to \mathbb{R} \) dann ist der Gradient von \( \Phi \) :

\( \Large grad  \enspace\Phi = \left[ \begin{array}{c} \frac{\partial \Phi}{\partial x} \\\ \frac{\partial \Phi}{\partial y} \\\ \frac{\partial \Phi}{\partial z}  \end{array} \right]  \\\  \)

Differentialoperatoren: Nabla

Generell definiert man auf einem Vektorraum dann besondere Abbildungen, sog. Differentialoperatoren. Man benutzt dazu die Koordinatenschreibweise. Wir nehmen hier immer die klassischen Cartesischen Koordinaten. Wenn man andere Koordinatensystem hat, sehen die Formeln dann etwas anders aus.

Wir nehmen als Definitionsbereich für unsere “Felder” den Vektorraum \(\mathbb{R}^3\). dann haben wir partielle Ableitungen nach den drei Koordinaten: x, y und z und man definiert als sog. Nabla-Operator:

\( \Large \nabla = \left[ \begin{array}{c} \frac{\partial}{\partial x} \\\ \frac{\partial}{\partial y} \\\ \frac{\partial}{\partial z}  \end{array} \right]  \\\  \)

Damit kann man dann einfach definieren:

  • Gradient eines Skalarfeldes:  \( \nabla \Phi \) (ist ein Vektorfeld)
  • Divergenz eines Vektorfeldes: \( \nabla \cdot \vec{V} \) (ist ein Skalarfeld)
  • Rotation eines Vektorfeldes: \( \nabla \times \vec{V} \)  (ist ein Vektorfeld)

Dies wird benutzt beispielsweise bei den Maxwellschen Gleichungen und der Schrödinger-Gleichung.

Im einfachen Fall, wenn unser Definitionsbereich nur ein Vektorraum der Dimension 1 ist (\(\mathbb{R}^1\)), ist der Gradient einfach die erste Ableitung.

Kraftfeld und Gradient

In einem konservativen Kraftfeld F(r)  kann man als Skalar ein Potential V(r) definieren, sodass die Kraft der Gradient den Potentials wird:

\( \vec{F}(r) = \nabla V(r) \)

Elektrisches Feld und Divergenz

Ein Elektrisches Feld wird durch eine ruhende elektrische Ladung erzeugt.
Ein Elektrisches Feld ist ein Vektorfeld, das man üblicherweise \( \vec{E} \) schreibt.

Feldstärke  – Feldlinien – xyz

Für das von einer Elektrischen Ladung Q erzeugte E-Feld \( \vec{E} \) gilt:

\( \nabla \cdot \vec{E} = 4 \pi Q \\\)

Da die Elektrische Ladung Q sozusagen das Elektrische Feld erzeugt, nennt man es auch die Quelle des E-Feldes…

Magnetisches Feld

Ein Magnetisches Feld wird durch bewegte elektrische Ladungen erzeugt.
Ein Magnetisches Feld ist ein Vektorfeld, das man üblicherweise \( \vec{B} \) schreibt.

Für ein Magnetisches Feld gilt:

\( \nabla \cdot \vec{B} = 0 \\\)

D.h. es gibt keine Quelle und alle Feldlinien sind geschlossen…

Mathematik: Vektorräume (Grundlagen)

Gehört zu: Mathematik
Siehe auch: Körper, Vektorräume – Lineare Algebra, Matrizen und Vektoren, Bra-Ket-Notation

Stand: 23.12.2023

Was ist ein Vektorraum?

Eine der Voraussetzungen zum Verständnis vieler Dinge (z.B. in der Allgemeinen Relativitätstheorie und der Quantenmechanik) sind sog. Vektorräume und Tensoren.

Es gibt dazu eine Menge Videos auf Youtube; z.B. von 3Blue1Brown:  https://youtu.be/fNk_zzaMoSs  – Playlist:

https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

Ein Vektorraum kann axiomatisch wie folgt definiert werden:

Axiom 1: Vektorräume verfügen über eine Operation, die Vektor-Addition (Vektor plus Vektor ergibt einen Vektor) genannt wird und eine kommutative (abelsche) Gruppe bildet.
Axiom 2: Jeder Vektorraum muss einen Körper  haben, dessen Elemente Skalare genannt werden.  Mit solchen Skalaren können wir  die Vektoren mutiplizieren (“skalieren“); d.h. Skalar mal Vektor ergibt Vektor.

Man spricht dann von einem Vektorraum “über” einem Körper K seiner Skalaren oder kurz von einem K-Vektorraum.

Solche Axiome ergeben eine abstrakte Definition von Eigenschaften; die Frage ist allerdings, ob es tatsächlich “Gebilde” gibt, die diese Axiome erfüllen. Tatsächlich gibt es viele “Gebilde”, die die Vektorraum-Axiome erfüllen: d.h. die tatsächlich Vektorräume sind. Beispiele für Vektorräume sind u.a.:

  • Ein \(\mathbb{R}^n \) wird mit den naheliegenden Operationen Vektorraum über \(\mathbb{R}\)
  • Ein \(\mathbb{C}^n \) wird mit den naheliegenden Operationen Vektorraum über \(\mathbb{C}\)
  • Die Menge der Funktionen auf \(\mathbb{R}\) kann auch als Vektorraum ausgestattet werden…

Ein abstrakter Vektorraum kann auch veranschaulicht werden:

  • Physik: Der Physiker stellt sich Vektoren gern als “Pfeile” vor, die also eine Richtung und eine Länge haben, also eher “geometrisch“.
  • Computer: Der Computer-Mensch stellt sich Vektoren eher als Liste von Komponenten vor (Vektor = Liste) – wozu man aber ersteinmal ein System von Basis-Vektoren (nicht: Koordinatensystem) haben muss.
  • Mathematik: Der abstrakte Mathematiker sagt, Vektoren sind einfach “etwas”, was man addieren kann (Gruppe) und was man mit “Skalaren” skalieren kann – fertig, einfach ein paar Axiome und das war’s.

Linearkombinationen

Mit einem Satz von Vektoren kann man eine sog. Linearkombination bilden, beispielsweise:

Zu einem Satz Vektoren \( \vec{g_1}, \vec{g_2}, …, \vec{g_n} \) wäre eine Linearkombination etwa:

\(    a_1 \vec{g_1} + a_2 \vec{g_2} + … + a_n \vec{g_n}\)

Wobei  wir jeden Vektor \( \vec{g_i} \)mit einem Skalar \( a_i  \) multiplizieren und die Summe bilden.

Vektorbasis und Dimension

Wenn ich mit einem Satz von Vektoren jeden Vektor des Vektorraums durch eine Linearkombination darstellen kann, sagt man “der Satz von Vektoren spannt den Vektorraum auf”. Ist so ein Satz von Vektoren minimal und die Darstellung eines Vektors durch eine Linearkombination damit eindeutig, so  nennt man den Satz von Vektoren eine Vektorbasis.

Soweit ist dies eine axiomatische Definition von Eigenschaften, welche eine Vektorbasis erfüllen muss. Die Frage ist allerdings, für einen bestimmten Vektorraum, ob dort auch tatsächlich eine solche Vektorbasis exsitiert.

Die Antwort lautet: Jeder Vektorraum hat (mindestens) eine Vektorbasis.
Falls ein Vektorraum mehrere Vektorbasen hat sind alle diese Vektorbasen gleich mächtig. Die Kardinalzahl (Mächtigkeit) heist Dimension des Vektorraums, geschrieben dim(V).

Eine Einheitsbasis (normal basis) ist eine Basis, bei der alle Basisvektoren die Länge 1 haben (“auf die Länge 1 normiert sind”).
Was die Länge eines Vektors sein könnte, kommt weiter unten.

Beispiel:

Der euklidische Vektorraum: \(\mathbb{R}^n\)

Dort haben wir z.B. eine Vektorbasis:  \( \vec{e}_i = (\delta_{i}^j) \)

Wobei das Kronecker-Delta bekanntlich definiert ist als:

\( \delta_{i}^j = \left\{\begin{array}{11}    0 & \text{falls } i \ne j  \\ 1 & \text{falls } i = j \\ \end{array} \right. \)

Vektor-Komponenten bezüglich einer Vektorbasis

Damit ich mit einem Vektor so schön herumrechnen kann, ist es enorm praktisch, den Vektor durch “seine” Komponenten darzustellen. Solche “Komponenten” beziehen sich immer auf eine sog. Vektorbasis.

Den Satz von Skalaren mit dem ein Vektor bezüglich einer Vektorbasis als Linearkobination eindeutig dargestellt werden kann nennt man auch die Komponenten des Vektors. Man schreibt also:

\( \vec{a} = \sum\limits_{i=1}^{n}{a_i \vec{g_i}} \)

Dabei sind also die ai die Komponenten des Vektors a bezüglich des gewählten Basisvektorsystems. Der Begriff von Koordinaten in einem Koordinatensystem unterscheidet sich von diesem Begriff der Komponenten bezüglich eines Basisvektorsystems.

Der Physiker möchte die Formeln noch kompakter aufschreiben und führt eine impliziete Summenkonvention ein (nach Einstein). Danach verwenden wir Indizes teilweise unten (klassisch) und auch teilweise oben (neu). Wenn ein gleicher Index oben und unten auftaucht, soll darüber summiert werden (ohne dass man es expliziet schreiben muss). Also in unserem Fall:

\( \vec{a} = a^i \vec{g_i} \)

Man nennt Größen mit einem Index unten “kovariant” und mit einem Index oben “kontravariant” – was man damit eigentlich sagen will werden wir später erfahren.

Komponentenschreibweise

Unsere Rechenregeln für Vektoren kann man nun auch einfach in Komponentenschreibweise ausdrücken:

Vektoraddition: \( \vec{a} + \vec{b} = (a^i + b^i) \vec{g_i}  \)

Skalar-Multiplikation: \( \lambda \vec{a} = (\lambda a^i) \vec{g_i} \)

Schreibweise von Vektoren

Geschrieben werden Vektoren meist als eine Liste ihrer Komponenten, aber nicht waagerecht, sondern senkrecht angeordnet (bei waagerechter Anordnung denkt man eher an einen Punkt im Raum).

\( \Large \vec{v} = \left( \begin{array}{c} x \\\ y \\\ z  \end{array}\right) \)

oder auch in eckigen Klammern:

\( \Large \vec{v} = \left[ \begin{array}{c} x \\\ y \\\ z  \end{array} \right] \)

Wenn ich Vektoren als Liste von Komponenten schreiben will, muss ich ersteinmal ein Basisvektorsystem haben.

Vektoren, und das ist wichtig, exisitieren auch ohne Basisvektorsysteme, also einfach geometrisch im Raum. Unabhängig von einem Basisvektorsystem hat jeder Vektor eine Länge und eine Richtung. Dies sind also sog. “Invarianten”; d.h. bei Änderung des Basisvektorsystems ändern sich diese Eigenschaften nicht.
Also: Vektoren ansich sind invariant gegenüber einem Wechsel des Basisvektorsystems. Aber die Vektorkomponenten verändern sich beim Wechsel des Basisvektorsystems, sind wie man sagt “variant“. Wie Vektorkomponenten bei Wechsel des Basisvektorsystems hin- und hergerechnet werden können, behandeln wir weiter unten. So ein Vektor ist damit der Sonderfall eines Tensors, nämlich ein Tensor vom Rang 1.

Lineare Abbildung (Lineare Transformation)

Wir betrachten zwei Vektorräume V und W über dem gleichen Körper K habe. Eine Abbildung \(  f: V  \to W  \) nennt man auch Transformation. Wenn V=W ist spricht man auch von einer Operation auf V und nennt f einen Operator.

Lineare Transformationen sind Transformationen, bei denen Geraden Geraden bleiben und der Null-Punkt (Origin) unverändert bleibt.
Anschaulich gesagt, bleiben Parallelen parallel und die Koordinatengitter gleichmäßig unterteilt (was immer auch Parallelen und Koordinatengitter genau sein mögen). Man kann das auch abstrakt durch Formeln ausdrücken:

Eine solche Abbildung f von einem Vektorraum V in einen Vektorraum W (beide über dem gleichen Körper K)

\(  f: V  \to W \\ \)

wird “linear” genannt, wenn sie additiv und homogen ist; d.h. wenn für alle \( \vec{v} \in V \text{ und alle } \vec{w} \in V \) gilt:

additiv: \( f(\vec{v} +  \vec{w}) = f(\vec{v}) +  f(\vec{w})  \)

und für alle \( a \in K \) gilt:

homogen: \( f(a \vec{v}) = a f(\vec{v})  \)   (hierfür brauchen wir den gleichen Körper K)

allgemein also: \(f(a \vec{x} + b \vec{y}) = a f(\vec{x}) + b f(\vec{y}) \)

General Linear Group

Zu einem Vektorraum V über K können wir die Menge der linearen invertierbaren Abbildungen \( f: V \to V \) betrachten. Diese nennen wir: General Linear Group und schreiben GL(V). Wenn man die allgemeine Verknüpfung von Abbildungen als Guppenverknüpfung nimmt, ist GL(V) tatsächlich eine Gruppe.

Die GL(V) ist ein schönes Beispiel für eine nicht abelsche (nicht kommutative) Gruppe.
Siehe hierzu auch das schöne Youtube-Video von Josef Gassner:

In der Quantenmechanik (Quantenphysik) sind die Untergruppen von GL(V) sehr interessant.

Dualer Raum

Zu einem Vektorraum V über dem Körper K definieren wir eine “Dualen Vektorraum”  V* wie folgt:

Als Menge V* nehmen wir alle linearen Abbildungen  \( f: V \to K \)

Als Vektor-Addition in V* definieren wir: \( (f+g)(v) = f(v) + g(v) \)

Und als Skalar-Multiplikation in V* nehmen wir: \( (\lambda \cdot f)(v) = \lambda \cdot f(v) \)

Bilinerarform

Hier geht es um zwei Variable (zwei = bi); also eine Abbildung:

\(  f: V \times V  \to K \\\)  (mit V  Vektorraum über dem Körper K)

So eine Abbildung heisst “bilinear“, wenn sie “in beiden Variablen” linear ist, was heisst:

\( f(a_1 \vec{x_1} + a_2 \vec{x_2}, \vec{y}) = a_1 f(\vec{x_1},\vec{ y}) + a_2 f(\vec{x_2}, \vec{y}) \\\)

und

\( f(\vec{x}, b_1 \vec{y_1} + b_2 \vec{y_2}) = b_1 f(\vec{x}, \vec{y_1}) + b_2 f(\vec{x}, \vec{y_2}) \\\)

Skalarprodukt (Inneres Produkt)

Ein Vektorraum verfügt nicht notwendig über ein Skalarprodukt. Auf einem Vektorraum kann ein Skalarprodukt definiert sein (Vektor mal Vektor ergibt einen Skalar) –  Dies ist inspiriert aus der Physik durch Arbeit = Kraft mal Weg.

Wir werden sehen, dass so ein Skalarprodukt dann eine “Norm” induziert und damit eine Metrik, wodurch z.B. Grenzwertprozesse möglich werden.

Einen \(\mathbb{R}\)-Vektorraum mit Skalarprodukt nennt man auch einen Euklidischen Raum, einen \(\mathbb{C}\)-Vektorraum mit Skalarprodukt nennt man auch Hilbertraum – genauer Prähilbertraum.

Für die Anwendungen z.B. in der Physik spielt es eine große Rolle, welches der Körper zum Vektorraum ist. In der Quantenphysik benötigt man dazu den Körper der Komplexen Zahlen: \(\mathbb{C}\)

Definition des Skalarprodukts

Das Skalarprodukt zweier Vektoren wird axiomatisch wie folgt definiert.

Axiomatische Definition

Generell ist das Skalarprodukt f in einem Vektorraum über dem Körper K eine Abbildung:

\( f: V \times V \to K \)

Man schreibt auch gerne das Skalarprodukt als:

  • \( \Large f(x,y) = \langle x,y \rangle \)
  • \( \Large f(x,y) = \vec{x} \cdot \vec{y} \)

Für den Fall eines Vektorraums über dem Körper der reelen Zahlen, müssen für x, y, z ∈ V und λ ∈ \(\mathbb{R} \) folgende Axiome gelten:

  • Linearität in beiden Argumenten
    • <x+y,z> = <x,z> + <y,z>
    • <x,y+z> = <x,y> + <x,z>
    • <λx,y> = λ <x,y>
    • <x,λy> = λ <x,y>
  • Symmetrie: <x,y> = <y,x>
  • Positiv definit:
    • <x,x> ≥ 0
    • <x,x> = 0 genau dann, wenn x=0 ist

Das reelle Skalarprodukt ist also eine positiv definite, symmetrische Bilinearform.

Für den Fall eines Vektorraums über dem Körper der komplexen Zahlen, ist die Sache etwas schwieriger.
Da wir aber in der Quantenphysik Vektorräume über den komlexen Zahlen benötigen, müssen wir auch diesen etwas komplizierteren Fall näher betrachten.

Es müssen für x, y, z ∈ V und λ ∈ \(\mathbb{C} \) folgende Axiome gelten:

Semilinear im ersten Argument:

\( <\lambda x, y> = \bar{\lambda} <x,y> \)

Linear im zweiten Argument:

\( <x, \lambda y> = \lambda <x,y> \)

Hermitisch:

\( <x,y> = \overline{<y,x>} \)

Positiv definit:

<x,x> ≥ 0

<x,x> = 0 genau dann, wenn x=0

Das komplexe Skalarprodukt ist also eine positiv definite, hermitische Sesquillinearform.

Existenz eines Skalarprodukts bei endlicher Dimension

Soweit ist dies eine axiomatische Definition von Eigenschaften, welche ein Skalarprodukt erfüllen muss. Die Frage ist allerdings, für einen bestimmten Vektorraum, ob dort auch tatsächlich ein solches Skalarprodukt definiert werden kann.

Aus unserem Vektorraum V über K nehmen wir zwei Vektoren \(\vec{x}\) und \(\vec{y}\) und versuchen deren Skalarprodukt zu definieren. Im Falle einer endlichen Dimension des Vektorraums dim(V)=n können wir das leicht über die Komponentendarstellung dieser Vektoren zu einer ausgewählten Vektorbasis erreichen:

Die Vektorbasis sei: \( \vec{g}_i  (i=1,2,…,n) \)

Die Komponentendastellungen sind:

\( \vec{x} = x^i \vec{g}_i  \) und \( \vec{y} = y^i \vec{g}_i  \)

Das Skalarprodukt der beiden Vektoren müsste dann eigentlich sein:

\( \vec{x} \cdot \vec{y} = x^i y^j (\vec{g}_i \cdot \vec{g}_j) \)

Wir könnten das Skalarprodukt zweier beliebiger Vektoren also definieren, wenn wir nur das Skalaprodukt von je zwei Basisvektoren so definieren, dass dann die Axiome des Skalarprodukts eingehalten würden. Mit anderen Worten: Bei geeigneter Festlegung einer Matrix:

\( g_{ij} = \vec{g}_i \cdot \vec{g}_j \tag{1}\)

Könnten wir das Skalarprodukt einfach definieren als:

\( \vec{x}  \cdot \vec{y} = g_{ij} x^i y^j \tag{2}\)

Wir bekommen also ein Objekt aus zweifach indizierten Skalaren (genannt Metrik-Koeffizienten). Diese Metrik-Koeffizienten bilden also eine quadratische Matrix, die wir später auch gerne “Metrik-Tensor” nennen werden.

Der Metrik-Tensor besteht also aus den paarweisen Skalarprodukten der verwendeten Basisvektoren.

Beispiel:

Wie nehmen einen euklidischen Vektorraum: \(\mathbb{R}^3\)
mit der Vektorbasis: \( \vec{e}_i = (\delta_{i}^j) \)
Wir nehmen als Metrik-Tensor: \( \eta_i^j = \left( \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right) \)

Aus Gleichung (2)  mit dem obigen Metrik-Tensor ergibt sich als Skalarprodukt:

\( \vec{a} \cdot \vec{b} = \sum\limits_{i=1}^3 a^i  b^i \)

Nun müssen wir nur noch überprüfen, ob die Skalarprodukt-Axiome gelten:

Welcher Metrik-Tensor erfüllt die Skalarprodukt-Axiome?

Das erste zu überprüfende Axiom wäre die Linearität des  so definierten Skalarprodunkts in beiden Argumenten.

Zur Überprüfung der Linearität im ersten Argument müssen wir folgenden Ausdruck berechnen:

\(  \langle a_1 \vec{x1} + a_2 \vec{x_2} , \vec{y} \rangle = ? \)

Das erste Argument ist also:

\(  \vec{x} = a_1 \vec{x_1} + a_2 \vec{x_2} \)

Um hier das Skalarprodukt auszurechnen nach Gleichung (2) müssen wir die Komponenten der Vektoren bestimmen. Dazu nehmen wir ersteinmal die Komponenten der einzelnen Vektoren:

\( \vec{x_1} = x_1^i \vec{g_i} \) und \( \vec{x_2} = x_2^i \vec{g_i} \)

Dann ist also:

\( \vec{x} = a_1 (x_1^i \vec{g_i}) + a_2 (x_2^i \vec{g_i}) \\ \)

und:

\( x^i = a_1 x_1^i + a_2 x_2^i  \tag{3}\\\)

Nach der Definition des Skalarprodukts nach Gleichung (2) bekommen wir:

\(  \langle a_1 \vec{x_1} + a_2 \vec{x_2} , \vec{y} \rangle = x^i y^j g_{ij}  \\ \)

Wenn wir nun hier Gleichnug (3) einsetzen, erhalten wir:

\(  \langle a_1 \vec{x_1} + a_2 \vec{x_2} , \vec{y} \rangle  = (a_1x_1^i + a_2 x_2^i) y^j g_{ij}  = a_1 x_1^i y^j g{ij} + a_2 x_2^i y^j g_{ij}\)

und schließlich:

\(  \langle a_1 \vec{x_1} + a_2 \vec{x_2} , \vec{y} \rangle = a_1 \langle\vec{x_1}, \vec{y} \rangle + a_2 \langle \vec{x_2}, \vec{y} \rangle \\ \)

Somit ist das Skalarprodukt im ersten Argument linear unabhängig von der Wahl des Metrik-Tensors.

Das Skalarprodukt ist auch im zweiten Argument linear, wenn der Skalaren-Körper \(\mathbb{R}\) ist – dann gilt die obige Herleitung identisch.

Das zweite zu überprüfende Axiom wäre die Symmetrie

Nach unserer Definition des Skalarprodukts in Gleichung (2) gilt:

\( \langle x, y \rangle = x^i y^j g_{ij} \)

und

\( \langle y, x \rangle = y^j x^i g_{ji} = x^i y^j g_{ji}\)

Wir sehen also, dass wenn der Metrik-Tensor symmerisch ist (gij = gji), dann ist auch das damit definierte Skalarprodukt symmetrisch.

Das dritte zu überprüfende Axiom wäre die Positive Definitheit

Dies ergibt sich auch ganz einfach.

Skalarprodukt bei nicht-endlicher Dimension

Ein  Vektorraum nicht-endlicher Dimension über K ist so etwas wie ein Funktionenraum. Für \( f \in V \text{ und } g \in  V \) definieren wir das Innere Produkt (Skalarprodukt) als:

\(\langle f,g \rangle = \Large \int \normalsize \overline{f(t)} g(t) dt \)

Die komplexe Konjugation wird hier u.a. benötigt, damit die Länge eines Vektors (s.u.) eine reele Zahl wird.

Unitäre Abbildung (Unitäre Transformation)

Eine Abbildung (auch Transformation genannt) von einem Vektorraum V in einen anderen W wird “unitär” genannt, wenn sie das Skalarprodukt “erhält” (Da die Länge eines Vektors über das Skalarprodukt definiert ist, ist eine unitäre Abbildung längentreu)

Nehmen wir zwei Vektorräume V und W, jeweils mit einem Skalarprodukt, sowie eine Abbildung:

\( f: V \to W \)

Dann soll für je zwei Vektoren u und v aus V gelten:

\( <f(u),f(v)> = <u,v>\\ \)

Man kann zeigen, dass solche unitären Abbildungen auch stets lineare Abbildungen sind.

Ein klassisches Beispiel ist die Gruppe U(1) der komplexer Zahlen vom Betrag Eins, wobei die Gruppen-Verknüpfung die Multiplikation der komplexen Zahlen (also die Drehung) ist. Diese Gruppe spielt bei dem Standardmodell der Teilchenphysik eine wichtige Rolle. Die Gruppe U(1) bildet ein mathematisches Modell der Elektrostatischen Wechselwirkung in der Quanten-Elektrodynamik mit dem Photon als Austauschteilchen.

Länge eines Vektors

Der Begriff “Metrik-Tensor” hat schon einen Sinn, wenn wir sehen, dass damit auch die Länge eines Vektors definiert werden kann:

\( | \vec{a} | = \sqrt{\vec{a} \cdot \vec{a}} = \sqrt{g_{ij} a^i a^j}  \)

Zu jedem Skalarprodukt in einem R-Vektorraum oder C-Vektorraum kann man eine Norm definieren, die man “induzierte Norm” nennt:

\( ||\vec{x}|| = \sqrt{\vec{x} \cdot \vec{x}} \)

Abstand zweier Punkte

Mittels der sich aus dem Skalarprodukt ergebenden Norm, definieren wir dann eine Metrik (Anstandsbegriff):

Zu einem Vektorraum der Dimension n über \(\mathbb{R} \) können wir \(\mathbb{R}^n \) als Metrischen Raum definieren:

d(x,y) := || y – x ||

Die Metrik-Axiome werden erfüllt.

Dadurch werden Grenzwert-Konstruktionen möglich z.B. die Konvergenz einer Folge (vgl. Cauchy-Folge), Differentialquotienten etc.

Mathematik: Taylor-Entwicklung & Fourier-Entwicklung

Gehört zu: Mathematik
Siehe auch: Hintergrundstrahlung, MP3-Format, Multipol-Moment

Stand: 24.10.2022

Taylor-Entwicklung – Fourier-Entwicklung

Wir versuchen eine kompliziertere Funktion in eine Summe einfacherer zu zerlegen.

Bei der Taylor-Entwicklung (Brook Taylor 1685 -1731) betrachten wir einen Punkt der Funktion und wollen in der Umgebung dieses Punktes die Funktion “vereinfachen”, dadurch dass wir sie als Summe aus einfacheren Funktionen annähern und im Grenzwert sie damit genau darstellen.

Bei der Fourier-Entwicklung (Jean Baptist Joseph Fourier 1768 – 1830) betrachten wir eine periodische Funktion und wollen diese für eine Periode durch eine Summe einfacherer periodischer Funktionen approximieren (im Grenzwert genau darstellen).

Taylor-Entwicklung

Wir wollen hier eine Funktion y=f(x) in der Nähe einer Stelle x0 durch eine Potenzreihe annähern:

\( f(x) = f(x_0) + a_1 (x-x_0) + a_2 ( x – x_0)^2 + a_3 (x – x_0)^3 + \ldots \\ \)

Das ist eine Linerakombination der Potzenzen (Monome genannt).

Die Koeffizienten in dieser Taylor-Entwicklung kennen wir: \(a_i = \frac{f^{(i)}(x_0)}{i!} \) damit ist:

\( f(x) = f(x_0) + f^\prime(x_0) (x-x_0) + \frac{f^{\prime\prime}(x_0)}{2!} ( x – x_0)^2 + \frac{f^{(3)}(x_0)}{3!} (x – x_0)^3 + \ldots \\ \)

Bleibt x in der Nähe von x0, so ist (x-x0) klein und wir können näherungsweise die Tayler-Entwicklung irgendwann abbrechen – wenn es genauer sein soll, müsen wir weitere Terme hinzunehmen.

Der Sinn einer solchen Taylor-Entwicklung ist häufig, dass die entstandene Potenzreihe einfacher zu handhaben ist als die Originalfunktion (z.B. in Formeln, z.B. die Ableitungen,…)

Physiker brechen gern nach dem zweiten Term ab und nennen das eine Linearisierung; also:

\( f(x) = f(x_0) + f^\prime(x_0)(x-x_0) \\\)

Das machten wir – schon in der Schule – beim Fadenpendel.

Und auch Einstein machte das bei seiner berühmten Formel E = mc2 .

In der Tat zeigt die Mathematik, unter bestimmten Voraussetzungen konvergiert diese Taylor-Reihe. Also

\( f(x) = \sum\limits_{i=0}^{\infty}{\frac{f^{(i)}(x_0)}{i!}} (x-x_0)^i\\\)

Fourier-Entwicklung

Wir betrachten eine etwas kompliziertere Funktion f(t); z.B. ein elektrisches oder akustisches Signal im Zeitverlauf. Die Funktion soll aber periodisch sein; etwa mit der Periode [-π,+π] (das wird gern genommen).

Wir wollen die Funktion durch eine Reihe von Sinus- und Cosinus-Funktionen, also durch Schwingungen, annähern:

\( f(t) = \frac{a_0}{2} + \sum\limits_{k=1}^\infty(a_k \cos(kt)+ b_k \sin(kt)) \\ \)

Das ist eine Linearkombination von Sinussen und Cosinussen verschiedener Frequenzen (und Amplituden).

Der Sinn so einer Fourier-Entwicklung ist jetzt primär nicht, dass das Ergebnis “einfacher” wäre, sondern man möchte etwas herausbekommen über die Original-Funktion; beipielsweise wenn die Original-Funktion ein akustisches Signal ist (siehe MP3-Format).

Die Ermittlung der Fourier-Koeffizienten ak und bk nennt man auch Fourier-Analyse. Fourier selbst fand als analytische Lösung:

\( a_k = \frac{1}{\pi}\int\limits_{-\pi}^{+\pi} f(t) cos(kt) dt \\\)

und

\( b_k = \frac{1}{\pi}\int\limits_{-\pi}^{+\pi} f(t) sin(kt) dt \\\)

Eine Deutung so einer Fourier-Analyse ist, dass wir eine Funktion f(t) untersuchen und die Anteile verschiedener Frequenzen ermitteln. Man spricht deshalb auch von einem Frequenz-Spektrum…

Wenn wir die Fourier-Entwicklung nach dem n-ten Term abbrechen, schreiben wir:

\( F_n  f(t) = \frac{a_0}{2} + \sum\limits_{k=1}^n(a_k \cos(kt)+ b_k \sin(kt)) \\ \)

Das nennen wir “Fourier-Polynom n-ten Grades zu f”  (Sprachgebrauch, obwohl das kein Polynom im üblichen Sinne ist).

Statt Fourier-Analyse wird auch gern die Bezeichnung Harmonische Analyse verwendet.

Komplexe Zahlen

Gerne wird die Fourier-Analyse auch mit Komplexen Zahlen erklärt. So hilft die Eulerschen Formel dabei statt Sinus und Cosinus “einfach” eine Exponatialfunktion zu verwenden:

\(  e^{i  \cdot \phi} = \cos \phi+i \cdot \sin \phi \\\)

Damit entwickeln wir:

\( f(t) = \sum\limits_{k \in Z} c_k \cdot e^{ikt} \\\)

Was dann in der Regel zu komplexen Fourier-Koeffizenten ck führt.

Wir unterscheiden zwischen Fourier-Analyse und Fourier-Transformation…

Diskrete Fourier-Analyse

In der Praxis kennt man die Funktion f(t) meist nicht analytisch (also als Formel), sondern hat “nur” die Funktionswerte an diskreten Stellen. Man kommt dann zu einer sog. Diskreten Fourier-Transformation (DFT).

xyz

 

 

 

Mathematik: GeoGebra

Gehört zu: Data Science
Siehe auch: Python, Thermodynamik, Raumkrümmung, Robin Glover, Jeans-Kriterium, Hydrostatisches Gleichgewicht

Stand: 12.10.2022

Die Software GeoGebra Classic

Download von: https://www.geogebra.org/download?lang=de

Versionen:   6.0.735

Installation: Lokal auf ComputerAcerBaer (Ordner Programmierung)

Online-Aufruf:   https://www.geogebra.org/classic

Benutzung von GeoGebra Classic

Wenn man Dateien speichern will (weil man sie vielleicht später weiterbearbeiten will), benötigt man ein Konto bei GeoGebra und dann muss man sich da anmelden.

Dann funktioniert im GeoGebra-Menü “Datei -> Öffnen”

Mathematik: Koordinatensysteme

Gehört zu: Tensoren
Siehe auch: Metrik-Tensor, Astronomische Koordinatensysteme
Benutzt: Latex-Plugin

Stand: 03.12.2022

Medien-Hinweise

Prof. Wagner: https://youtu.be/c07r4pARzHw

Koordinatensysteme

In der Geometrie führt man gerne Koordinatensysteme ein, um die geometrischen Objekte (Punkte, Linien, Geraden, Flächen,…) mithilfe von Zahlen (Koordinaten) zu beschreiben und zu untersuchen. Das führt zur sog. Analytischen Geometrie.

Man spricht gerne von der Eukidischen Geometrie, dem Euklidischen Raum und den Euklidischen Koordinaten.

Nach Rene Decartes (1596-1650) hat man die xxx Koordinaten benannt….

Kartesische Koordinaten

Im herkömmlichen unserer Anschauung entsprechenden dreidimensionalen Raum \(\mathbb{R}^3 \) habe wir ja die klasssichen Kartesischen Koordinaten (Rene Decartes 1596-1650) mit den Symbolen: x, y, z. Im höherdimensionalen Falle schreibt man dann eher x1, x2, x3, x4,…

Koordinatensysteme und Mannigfaltigkeiten

Man hat eine Menge M (Punktmenge) und ordnet jedem Element (Punkt) aus M ein-ein-deutig ein n-Tupel von Koordinaten zu. Dann kann man statt der Punkte über diese n-Tupel (also die n Koordinaten) sprechen.
So eine Koordinate ist im einfachsten Fall eine reelle Zahl, dann sind die Koodinaten also n-Tupel reeller Zahlen, also Elemente aus dem \( \mathbb{R}^n \). Im allgemeinen Fall nehmen wir für die Koordinaten einen Körper.

Wir hätten also eine ein-ein-deutige (d.h. bijektive) Abbildung zwischen Punkten aus M und n-Tupeln:

\( M \to \mathbb{R}^n \)

So eine Menge zusammen mit einem Koordinatensystem nennen wir (nach Bernhard Riemann 1816-1866) eine Mannigfaltigkeit.

In der Mathematik werden Mannigfaltigkeiten für sich noch sehr detailliert in genauer als hier behandelt. Für uns ist es wichtig zu einem Koordinatensystem zu kommen.

Kartesische Koordinaten

Im herkömmlichen unserer Anschauung entsprechenden dreidimensionalen Raum \(\mathbb{R}^3 \) habe wir ja die klasssichen Kartesischen Koordinaten (Rene Decartes 1596-1650) mit den Symbolen: x, y, z. Im höherdimensionalen Falle schreibt man dann eher x1, x2, x3, x4,…

Krummlinige Koordinaten

Bei nicht-kartesischen Koordinaten, die wir als “allgemeine Koordinaten” bezeichnen, verwenden wir im allgemeinen die Symbole qi (i=1,2,..). Diese “allgemeinen Koordinaten” nennt man, um den Gegensatz zu den Kartesischen Koordinaten deutlich zu machen, auch gerne krummlinige Koordinaten.

Typische Beispiele für krummlinige Koordinaten sind z.B.

  • Ebene Polarkoordinaten
  • Kugel-Koordinaten
  • Zylinder-Koordinaten

Kurven und Tangenten

Eine Kurve in einer Manigfaltigkeit M wird gegeben durch eine Abbildung von einem reellen Intervall auf Punkte in die Manigfaltigkeit. Man nennt so eine Abbildung auch eine Parameterdarstellung der Kurve.

Den Parameter aus einem reellen Intervall können wir schreiben als: \( t \in [t_a, t_e] \)

Die Abbildung ist dann:

\( [t_a, t_e] \to M \\\)

Wir haben also zu jedem Parameterwert \( t \in [t_a, t_e] \) einen Punkt aus der Manigfaltigkeit M.

Wenn wir den Punkt durch seine Koordinaten \( \left(q^i\right) \) ausdrücken, ist die  Kurve also eine Abblidung:

\( [t_a, t_e] \to \mathbb{R}^n \\\)

Wo also die Koordinaten qi eine Funktion des Parameters t sind: \( q^i = q^i(t) \)

Wenn die Kurve differenzierbar ist (also die Koordinaten der Parameterdarstellung), hat die Kurve auch Tangentenvektoren:

\(\vec{T}(t) = \left(T^i(t)\right) = \Large \left(\frac{dq^i}{dt} \right) \)

Die Kurve selbst liegt in der Manigfaltigkeit; der Tangentenvektor aber nicht, er ist an die Mannigfaltigkeit sozusagen “angeheftet”.

Die Tangentenvektoren liegen in einem eigenen Vektorraum

Koordinatenlinien

Bei einem n-dimensionalen Koordinatensystem erhält man eine Koordinatenlinie indem man n-1 Koordinaten festhält und genau eine Koordinate als Parameter laufen lässt.
So eine Koordinatenlinie kann man als (unendliche) Kurve auffassen.

Durch jeden Raumpunkt \( (p^i) = \left( p^1, p^2,\ldots, p^n \right)\) gehen dann n Koordinatenlinien: \( L_j\) mit \( j=1, 2,\ldots, n \).

Die Koordinatenlinie \( L_j\)  hat den Parameter \( t = q^j \) und die Werte:

\( q^i(t) = p^i \enspace (\text{falls } i \neq j)  \)
\( q^i(t) = t \enspace (\text{falls } i = j)  \)

Schöneres Latex:

\( q^i(t) = \left \{  \begin{array}{ll}   p^i & \text{falls } i \neq j \\ t & \text{falls } i = j \\    \end{array} \right. \)

Koordinaten-Hyperflächen

Bei einem n-dimensionalen Koordinatensystem bekommt man Koordinaten-Hyperflächen in dem man genau eine Koordinate festhält und alle anderen laufen lässt.

Durch jeden Raumpunkt \( (p^i) = \left( p^1, p^2,\ldots, p^n \right) \)  gehen dann n Koordinaten-Hyperflächen.

So eine Koordinaten-Hyperfläche kann man als sog. Teil-Mannigfaltigkeit auffassen.

Vektorbasis zu einem Koordinatensystem

Nun kann man an jedem Raumpunkt anhand des Koordinatensystems eine Vektorbasis definieren…

In jedem Raumpunkt kann man nun Basisvektoren so definieren, dass deren Länge 1 sei und sie Tangenten an die Koordinatenlinien durch diesen Punkt sind.

Astronomische Koodinatensysteme

Hierzu habe ich einen eigenen Artikel Astronomische Koordinatensysteme geschrieben.

Mathematik: Der Metrik-Tensor

Gehört zu: Vektoranalysis
Siehe auch: Allgemeine Relativitätstheorie, Koordinatensysteme, Vektorbasis, Tensoren, Gekrümmter Raum

Der Metrik-Tensor

Stand: 26.10.2021

Youtube-Videos von Prof. Paul Wagner:

Wir betrachten eine Riemansche Manigfaltigkeit; d.h. eine Punktmenge mit einem Koordinatensystem. Zu so einem Koordinatensystem, gehört ein Metrik-Tensor, der uns auch ein Linienelement definiert und damit so etwas wie eine Metrik.

Wir kommen aber nicht in einem Schritt von einem Koordinatensystem zu einem Metrik-Tensor, sondern betrachten zunächst, wie ein Koordinatensystem eine Vektorbasis definiert. Zu so einer Vektorbasis haben wir dann einen Metrik-Tensor.

Schlussendlich wollen wir ja Vektorfelder beschreiben. Dabei handelt es sich ja um eine Abbildung von Raumpunkten auf Vektoren. Dabei wird der Raumpunkt durch seine Koordinaten im Koordinatensystem und der Vektor durch seine Komponenten bezügliche “seiner” Vektorbasis beschieben. Wenn wir dann beispielsweise die Veränderung eines Vektors bei kleinen Veränderungen des Raumpunkts untersuchen, müssen wir nicht nur die Veränderung der Vektorkomponenten, sondern ggf. auch die Veränderung der Basisvektoren berücksichtigen, da die Basisvektoren ja im Allgemeinen (z.B. bei krummlinigen Koodinaten) auch vom Ort im Raum abhängig sein werden.
Das wird uns dann zur sog. Kontravarianten Ableitung führen.

Koordinatensystem und Vektorbasis

Zu einem Koordinatensystem bekommmen wir nämlich zwei möglicherweise verschiedene Vektorbasen:

1) Die Basisvektoren sind tangential zu den Koordinatenlinien: sog. kovariante Basis

2) Die Basisvektoren stehen normal (senkrecht) auf den Koordinatenhyperflächen: sog. kontravariante Basis

Bei Chartesischen Koordinaten sehen wir Besonderheiten:

  1. Kovariante Vektorbasis = Kontravarinate Vektorbasis
  2. Die Vektorbasis ist unabhängig vom betrachteten Raumpunkt, also überall die gleiche.

Bei nicht-chartesischen Koordinatensystemen (sog. krummlinigen) wird das beides anders sein.

Bei solchen nicht-chartesischen Koordinaten, die wir als “allgemeine Koordinaten” bezeichnen, verwenden wir im allgemeinen die Symbole qi (i=1,2,..). Diese “allgemeinen Koordinaten” nennt man, um den Gegensatz zu den Chartesischen Koordinaten deutlich zu machen, auch gerne krummlinige Koordinaten.

Wir betrachten nun einen Raum mit den allgemeinen (krummlinigen) Koordinaten: \( q^\alpha \) mit α =1,2,…,n und einem hilfsweise dahinterliegenden Chartesischen Koordinaten: \( x^i \) mit 1= 1,2,….n.

Als Hilfsmittel ziehen wir anfangs gerne die Chartesischen Koordinaten hinzu, wo wir dann im Fall von beliebig vielen Dimensionen die Symbole xi (i=1,2,…) verwenden, oder bei zwei und oder drei Dimensionen, manchmal auch: x,y,z.

Die kovarianten Basisvektoren nennen wir:

\(\Large {\vec{g}}_\alpha \)    wobei α=1,2,..,n

Diese Basisvektoren sind Tangenten an die Koordinatenlinien. Demnach sind die Komponenten (i=1,2,…n) dieser Basisvektoren im Chartesischen Koordinatensystem:

\(\Large \left( \vec{g}_\alpha \right)^i = \frac{\partial x^i}{\partial q^\alpha} \)

Die kontravarianten Basisvektoren nennen wir:

\(\Large {\vec{g}}^{\,\alpha} \)    wobei α=1,2,..,n

Diese Basisvektoren sind Normalen auf den Koordinatenhyperflächen. Demnach sind die Komponenten (i=1,2,…n) dieser Basisvektoren im Chartesischen Koordinatensystem:

\( \Large \left( {{\vec{g}}^{\,\alpha}} \right)^i = \frac{\partial q^\alpha}{\partial x^i} \)

Vektorbasis und Metrik-Tensor

Wenn wir eine Vektorbasis gefunden haben; z.B.:

Eine Vektorbasis: \( \vec{g}_\alpha \)  (α= 1,2,…,n)

Erhalten wir zu dieser Vektorbasis den dazugehörigen Metrik-Tensor als: \( \left(g_{ij}\right) = \vec{g}_i \cdot \vec{g}_j  \)

Merke: Zu einer Vektorbasis haben wir einen Metrik-Tensor.

Die Riemann-Metrik

Wir können auf einer Riemannschen Mannigfaltigkeit ein Tensor-Feld \( g_{ij} \) definiert haben, mit dem wir einen Abstandsbegriff (d.h. eine Metrik) definieren; genauer gesagt, mit dem wir die Länge einer Kurve in der Mannigfaltigkeit definieren wie folgt:

\(\Large s = \int\limits_{t_a}^{t_b} \sqrt{g_{ij}\frac{dq^i}{dt}\frac{dq^j}{dt}} \, dt  \)

So einen Tensor \( g_{ij} \) nennen wir Metrik-Tensor.

Allgemeine Weisheiten zum Metrik-Tensor

Der Metrik-Tensor ist also ein Tensor-Feld, das auf einer Riemannschen Mannigfaltigkeit definiert ist.

  • Wenn der Metrik-Tensor Elemente konstant sind (also nicht vom Ort abhängen) ist der Raum ein flacher Raum. Es kann dafür auch eine geeignete Koordinaten-Transformation benutzt werden.
  • Wenn die Komponenten des Metrik-Tensors aber vom Ort abhängen (keine Koordinaten-Transformation kann sie konstant machen), ist der Raum ein gekrümmten Raum.
  • So ein gekrümmer Raum kann in einen höherdimensionalen euklidischen (flachen) Raum eingebettet sein (z.B. die zweidimensionale Kugeloberfläche) muss es aber nicht.
  • Ein Euklidischer Raum, ist ein flacher Raum bei dem der Metrik-Tensor die Einheitsmatrix ist bzw. alle Diagonalelemente positiv sind.

Beipiel 1: Chartesische Koordinaten

Das Linienelement ist:

\( ds^2 = d{x_1}^2 + d{x_2}^2 + d{x_3}^2 + … \)

Also:

\( ds^2 = \sum\limits_{i=1}^{n}{{dx_i}^2} \)

Der Metrik-Tensor ist dabei ja ein Tensor vom Rang 2 und ist in diesem chartesischen Falle identisch mit der Einheitsmatrix (beispielsweise mit 3 Dimensionen):

\(\Large (g_{ij}) =  \left[ \begin{array}{rrr} 1 & 0 & 0\\  0 & 1 & 0 \\  0 & 0 & 1 \end{array} \right]  \\\)

Dieser Metrik-Tensor definiert dann unser Linienelement:

\( (ds)^2 = \sum\limits_{i=1}^n{\sum\limits_{j=1}^n{dx_i dx_j g_{ij}}} \)

Oder in der Einsteinschen kompakten Schreibweise (mit der sog. Summenkonvention):

\( (ds)^2 = g_{ij} dx^i dy^j \)

Beispiel 2: Ebene Polarkoordinaten

Im zweidimensionalen Euklidischen Raum (Ebene) haben wir als Chartesische Koordinaten: x1 = x,  x2 = y

Als krummlinigen Koordinaten nehmen wir Polarkoordinaten: q1 = r und q2 = φ

Zum Rechnen verwenden wird als Hilfsmittel gern die Chartesischen Koordinaten. Damit haben wir Koordinaten-Transformationen in beiden Richtungen:

\( x = r \cdot \cos{\phi} \\ \\ y = r \cdot sin{\phi} \)

Und in der anderen Richtung ist:

\( r = \sqrt{x^2 + y^2} \\ \phi =\arctan{\frac{y}{x}} \)

Zu diesen Koordinaten erhalten wir als kovariante Vektorbasis (Basis Vektorsystem):

\( \left( \vec{g}_\alpha \right)^i = \frac{\partial x^i}{\partial q^\alpha} \)

Zu diesen kovarianten Basisvektoren bekommen wir als kovarianten Metrik-Tensor:

\( \left(g_{ij}\right) =  \left[ \begin{array}{rr} 1 & 0 \\  0 & r^2  \end{array} \right]  \\\)

Wobei dieses Beispiel zeigt: (1) Der Metrik-Tensor ist ortsabhängig und (2) Die zugrundeliegende Vektorbasis ist zwar orthogonal, aber nicht orthonormal.

Und entsprechend das kovariante Linienelement:

\( (ds)^2 =  dr^2 + r^2 d\phi^2 \\ \)

Zu diesen Koordinaten erhalten wir als kontravariante Vektorbasis:

\( \left( {{\vec{g}}^{\,\alpha}} \right)^i = \frac{\partial q^\alpha}{\partial x^i} \\\)

Zu diesen kontravarianten Basisvektoren bekommen wir als kontravarianten Metrik-Tensor (wir können die Komponenten des kontravarianten Metrik-Tensors ausrechnen oder nehmen einfach das Inverse des kovarianten Metriktensors):

\( \left(g^{ij}\right) =  \left[ \begin{array}{rr} 1 & 0 \\  0 & \frac{1}{r^2}  \end{array} \right]  \\\)

Und entsprechend das kontravariante Linienelement:

\( (ds)^2 =  dr^2 + \frac{1}{r^2} d\phi^2   \)

Wir sehen auch, dass die beiden Metrik-Tensoren invers zueinander sind.

Beispiel 3: Zylinderkoordinaten

Im dreidimensionalen euklidischen Raum können wir neben den Chartesischen Koordinaten x ,y, z die Zylinderkoordinaten (r, φ, z) betrachten.
Dies sind also allgemeine (krummlinige) Koordinaten mit \( q^1 = r,  \, q^2 = \phi, \, q^3 = z \)

Aufgrund der Koordinaten-Transformationen bekommen wir:

Für den  kovarianten Metrik-Tensor:

\( \left(g_{ij}\right) =  \left[ \begin{array}{rrr} 1 & 0  & 0 \\  0 & r^2 & 0 \\ 0 & 0 & 1  \end{array} \right]  \\\)

Und entsprechend das kovariante Linienelement:

\( (ds)^2 =  dr^2 + r^2 d\phi^2  + dz^2 \\ \)

Und für den  kontravarianten Metrik-Tensor bekommen wir:

\( \left(g_{ij}\right) =  \left[ \begin{array}{rrr} 1 & 0  & 0 \\  0 & \frac{1}{r^2} & 0 \\ 0 & 0 & 1  \end{array} \right]  \\\)

Und entsprechend das kontravariante Linienelement:

\( (ds)^2 =  dr^2 + \frac{1}{r^2} d\phi^2 + dz^2 \)

Wiederum sehen wir auch, dass die beiden Metrik-Tensoren invers zueinander sind.

Beispiel 4: Kugelkoordinaten

Im dreidimensionalen euklidischen Raum können wir neben den Chartesischen Koordinaten x, y, z die Kugelkoordinaten (r, θ, φ) betrachten.
Dies sind also allgemeine (krummlinige) Koordinaten mit \( q^1 = r, \,  q^2 = \theta, \,  q^3 = \phi \)

Als kovariante Vektorbasis bekommen wir wieder die Tangenten an die Koordinatenlinien, also an die “Radialachse” (Zenith/Nadir), die “Meridiane” (Nord/Süd) und die “Breitenkreise” (Ost/West).

Als kovarianten Metrik-Tensor bekommen wir:

\( \left(g_{ij}\right) =  \left[ \begin{array}{rrr} 1 & 0  & 0 \\  0 & r^2 & 0 \\ 0 & 0 & r^2 \sin^2 \theta  \end{array} \right]  \\\)

Und entsprechend das kovariante Linienelement:

\( (ds)^2 =  dr^2 + r^2 d\theta^2  + r^2 \sin^2 \theta \, d\phi^2 \\ \)

Und als kontravarianten Metrik-Tensor bekommen wir:

\( \left(g_{ij}\right) =  \left[ \begin{array}{rrr} 1 & 0  & 0 \\  0 & \frac{1}{r^2} & 0 \\ 0 & 0 & \frac{1}{r^2 \sin^2 \theta}  \end{array} \right]  \\\)

Und entsprechend das kontravariante Linienelement:

\( (ds)^2 =  dr^2 + \frac{1}{r^2}d\theta^2  + \frac{1}{r^2 \sin^2 \theta}d\phi^2 \)

Wiederum sehen wir auch, dass die beiden Metrik-Tensoren invers zueinander sind.

Beispiel 5: Kugeloberfläche

Die Oberfläche einer Kugel mit dem (festen) Radius R ist ein zweidimensionaler Raum, wo wir als Koordinatensystem gut mit dem entsprechenden Teil der Kugelkkordinaten arbeiten können.

Also mit den allgemeinen (krummlinigen) Koordinaten mit \(  q^1 = \theta, \,  q^2 = \phi \), was also auf der Erdoberfläche prinzipiell der geografischen Breite und der geografischen Länge entsprechen würde.

Als kovariante Vektorbasis bekommen wir wieder die Tangenten an die Koordinatenlinien, also an die “Meridiane” (Nord/Süd) und die “Breitenkreise” (Ost/West).

Der Metrik-Tensor ergiebt sich dann ganz analog aus dem Vorigen:

Als kovarianten Metrik-Tensor bekommen wir:

\( \left(g_{ij}\right) =  \left[ \begin{array}{rr}  R^2 & 0 \\  0 & R^2 \sin^2 \theta  \end{array} \right]  \\\)

Und entsprechend das kovariante Linienelement:

\( (ds)^2 =  R^2 d\theta^2  + R^2 \sin^2 \theta \, d\phi^2 \\ \)

Der so definierte Riemansche Raum (Kugeloberfläche mit dem o.g. Koordinatensystem) ist ein Nichteuklidischer Raum, wie wir sehen werden. Zur Geometrie in solchen Nichteuklidischen Räumen haben wir ja noch nichts gesagt; aber die Standard-Weissheit ist ja die Winkelsumme im Dreieck und…