Physik: Newtonsche Mechanik

Gehört zu: Physik, Himmelsmechanik
Siehe auch: Gravitation, Potential, Algebren, Lagrange-Formalismus
Benutzt WordPress-Plugin MathJax-Latex

Newtons Gesetze

In der Newtonschen Mechanik wird “alles” durch die Wirkung von Kräften erklärt.

Aus der Schule kennen wir: Kraft = Masse mal Beschleunigung

Das bedeutet, dass wenn wir an einer Masse eine beschleunigte Bewegung messen, so erklären wir diese beschleunigte Bewegung als Wirkung einer Kraft, die sich wie oben errechnet.

Im SI-System ist dementsprechend die Maßeinheit für die physikalische Größe “Kraft” das Newton (1 Newton= 1 N = 1 kg m /s2).

Newton formulierte 1687 die bekannten drei “Gesetze”:

  1. Ein kräftefreier Körper bleibt in Ruhe oder bewegt sich geradlinig mit konstanter Geschwindigkeit.  “Trägheitsgesetz”
  2. Kraft gleich Masse mal Beschleunigung: \( \vec{F} = m \cdot \dot{\vec{v}}  \)   “Aktionsprinzip”
  3. Kraft gleich Gegenkraft.   “Actio gleich Reactio”

Diese Gesetze bilden das Fundament der Klassischen Mechanik.

Das obige Newtonsche Aktionsprinzip wird auch Impulssatz genannt, weil der Impuls \(\vec{p}=m \cdot \vec{v}\) ist; also \( \vec{F} = \dot{\vec{p}}  \)

Diese drei Newtonschen Gesetze (auch Axiome genannt) gelten in sog. Inertialsystemen, das sind Bezugssysteme, die sich gradlining mit gleichbleibender Geschwindigkeit gegeneinander bewegen.
Besser definieren wir, dass ein Intertialsystem genau ein Bezugssystem ist, in dem diese drei Newtonschen Gesetze gelten. Alle gleichförmig (auch “ruhende”) und natürlich gradlinig dazu bewegten Bezugssysteme sind dann auch Intertialsysteme.

Der so definierte Kraftbegriff gilt relativ zu einem benutzten Bezugssystem. Da die Beschleunigung eines Körpers in allen Inertialsystemen gleich ist, ist auch die Kraft auf diesen Körper in allen Inertialsystemen gleich.
Sobald ich aber ein Nicht-Intertialsystem benutze (z.B. geradlinig beschleunigte oder rotierende Bezugssysteme), muss ich fürchterlich aufpassen. Dort beobachte ich Beschleunigungen, die in Inertialsystem gar nicht auftreten und denen man dann auch Kräfte zuordnet, die dann aber Scheinkräfte (Trägheitskräfte) genannt werden. Beispiel 1: (Geradlinig beschleunigtes Bezugssystem): Andruck bei Bescheunigung im Auto auch bei Geradeausfahrt.
Beispiel 2: (Rotierendes Bezugsystem): Zentrifugalkraft, Corioliskraft.

Bewegungsgleichungen

Man möchte ja die räumliche und zeitliche Entwicklung eines mechanischen Systems unter Einwirkung äußerer Einflüsse beschreiben. Im Allgemeinen sucht man also:

Ortsvektor in Abhängigkeit von der Zeit: \( \vec{s}(t) \)
Geschwindigkeitsvektor in Abängigkeit von der Zeit:  \( \vec{v}(t) \)

Man findet diese beiden Funktionen als Lösung von sog. Bewegungsgleichungen, die z.B. diese äußeren Einflüsse beschreiben.

Beispiel: Freier Fall nach Newton

Der äußere Einfluss ist hier die Erdanziehung, die auf eine punktförmige Masse m eine Kraft \( \vec{F} = m \cdot \vec{g} \) ausübt; wobei wir die Gravitationsbeschleunigung \( \vec{g} \) idealisiert mit konstanter Größe und konstanter Richtung annehmen.

Die Fragestellung ist nun, wie sich ein Massepunkt, der zur Zeit t=0 die Anfangsbedingungen s(0)=0 und v(0)=0 erfüllt, in der Zeit weiter bewegt.
Die Bewegungsgleichung hierfür ist:  \( m \cdot \dot{\vec{v}}(t) = m \cdot \vec{g} \)

Die Lösung dieser Bewegungsgleichung erfolgt durch Integration. Zusammen mit den Anfangsbedingungen ergibt sich:

\( \vec{v}(t) = \vec{g} \cdot t \)
\( \vec{s}(t) = \frac{1}{2} \vec{g} \cdot t^2 \)

Neben der klassischen graphischen Darstellung dieser beiden Funktionen können wir auch einen sog. Phasenraum verwenden.

Anregungen hierzu habe von Stefan Müllers Youtube-Video  https://www.youtube.com/watch?v=Q0DiNWi_fcc  erhalten.