Physik: Newtonsche Mechanik

Gehört zu: Physik, Himmelsmechanik
Siehe auch: Gravitation, Potential, Algebren
Benutzt WordPress-Plugin MathJax-Latex

Newtons Gesetze

In der Newtonschen Mechanik wird “alles” durch die Wirkung von Kräften erklärt.

Aus der Schule kennen wir: Kraft = Masse mal Beschleunigung

Das bedeutet, dass wenn wir an einer Masse eine beschleunigte Bewegung messen, so erklären wir diese beschleunigte Bewegung als Wirkung einer Kraft, die sich wie oben errechnet.

Im SI-System ist dementsprechend die Maßeinheit für die physikalische Größe “Kraft” das Newton (1 Newton= 1 N = 1 kg m /s2).

Newton formulierte 1687 die bekannten drei “Gesetze”:

  1. Ein kräftefreier Körper bleibt in Ruhe oder bewegt sich geradlinig mit konstanter Geschwindigkeit.  “Trägheitsgesetz”
  2. Kraft gleich Masse mal Beschleunigung: \( \vec{F} = m \cdot \dot{\vec{v}}  \)   “Aktionsprinzip”
  3. Kraft gleich Gegenkraft.   “Actio gleich Reactio”

Diese Gesetze bilden das Fundament der Klassischen Mechanik.

Das obige Newtonsche Aktionsprinzip wird auch Impulssatz genannt, weil der Impuls \(\vec{p}=m \cdot \vec{v}\) ist; also \( \vec{F} = \dot{\vec{p}}  \)

Diese drei Newtonschen Gesetze (auch Axiome genannt) gelten in sog. Inertialsystemen, das sind Bezugssysteme, die sich gradlining mit gleichbleibender Geschwindigkeit gegeneinander bewegen.
Besser definieren wir, dass ein Intertialsystem genau ein Bezugssystem ist, in dem diese drei Newtonschen Gesetze gelten. Alle gleichförmig (auch “ruhende”) und natürlich gradlinig dazu bewegten Bezugssysteme sind dann auch Intertialsysteme.

Der so definierte Kraftbegriff gilt relativ zu einem benutzten Bezugssystem. Da die Beschleunigung eines Körpers in allen Inertialsystemen gleich ist, ist auch die Kraft auf diesen Körper in allen Inertialsystemen gleich.
Sobald ich aber ein Nicht-Intertialsystem benutze (z.B. geradlinig beschleunigte oder rotierende Bezugssysteme), muss ich fürchterlich aufpassen. Dort beobachte ich Beschleunigungen, die in Inertialsystem gar nicht auftreten und denen man dann auch Kräfte zuordnet, die dann aber Scheinkräfte (Trägheitskräfte) genannt werden. Beispiel 1: (Geradlinig beschleunigtes Bezugssystem): Andruck bei Bescheunigung im Auto auch bei Geradeausfahrt.
Beispiel 2: (Rotierendes Bezugsystem): Zentrifugalkraft, Corioliskraft.

Bewegungsgleichungen

Man möchte ja die räumliche und zeitliche Entwicklung eines mechanischen Systems unter Einwirkung äußerer Einflüsse beschreiben. Im Allgemeinen sucht man also:

Ortsvektor in Abhängigkeit von der Zeit: \( \vec{s}(t) \)
Geschwindigkeitsvektor in Abängigkeit von der Zeit:  \( \vec{v}(t) \)

Man findet diese beiden Funktionen als Lösung von sog. Bewegungsgleichungen, die z.B. diese äußeren Einflüsse beschreiben.

Beispiel: Freier Fall nach Newton

Der äußere Einfluss ist hier die Erdanziehung, die auf eine punktförmige Masse m eine Kraft \( \vec{F} = m \cdot \vec{g} \) ausübt; wobei wir die Gravitationsbeschleunigung \( \vec{g} \) idealisiert mit konstanter Größe und konstanter Richtung annehmen.

Die Fragestellung ist nun, wie sich ein Massepunkt, der zur Zeit t=0 die Anfangsbedingungen s(0)=0 und v(0)=0 erfüllt, in der Zeit weiter bewegt.
Die Bewegungsgleichung hierfür ist:  \( m \cdot \dot{\vec{v}}(t) = m \cdot \vec{g} \)

Die Lösung dieser Bewegungsgleichung erfolgt durch Integration. Zusammen mit den Anfangsbedingungen ergibt sich:

\( \vec{v}(t) = \vec{g} \cdot t \)
\( \vec{s}(t) = \frac{1}{2} \vec{g} \cdot t^2 \)

Neben der klassischen graphischen Darstellung dieser beiden Funktionen können wir auch einen sog. Phasenraum verwenden.

Anregungen hierzu habe von Stefan Müllers Youtube-Video  https://www.youtube.com/watch?v=Q0DiNWi_fcc  erhalten.

Energie und Lagrange

Man kann die räumliche und zeitliche Entwicklung eines mechanischen Systems auch durch den sog. Lagrange-Formalismus beschreiben. Dazu benutzt man die physikalischen Größen kinetische Energie und potentielle Energie.

Langrange-Funktion: \(\mathcal{L} = E_{kin} – E_{pot} \)

Um mit der Langrange-Funktion etwas zu machen, muss man sie als Funktion von Variablen (also Koordinaten) ausdrücken. Die kinetische Energie hängt klassischerweise von der Geschwindigkeit v ab. Die potentielle Energie hängt klassischerweise vom Ort r ab. Die Variablen (Koordinaten) der obigen Lagrange-Funktion wären dann also \(\mathcal{L}(v,r) \).

Wobei diese Lagrange-Funktion nur eine “Hilfsfunktion” ist und keine intrinsische physikalische Eigenschaft darstellt.

Zu der obigen Lagrange-Funktion erhält man die sog. Langrange-Gleichung (2. Art sagt man) als:

\(\Large \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial v} – \frac{\partial \mathcal{L}}{\partial r} = 0 \\ \)

Setzt man in die obige Langrange-Funktion die Ausdrücke für die kinetische und die potentielle Energie ein und bildet dann die für die Lagrange-Gleichung erforderlichen partiellen Ableitungen, so erhält man Bewegungsgleichungen, die man meist ganz einfach lösen kann.

Warum Lagrange?

Es wird gesagt, dass man mit dem Lagrange-Formalismus, kompliziertere Probleme der Kinematik leichter lösen kann als mit den Newtonschen Gleichungen.

Es werden dazu typischerweise sog. generalisierte Koordinaten verwendet, die die Lösung schon mal vereinfachen. Die generalisierten (oder verallgemeinerten) Koordinaten bilden in der theoretischen Mechanik einen minimalen Satz von unabhängigen Koordinaten zur eindeutigen Beschreibung des räumlichen Zustands des betrachteten Systems.  Diese werden so gewählt, dass die mathematische Formulierung von Bewegungen, möglichst einfach wird. Die generalisierten Orts-Koordinaten tragen  oft das Formelzeichen \(q_i\), dann sind \(\dot{q}_i\) sog. verallgemeinerte Geschwindigkeiten. Durch geschickt gewählte verallgemeinerte Koordinaten kann man z.B. sog. “Zwangsbedingungen” von vorne herein und ohne zusätzliche Gleichungen mit einbauen.
Die minimale Anzahl der verallgemeinerten Orts-Koordinaten ist zugleich auch die Anzahl der sog. Freiheitsgrade des Systems.

Typische einfache Beispiele, an denen man den Lagrange-Formalismus Anfängern erklärt, sind: Freier Fall, Schiefe Ebene, Fadenpendel,…

Verwendung findet der Langrange-Formalismus z.B. in der Himmelsmechanik beim Mehrkörperproblem. Man kennt ja beim vereinfachten Dreikörperproblem die berühmten Lagrange-Punkte L1, L2 etc. wo ja gerne Raumsonden, wie Soho, hingeschickt werden.

Beispiel: Freier Fall mit Lagrange

Siehe dazu auch: https://www.youtube.com/watch?v=MIHlsj6kan4

Zur Beschreibung dieses ganz einfachen (eindimensionalen) mechanischen Versuchs benutzen wir als vereinfachte Orts-Koordinate s(t) mit s(0)=0 als Höhen-Koordinate in der Vertikalen in Richtung nach unten und dazu die vertikale Fallgeschwindigkeit v(t) mit v(0)=0.

Als potentielle und als kinetische Energie haben wir damit:

\( E_{pot} = – m \cdot s \cdot g \)   (wobei g die Erdbeschleunigung ist und s in der gleichen Richtung wie g laufen soll – wie das auch oben der Fall ist)
\( E_{kin} = \frac{1}{2} \cdot m \cdot v^2 \)

und die Lagrange-Funktion dieses mechanischen Systems ist:

\( \mathcal{L}(v,s) = \frac{1}{2} \cdot m \cdot v^2  +  m \cdot s \cdot g \\ \)
Wir bilden also ersteinmal die partielle Ableitung der Lagrange-Funktion nach der Geschwindigkeit v:

\( \Large \frac{\partial L}{\partial v} = m \cdot v \\ \)

Dann bilden wir die partielle Ableitung der Lagrange-Funktion nach der Ortskoordinate s:

\( \Large \frac{\partial L}{\partial s} = m \cdot g \\  \)

Die Lagrange-Gleichung lautet damit also:

\(\Large \frac{d}{dt} (m \cdot v) – m \cdot g = 0 \\ \)

Was nichts anderes heisst als:

\( \Large m \cdot \dot{v} – m \cdot g = 0 \\\)

Was genau die gleiche Bewegungsgleichung ist, wie oben mit den klassischen Newton Axiomen. Also ist die Lösung dieser Bewegungsgleichung auch die gleiche wie oben:

\( \vec{v}(t) = \vec{g} \cdot t \)
\( \vec{s}(t) = \frac{1}{2} \vec{g} \cdot t^2 \)

Für diesen sehr einfachen Fall würde man die Lagrange-Methode sicher nicht bemühen; man sieht aber, wie sie im Prinzip abläuft.

Ausserdem gibt es noch Hamilton

Hamiltionfunktion: \(H = E_{kin} + E_{pot} \)