Astrofotografie: Wie mache ich Flat Frames?

Gehört zu: Bildbearbeitung
Siehe auch: Problme lösen mit Stacking

Überblick: Astrofotos kalibrieren

Wir machen neben den Nutz-Fotos (den sog. Light Frames) zur Korrektur (zum Kalibrieren) noch folgende zusätzlichen “Frames”:

  • Dark Frames
  • Light Frames
  • Bias Frames (manchmal auch Offset Frames genannt)

Eine Stacking-Software, wie z.B. Deep Sky Stacker, verarbeitet diese Frame-Typen vollautomatisch zu einem Summenbild.

Die prinzipielle Vorgehenweise ist wie folgt:

  • Die Darks werden von den Lights abgezogen.
  • Da diese Darks bereits das Bias enthalten, ist damit auch schon das Bias vom Light abgezogen.
  • Es bleibt das Flat. Bevor durch das Flat dividiert wird, muss also noch aus dem Flat aus Bias abgezogen werden.

Welche Kalibrierungs-Frames brauche ich?

Das Wichtigste sind die Flat Frames.

Wenn ich eine Kamera mit Amp Glow habe, sind Dark Frames erforderlich.

Kalibrieren mit Flat Frames

Flat Frames sollen theortisch ein gleichmäßig weisses Feld zeigen, Abweichungen von der Gleichmäßigkeit können sein:

  • Randverdunkelung (sog. Vignettierung)
  • Schatten von Staubpartikeln (sog. Donuts)
  • Helligkeitsstrahlen durch Wärme in der Kamera in Sensornähe (sog. Ampglow)

Wenn das Bild einen nicht ganz gleichmäßigen Hintergrund hat, wird das beim Stretchen schnell zu einem Problem. Also brauche ich Flats, wenn ich ein Bild stark stretchen will z.B. bei einem feinen Nebel…

Ich versuche mich erst seit neuester Zeit mit Flat Frames (T-Shirt-Methode und Flat-Frame-Folie). Manchmal waren die Ergenisse richtig gut, manchmal hatte ich eine hässliche Überkorrektur. Deswegen beschäftige ich mich jetzt etwas detaillierter mit dem Thema “Flats”.

Wie mache ich Flat Frames?

Teleskop und Kamera genauso wie bei der Aufnahme der Light Frames – also auch ggf. mit der Taukappe…

Die ISO-Einstellung bzw. die Gain-Einstellung sollte bei den Flats identisch sein zu den Lights. Wenn man die Flats mit anderen ISO-/Gain-Einstellungen machen sollte, benötigt man zusätzlich DarkFlats mit dieser anderen ISO/Gail-Einstzellung.

Belichtungszeit (und Gain bzw. ISO) so daß nichts soll “ausgebrannt” ist und die kleinen Helligkeitsunterschiede im Bild gut sichtbar sind.

Vom “Ausbrennen” spricht man, wenn bei einem Pixel die sog. “Full Well Capacity” (in Anzahl Elektronen) erreicht ist; d.h. zusätzliche Photonen können keine zusätzlichen Elektronen in diesem Pixel erzeugen und damit auch kein zusätzliches Signal (also ADUs) bewirken.

Experten empfehlen, so zu belichten, dass im Bild die hellsten Bereiche nur die Hälfte des maximal möglichen Wertes erreichen. Also die Hälfte der “Full Well Capacity”. Einfach messen können wir aber nur den ADU-Wert. Der Zusammenhang zwischen ADU-Wert und Elektronen-Anzahl ist die sog. Quanten-Effizienz, die in Prozent angibt, aus wieviel ankommenden Licht-Quanten (Photonen) beim Auslesen ein Elektron wird.

Wichtig ist, dass jeder Farbkanal für sich genommen (R-G-B) im Histogramm weder links und rechts angeschnitten wird.

Der Helligkeitswert eines Pixels im Bild wird ja in sog. ADU (Analog Digital Units) gemessen. Je nach der Bit-Tiefe des  ADC (Analog-Digital-Converter) hätten wir unterschiedliche Maximalwerte:

Bit-Tiefe Maximaler ADU-Wert Halbes Maximum
16 65536 32768
14 16384 8192
12 4096 2048
8 256 128

Flat Frames: Mono oder One Shot Color (“OSC”)?

Wenn man mit einer Mono-Kamera und Rot-Grün-Blau-Filtern arbeitet, muss man für jede Farbe extra ein Flat machen – sagen die Experten.

Ich habe “nur” OSC (= One Shot Colour), da sieht das anders aus. Ich habe ich ja immer diese Bayer-Matrix vor dem Sensor und kann aus jeder Aufnahme durch de-bayern ein Farbfoto gewinnen.

Die ganze Kalibierung soll aber immer mit den noch nicht de-bayerten Original-Fotos geschehen – sagen einige Experten…

T-Shirt-Methode

Am nächsten Tage das T-Shirt doppelt oder vierfach über das Objektiv bzw. die Taukappe.

Das wird meistens zu hell

Flat-Field-Box (EL-Leuchtfolie)

EL-Leuchtfolie von Gerd Neumann vor dem Objektiv. (T-Shirt wird meist zu hell.)

Dafür benötigt man eine gute Spannungsversorgung (bei mir 12V) und die Hellikeit der Folie sollte dimmbar sein…

Flat-Field-Boxen gibt es von mehreren Herstellern; z.B. unterstützt N.I.N.A. folgende Modelle:

  • All-Pro Sike-a Flat Flied: 12-Zoll im Quadrat. USD 250 + 140 für USB-Dimmer – ASCOM?
  • Almitak Flip-Flat: EUR 800,–    190mm – 206 mm
  • Artesky USB Flat Box: EUR 369,–    250mm   USB   Italy
  • Pegasus Astro Flatmaster

Meine Zwo ASI294MC Pro

Meine Kamera Zwo ASI294MC Pro hat folgende relevante Daten:

  • Bit-Tiefe: 14 bit
  • Quanteneffizienz: 75% (bei 530 nm)
  • Full Well Capacity: 63700e

Interessante Ratschläge finde ich auch bei:

Flats und Software

Meine Astro-Aufnahme-Software unterstützt das Aufnahmen von Flats in unterschiedlicher Weise:

Flats mit SharpCap

In SharpCap muss man eine Kamera connecten und dann in der Menüleiste auf “Capture” und “Capture Flats…” klicken.

Dann stellen wir rechts in SharpCap Exposure und Gain so ein, dass im Bild ein wenig zu sehen ist.

Mit Menüleiste “Tools” und “Histogram” schalten wir noch das Histogramm dazu…

SharpCap-Flats-02

Da bin ich also mit dem Mittelwert bei 31805.6 ADU, was so ungefähr den Empfehlungen entspricht. Manche Experten halten das schon zu hell und meinen 28000 oder 25000 ADU wären besser. Die Software SharpCap merkert aber, wenn auch nur ein kleines bisschen unter 20% sinkt.

Astrofotografie: SiriL

Gehört zu: Astrofotografie, Stacking
Siehe auch: Deep Sky Stacker

Astrofotografie mit SiriL

SiriL ist eine kostenlose Software mit dem Schwerpunkt Stacking, kann aber noch einiges anderes mehr…

Aufmerksam geworden bin ich auf SiriL durch das unten angegebene YouTube-Video von Frank Sackenheim.

Als Alternative zum traditionellen Deep Sky Stacker ist das modernere SiriL vielleicht ganz interessant.

Software Download: https://www.siril.org/download/#Windows

Ein Youtube-Tutorial von Frank Sackenheim: https://www.youtube.com/watch?v=qMD2QQUtxYs

Vorteile von SiriL

  • kostenlos
  • Für Windows und Linux
  • Stacking mit vielen manuellen Einflussmöglichkeiten, aber auch “vollautomatisch” per Skript
  • Nach dem Stacken: Bildnachbearbeitung: Zuschneiden
  • Nach dem Stacken: Bildnachbearbeitung: Background Extraction
  • Nach dem Stacken: Bildnachbearbeitung: Green Noise Reduction
  • Nach dem Stacken: Bildnachbearbeitung: Color Calibration (auch photometrisch)
  • Nach dem Stacken: Bildnachbearbeitung: Color Saturation
  • Nach dem Stacken: Bildnachbearbeitung: Histogram Transformation

Erste Schritte mit SiriL

Einstellen des “Themes”: Edit -> Einstellungen -> Verschiedenes -> Aussehen: Dort können wir z.B. das “Dark Theme” auswählen.

Einstellen des Arbeits-Ordners (Arbeitsverzeichnis).  Wenn man später mit Scripts arbeiten will, müssen dort die Unter-Ordner: Biases, Lights, Darks, Flats angelegt sein

Generell geschieht das Bearbeiten unserer Bilder päckchenweise. Diese “Päckchen” heißen bei SiriL “Sequences” und müssen einen Sequence-Namen bekommen. Als erstes müssen in SiriL unsere Bild-Dateien in das FITS-Format umgewandelt werden.

Beispiel Nummer 1

Damit ich selber mal lerne, wie das mit dieser für mich neuen Software funktioniert, wende ich das was Frank in seinem Tutorial zeigt, parallel auf einen eigenen Fall an. Ich habe gerade kürzlich eine Aufnahme mit 20 Lights und 10 Darks (keine Flats und keine Biases) gemacht.

Dark Frames umwandeln

Zuerst müssen die Dark-Frames geladen und umgewandelt werden und einen Sequenz-Namen bekommen. Als Sequenz-Namen nehmen wir “Darks”.

Schaltfläche: “Umwandeln”

Die Ergebnisse einer solchen “Umwandlung” (auch “Konvertieren” genannt) werden oben im Arbeitsordner abgelegt. Zum Beispiel werden meine Darks im Arbeitsordner unter den Dateinamen  Darks_00001.fit, Darks_00002.fit etc.  abgelegt (wobei “Darks” der Sequenzname war).

Master Dark

Ich mache dann aus diesen Darks ein sog. Master-Dark.
Das geht über den Reiter “Stacking” mit folgenden Einstellungen:

  • Stacking-Methode: Median
  • Normalisierung: keine

Schaltfläche: “Starte Stacking”

Das Ergebnis ist die Datei Darks_stacked.fit im Arbeitsordner.

Light Frames umwandeln

Dann müssen die Light-Frames geladen und umgewandelt werden und einen Sequenz-Namen bekommen. Als Sequenz-Namen nehmen wir “Lights”

Schaltfläche: “Umwandeln”

Die “umgewandeten” Lights stehen nun im Arbeitsordner unter den Dateinamen Lights_00001.fit, Lights_00002.fit,…

Master Dark von den Light Frames abziehen

Nun folgt das “Pre Processing” der Lights: Es wird das Master Dark abgezogen, wir haben keine Flats und auch keine Offsets/Biases…

Reiter “Pre Processing”: Hier auswählen ob Master Dark, Master Flat, Offset  verwendet werden sollen.

Schaltfläche: “Starte Pre-Processing”

Die pre-prozessierten Lights stehen nun im Arbeitsordner unter den Dateinamen: pp_Lights_00001.fit, pp_Lights_00002.fit,…

De-Bayering der Light Frames

Das Debayering darf nicht zu früh im Workflow erfolgen. Unmittelbar vor dem Registrieren ist gut.
Dann folgt das “Debayering“der Lights:

  • Laden der Dateien: pp_Lights_00001-fit, pp_Lights_00002.fit,…,
  • Sequenz-Namen vergeben. Als Sequenz-Namen nehmen wir “db_pp_Lights”
  • Häckchen bei Debayering setzen,
  • Schaltfläche “Umwandeln” klicken.

Vorher sollten wir noch einen Blick auf die Einstellungen für das De-Bayering werfen…
Die Farb-Bilder stehen nun im Arbeitsordner unter den Dateinamen: db_pp_Lights_00001.fit, db_pp_Lights_00002.fit,…

Registrieren der Light Frames

Im Reiter “Registrieren” stellen wir ein:

  • Registrierungsmethode: “Allgemeine Sternausrichtung”
  • Registrierungs-Layer: Grün
  • Algorithmus: bikubisch

Schaltfläche:   “Führe Registrierung aus”

Die registrierten Bilder stehen nun im Arbeitsordner unter den Dateinamen: r_db_pp_Lights_00001.fit, r_db_pp_Lights_00002.fit,…

Stacken der Light Frames

Die registrieten Light Frames werden nun “gestapelt” englisch: stacked mit folgenden Einstellungen:

  • Stacking-Methode: Durchschnittswert-Stacking mit Ausschleusung
  • Normalisierung: Additiv mit Skalierung
  • Ausschleusung: Wisorized Sigma Clipping

Schaltfläche: “Starte Stacking”

Ergebnisdatei im Arbeitsordner: r_db_pp_Lights_stacked.fit

Bildnachbearbeitung: Zuschneiden

MIt der Maus auf dem Graubild ein Rechteck ziehen (wie Markieren), dann rechte Maustaste “Zuschneiden”

Bildnachbearbeitung: HIntergrund-Extraktion

Menüleiste -> Bildbearbeitung -> Hintergrund-Extraktion

Bildnachbearbeitung: Farb-Kalibrierung

Menüleiste -> Bildbearbeitung -> Farb-Kalibrierung -> Photometrische Farb-Kalibrierung

Bildnachbearbeitung: Grünrauschen entfernen

Menüleiste -> Bildbearbeitung -> Grün-Rauschen entfernen

Bildnachbearbeitung: Farbsättigung anheben

Menüleiste -> Bildbearbeitung -> Farbsättigung…

Bildnachbearbeitung: Histogramm-Transformation

Menüleiste -> Bildbearbeitung -> Histogramm Transformation

Bildnachbearbeitung: Speichern

Menüleiste -> Datei -> Speichern als…

Astrofotografie: Welche Probleme kann ich mit Stacking lösen?

Gehört zu: Bildbearbeitung, Stacking
Siehe auch: Belichtungszeit, Mein Workflow, Flat Frames

Was ist Stacking, was ist Calibration?

Für meine Astrofotografien will ich sehr häufig lange Belichtungszeiten haben; z.B. 2 oder auch 4 Stunden. Warum lange Belichtungszeiten häufig erforderlich sind, ist eine andere Geschichte. Siehe dazu: Belichtungszeiten.

Stacking bedeutet, nun dass man statt eines Fotos mit dieser langen Belichtungszeit (beispielsweise 1 Foto mit 240 Minuten), alternativ mehrere Fotos mit kürzerer Belichtungszeit macht, die in der Summe wieder der langen Belichtungszeit entsprechen (beispielsweise 120 Fotos mit 2 Minuten). Diese vielen “Einzelfotos” (sog. Subs oder Sub-Frames) werden dann per Software wieder zu einem einzigen Foto, dem Summenbild, zusammen “gestapelt” (stacking).

Beim Stacken richtet die Stacking-Software die Einzelbilder so aus, dass alles exakt übereinander passt – das wird von den Spezialisten “Registrieren” genannt. Stacking-Software unterstützt verschiedene Stacking-Methoden:

  • Mittelwert
  • Summe
  • Median
  • Sigma-Clipping (Outlier Rejection)
  • Maximum
  • etc.

“Mittelwert” und “Summe” führen zu identischen Ergebnissen, wenn die Helligkeitswerte genügend genau gerechnet werden (z.B. mit 32 Bit).

Was ist der Vorteil dieses “Stackings” bzw. welche Probleme, die bei langen Belichtungszeiten auftreten können, vermeidet man mit Stacking?

Software zum “Stacking” ist in aller Regel verbunden mit der sog. Kalibration (Calibration); d.h. bevor man “stackt” werden noch elektronische Korrekturen an den Bildern vorgenommen, wie z.B. Subtraktion bzw. Division mit Dark Frames, Flat Frames, Offset-Frames (s.u.).

Welche Probleme hat der Astrofotograf?

Bei der Astrofotografie gibt es eine Reihe von Problemen, die man durch verschiedene Techniken beheben bzw. reduzieren möchte.

  1. Stör-Objekte (z.B. Flugzeuge) im Bild
  2. Hot Pixel  -> Dithern, Dark-Abzug
  3. Vignettierung, Donuts, Amp Glow -> Flats
  4. Himmelshintergrund zu hell  (Lichtverschmutzung)
  5. Schlechte Nachführung
  6. Beobachtungsobjekt zu dunkel auf dem Foto
  7. Rauschen, Farbrauschen (schlechtes SNR) -> Kühlung, lange Gesamtbelichtungszeit (dann Stacken)
  8. Geringer Kontrast -> Stretchen
  9. Geringe Dynamik -> Histogramm analysieren, gute Belichtungszeit wählen dann Einzelbilder aufnehmen und Stacken
  10. Helle Bildteile “ausgebrannt”
  11. Luftunruhe (“Seeing”)

(1) Problem: Stör-Objekte z.B. Flugzeuge, Erdsatelliten etc.

Wenn wir irgendwelche “Störungen” im Bild haben z.B. Flugzeuge, Erdsatelliten, Verwacklung, Fremdlicht etc., ist das ganze (langbelichtete) Bild unbrauchbar.

Lösung: Viele Einzelbilder mit kürzerer Belichtungszeit, schlechte Einzelbilder aussortieren, gute Einzelbilder Stacken

(2) Problem: Hot Pixel

Fehlerhafte Pixel im Sensor unserer Kamera verfälschen unser Astrofoto.

Lösung A: Dunkelbild (“Dark”) machen und dieses vom Astrofoto subtrahieren
Lösung B: Dithering und Sigma Clipping (outlier rejection)

Dies alleine hat mit “Stacking” eigentlich nichts zu tun. Aber…

(3) Problem: Vignettierung

Über die gesamte Fläche unseres Fotos fällt die Helligkeit zu den Rändern etwas ab, möglicherweise sind auch noch Staubteilchen auf dem Sensor, die dunkle Flecken (sog. Dognuts) im Bild erzeugen.

Lösung: Flat Frame machen und das Astrofoto durch dieses dividieren

Dies alleine hat mit “Stacking” eigentlich nichts zu tun. Aber…

(4) Problem: Donuts

Möglicherweise sind dunkle runde Flecken (sog. Donuts) im Bild durch Staubteilchen auf dem Sensor…

Lösung A: Flat Frame machen und das Astrofoto durch dieses dividieren
Lösung B: Staubputzen…

Dies alleine hat mit “Stacking” eigentlich nichts zu tun. Aber…

(5) Problem: Amp Glow

Am Bildrand strahlenförmige Aufhellungen. Die Ursache sind interne Kamerateile in der Nähe des Sensors, die zu warm werden…

Lösung : Dark Frames machen und das Master Dark von den Light Frames abziehen

(6) Problem: Himmelshintergrund zu hell

Je nach Beobachtungsort haben wir am Himmel mehr oder weniger Himmelshelligkeit, z.B. durch “Lichtverschmutzung“. Je länger ich belichte, desto heller wird der Himmelhintergrund auf meinem Bild.

Lösung: Mehrere Einzelbilder mit kürzerer Belichtungszeit, Einzelbilder Stacken zu einem Summenbild.

Wir können also ausprobieren wie lange wir maximal belichten können, ohne dass die Himmelhelligkeit das Bild überstrahlt – dazu ist ein Blick auf das Histogramm hilfreich. So ermitteln wir die Begrenzung der Belichtungszeit durch die Helligkeit des Himmelshintergrunds. Wir machen dann soviele Einzelbilder, bis das Summenbild die gewünschte “effektive” Belichtungszeit hat.

(7) Problem: Schlechte Nachführung

Ohne irgend eine Nachführung kann man ja nur sehr kurz belichten, bevor die Sterne zu Strichen werden, was man meistens ja nicht will.

Wenn man auf irgendeine Art und Weise nachführt (“tracking”, “guiding”), ist die Frage nach der Qualität dieser Nachführung; schlussendlich stellt sich die Frage: “Wie lange kann ich maximal belichten und die Sterne bleiben noch punktförmig?”

Lösung: Mehrere Einzelbilder mit kürzerer Belichtungszeit, Einzelbilder Stacken zu einem Summenbild.

Die Qualität der Nachführung begrenzt also die Belichtungszeit nach oben.
Beispielsweise kann ich mit meiner Astro-Gerätschaft max. 5 Minuten belichten. Wenn ich eine Gesamtbelichtungszeit von 240 Minuten machen möchte, mache ich also 48 Fotos mit je 5 Minuten Belichtungszeit.

(8) Problem: Beobachtungsobjekte zu dunkel (kaum sichtbar) auf dem Foto

Auf dem Foto ist unser Beobachtungsobjekt nicht zu sehen oder nur sehr schwach.

Photonen aus unserem Gesichtsfeld fallen auf die Pixel unseres Sensors und werden dort in Elektronen gewandelt. Diese elektrische Ladung wird dann aus den Pixeln ausgelesen evtl. verstärkt (ISO, Gain) und durch den ADC (Analog Digital Converter) in ein digitales Signal umgesetzt. Diese digitalen Helligkeitswerte pro Pixel machen dann unser Foto aus.

Bei einer längeren Belichtungszeit fallen mehr Photonen auf ein Pixel, es werden mehr Elektronen gesammelt und es gibt damit höhere digitale Helligkeitswerte im Foto.

Lösung: längere Belichtungszeit, ggf mit Stacking

(9) Problem: Rauschen (schlechtes SNR)

Wir haben auf unserem Foto ein “Hintergrundrauschen” in dem feine Einzelheiten unseres Beobachtungsobjekts (“das Nutz-Signal”) untergehen.
Das Rauschen kommt aus mehreren Quellen:

  • Photonen-Rauschen (Schrotrauschen)
  • Sensor-Rauschen (Dunkelstrom)
  • Ausleserauschen

Photonen-Rauschen: Auch Schrotrauschen oder Schottky-Rauschen genannt. Unser Nutzsignal vom Himmelsobjekt ist mit einem Rauschen verbunden. Die Photonen vom Himmelsobjekt kommen nicht gleichmäßig auf dem Pixel an (Anzahl Photonen pro Zeiteinheit), so ähnlich wie Regentropfen pro Quadratmeter und Sekunde. Diese Photonen-Rate ist “poisson-verteilt“, denn die mittlere Rate der Ereignisse (Photonen Ankünfte) ist konstant..

Poisson-Verteilung (Copyright Wikipedia)

Die Standardabweichung einer Poisson-Verteilung mit einem Mittelwert von μ beträgt:

\(\sigma = \sqrt{\mu} \)

Das Nutzsignal ist die mittlere Ankunftsrate der Photonen μ – es ist ist proportional zur Belichtungszeit.
Das Störsignal ist proportional zu σ, also zu Wurzel aus μ; d.h. proportional zu Wurzel aus Belichtungszeit.

In Formeln ist das Signal-Rausch-Verhältnis (SNR = Signal Noise Ratio) also:

\(SNR =  \Large\frac{\mu}{\sigma} \large = \sqrt{\mu} \)

Das Signal-Rausch-Verhältnis ist also proportional zur Wurzel aus der Belichtungszeit. Beispielsweise verdoppelt sich das SNR bei einer Vervierfachung der Belichtungszeit.

In Dezibel gemessen ist das:

\(SNR = 10 \lg{\sqrt{\mu}} =5 \lg{\mu}\)   [Dezibel]

Also Lösung: Lange belichten und ggf. Stacken

Sensor-Rauschen: Elektronen in den Pixeln des Sensors werden nicht nur von den Photonen unseres “Nutzsignals” erzeugt, sondern auch durch Wärme im Sensor und bilden so ein “Störsignal”. Faustregel: Eine Kühlung um 7° halbiert dieses “thermische” Rauschen.

Dieses thermische Sensor-Rauschen verteilt sich aber zufällig auf die einzelnen Pixel des Sensors.
Dieses thermische Sensor-Rauschen ist tatsächlich zufällig und mittelt sich mit längeren Belichtungszeiten aus.
Also Lösung: Kühlen und länger belichten ggf. Stacken

Ausleserauschen: Der Ausleseverstärker soll aus der elektischen Ladung (Elektronen) eines jeden Pixels eine proportionale Spannung erzeugen, die dem ADC zugeführt wird. dabei entsteht auch ein gewisses Rauschen.

Dieses Ausleserauschen ist bei modernen digitalen Kameras zwar sehr gering, aber addiert sich mit jedem Einzelfoto, das ich mache.

Also Lösung: So belichten, dass das Ausleserauschen relativ zum sonstigen Rauschen vernachlässigt werden kann. Üblich ist etwa Ausleserauschen = 10% vom Himmelshintergrund. Man nennt das “hintergrundlimitiert”.

(10) Geringer Kontrast

Lösung: RAW-Format, Stretchen, S-Kurve

(11) Geringe Dynamik

Lösung: RAW-Format, geringeres ISO/Gain

(12) Helle Bildteile “ausgebrannt”

Lösung: HDR und/oder Postprocessing

(13) Luftunruhe “Seeing”

Lösung: Lucky Imaging

(14) …

 

Astrofotografie: Deep Sky Objekte

Gehört zu: Welche Objekte?
Siehe auch M31

Deep Sky Objekte

Was ich mit meiner Ausrüstung ganz gut fotografieren kann, sind sog. DSO’s also Deep Sky Objekte.
Als Gegensatz zu DSO wird gerne “planetary” genannt. Da würde man mit Videos arbeiten.

Dazu gehören:

  • Galaxien
  • Emissionsnebel / Reflexionsnebel
  • Planetarische Nebel

Galaxien

Die beliebtesten Galaxien für den Hamburger Raum sind hier aufgeführt.

Datum von/bis bedeuted eine Höhe von mehr als 70 Grad um 23 Uhr.

Objekt Name Flächenhelligkeit Datum ab Datum bis Neumond-1 Neumond-2
M31 Andromeda 13,35 12.10. 20.11. 16.10.2020 14.11.2020
M51 Whirlpool 12,56 18.4. 17.6. 20.4.2020 22.5.2020
M81 Bode 13,13 10.2. 6.4. 24.2.2020 24.3.2020
M101 Feuerrad 14,82 21.4. 28.6. 20.4.2020 Welche Objekte?
NGC891 Edge-on Andromeda 13,1
NGC7606 10,8
NGC2146 Dusty Hand 12,1
NGC4449 Box Gaklaxy 12,8
NGC5005 Virgo 12,6
NGC6951 Face-on 13.5
NGC157 Cet 12,4
NGC908 Cet 13,0
NGC936 Cet 13,2
M64 Black Eye 12,4
M85 Com 13,0
M88 Com 12,6
M99 Com 13,0
M100 Com 13,0
NGC4274 Com 13,4
NGC4278 Com 13,1
NGC4314 Com 13,3
NGC4565 Needle 12,9
M102 Dra 11,9
NGC5907 Dra 13,4
M83 Southern Pinwheel 13,2
M65 Leo 12,4
M66 Leo 12,5
M96 Leo 12,9
M105 Leo 12,1

 

Astrofotografie: M31 Andromeda Galaxis

Gehört zu: Welche Objekte?
Siehe auch: Galaxien, Deep Sky Objekte

Die Andromeda Galaxis

M31 ist die uns am nächsten gelegene “große” Galaxie (d.h. abgesehen von Zwerggalaxien wie z.B. LMC).

M31 gehört zur sog. “lokalen Gruppe”.

M31 ist das klassische “Anfängerobjekt” für die Deep-Sky-Fotografie.

Edwin Hubble konnte 1933/1934 am Mount Wilson Observatorium M31 in teilweise einzelne Sterne auflösen und dabei auch sog. Delta-Cephei-Sterne finden. Die scheinbare Helligkeit des “H1” genannten Cepheiden in M31 schwankte zwischen 18,3 und 19,7 mag. Mit Hilfe der bekannten Periode-Leuchtkraft-Beziehung konnte er die absolute Helligkeit und damit die Entfernung von M31 bestimmen. Die Entfernungsbestimmung ergab seinerzeit zunächst knapp 1 Million Lichtjahre.

Bis damals war die allgemeine Überzeugung, dass es ausser unserer Galaxis, der “Milchstraße”, keine anderen Galaxien geben würde und die allerseits zu beobachtenden “Nebel” (wie M31) wohl zur Milchstraße gehören müssten.

Als Walter Baade Anfang der 1950er Jahre am gerade fertiggestellten 5m-Spiegel auf dem Mount Palomar zwei verschiedene Typen von Cepheiden nachweisen konnte (mit zwei verschiedenen Periode-Leuchtkraft-Beziehungen), musste die Entfernung auf 2,5 Mio Lichtjahre korrigiert werden.

Generelle Vorbereitungen für das Fotografieren von M31

Wann ist der günstigste Zeitpunkt; d.h. wann steht M31 schön hoch am Himmel?

  • In 2018 in Hamburg:  12. Oktober – 20. November  (h>70°)

Dann brauchen wir noch eine günstige Mondphase z.B. Neumond und gutes Wetter. Als Neumond-Daten haben wir:

  • 2018:   08. Okt.
  • 2019:   27. Okt.
  • 2020:   16. Okt.
  • 2021:   4. Nov.

Als günstigen Standort für die Beobachtung habe ich Handeloh gewählt.

  • geringere Lichtverschmutzung  (Bortle 4 /  SQM 21,0)
  • freies Sichtfeld
  • gute Erreichbarkeit per Auto

Welche Ausrüstung soll eingesetzt werden?

Mit welchen Einstellungen sollen die Fotos geschossen werden?

  • Geplante Belichtungszeit: 10 x 300 Sekunden bei ISO 800
  • Probefotos ergaben, dass bei dieser Belichtung das Histogramm der Einzelfotos “gut” aussah; d.h. deutlich vom linken Rand abgesetzt und von rechten Rand noch sehr weit entfernt
  • Aufnahmeformat: Raw d.h. CR2
  • Auto Guiding mit PHD2 Guiding

Das Foto am 14.10.2018

Im Jahre 2018 war ich mit meinen astrofotografischen Übungen dann so weit und konnte folgende Aufnahme gewinnen:

Ergebnis: M31 in der Andromeda

Autosave_0239-0248_16_CI_RGb

Die Bildbearbeitung (Post Processing)

Als all die schönen Bilder “im Kasten” waren ging es erst einmal nach Hause, wo dann in den nächsten Tagen, Wochen und Monaten die Bildbearbeitung begann.

  • Stacking mit Deep Sky Stacker. Dabei erwies sich eines der zehn Lights als verwackelt und wurde ausgeschieden. Zehn Darks wurden ebenfalls gemacht. Mit Deep Sky Stacker entstand dann das kalibrierte Summenbild im TIFF-Format.
  • Mit Regim erfolgte dann die Background Extraktion (auch Gradient Removal ganannt).
  • Weiterhin wurde mit Regim eine B-V-Farbkalibrierung vorgenommen.
  • Schließlich erfolgte mit Adobe Photoshop das Stretching durch “Tonwertkorrektur” und “Gradationskurven”.
  • Mit Noel Carboni’s Action Set “Astronomy Tools” in Photoshop wurden dann noch die Actions  “Local Contrast Enhancedment”, “Increase Star Color” ausprobiert.
  • Zum Schluss wurde der sehr helle Kern von M31 noch mit “Bild -> Korrekturen -> Tiefen/Lichter” 10% dunkler gemacht.

 

 

 

 

Computer: 3D-Druckverfahren

Gehört zu: Computer
Siehe auch: Bahtinov-Maske, FreeCAD

3D-Drucker

So einem 3D-Drucker muss man sagen welches Material er zum “Drucken” verwenden soll z.B. PLA-Pulver.

Eine Eingabedatei sagt dem 3D-Drucker dann genau, was er da “drucken” soll.

Software für den 3D-Druck

Zum Design eines Bauteils für den 3D-Drucker braucht man eine spezielle CAD-Software, mit der man das Bauteil in 3D interaktiv maßgerecht zeichnen kann und die das für 3D-Drucker erforderliche Datei-Format (z.B. STL) erzeugen kann.

Beispiel: TinkerCAD

  • Beispiel: http://www.tinkercad.com
  • Mit TinkerCAD kann man im Internet schöne 3D-Modelle entwerfen und diese dann z.B. als STL-Datei ausgeben (“Export”).
  • MIt TinkerCAD kann man auch fertige Zeichnungen von Bauteilen (z.B. als SVG-Datei) inportieren.

Beispiel: FreeCAD

3D-Drucker als Hardware

Ein Astro-Kollege von der GvA berichtete einmal über seine Erfahrungen mit kostengünstigen 3D-Druckern.

Ausserdem fiel der Begriff “Ulti Maker“, das ist eine Firma, die 3D-Drucker herstellt:   https://ultimaker.com/

Dienstleister zum 3D-Druck

Es gibt viele Dienstleister, bei denen man eine STL-Datei einreichen kann, die dann dort “ausgedruckt” wird.

z.B. im Internet: Thingiverse

z.B.  Universitäten und Bibliotheken

Web-Links

NIco Carver:   https://www.youtube.com/watch?v=a0Qk5jzsZfc

Astrofotografie: ZWO ASI294MC Pro

Gehört zu: Astrofotografie
Siehe auch: Liste meiner Geräte, Belichtungszeiten, SharpCap

Eine neue Kamera: ZWO ASI294MC Pro

Ich wollte nun (Jan. 2020) meine Astrofotografie auf eine neue Ebene heben und statt mit meiner DSLR Canon EOS 600D nun mit einer gekühlten Astro-Kamera arbeiten.

Da das in meinen Augen schon recht teuer wird, habe ich mich nach etwas Gebrauchtem umgesehen.
Anfang Januar 2020 wurde ich fündig auf forum.astronomie.de und habe mit eine ZWO ASI294MC Pro gegönnt.

Und das gehört zur ASI294MC Pro:

  • ASI294MC Pro  (mit Anschlüssen: T2, 1,25″ und 2″)
  • Gekauft am 2. Januar 2020 für EURO 850,– gebraucht
  • Sensor: Sony 4/3″ CMOS Color Sensor IMX294CJK – “Back illuminated”
  • Pixelgröße: 4,63 µm – 4144 x 2822 Pixel  – 4/3″ = 19,1 x 13,0 mm
  • ADC 14 Bit
  • Full Well Capacity 63700e
  • Leistungsstarke Peltierkühlung bis 45 °C unter Umgebungstemperatur
  • Heizmanschette…

Link: https://astronomy-imaging-camera.com/product/asi294mc-pro-color

Anschluss an Flattener/Reducer bzw. an das Teleskop

Die Kamera ASI294MC Pro selbst hat einen M42*0.75-Gewinde als primären Anschluss.

Mit der Kamera kommen folgende Verlängerungsstücke bzw. Adapter mit:

  • M42/M42 Verlängerung um 11 mm (vor-eingebaut)
  • M42/M42 Verlängerung um 21 mm
  • M48/M42 Verlängerung um 16,5 mm

Backfocus der Kamera ohne alle Adapter: 6,5 mm
Insgesamt also 6,5 + 11 + 21 + 16,5  = 55 mm

Der Flattener/Reducer hat am kameraseitigen Ende ein M48*0,75 Aussengewinde…

Bildbeschreibung: Zusammenbau ASI294 mit Flattener

Kamera ASI294MC Pro an Flattener/Reducer

Einstellungen bei der ASI294MC Pro

Bei so einer Astro-Kamera gibt es einige besondere Einstllungen, die man wenn man von der DSLR kommt, nicht sofort versteht:

Gain: Ist soetwas ähniches wie ISO bei der DSLR – aber warum ist “Unity Gain” so etwas besonderes und evtl. auch erstrebenswert?

Offset: kann man irgendwo einstellen (wo?) und welche Einstellung sollte man wählen?

Foto-Steuerung über ASIair (Linux)

Angeregt durch das Youtube-Video von Trevor Jones (AstroBackyard https://www.youtube.com/watch?v=TwDoKpvajoo ) spielte ich damals auch mit dem Gedanken dazu eine ASIair zu kaufen; das habe ich aber später verworfen, weil es nur noch die viel teuere ASIair Pro (EUR 359,– statt EUR 199,–) gab, welche auch erst irgendwann in der Zukunft geliefert werden sollte. Aber ich habe mal begonnen mich mit Linux und INDI-Treibern auseinanderzusetzen. Für die ASI294MC Pro gibt es sowohl INDI-Treiber als auch ASCOM-Treiber.

Wenn man über INDI geht (primär: Linux), benutzt man als Software KStars mit dem eingebauten EKOS.

Ich hatte dann mal die kleine Linux-Kiste “StellarMate” ausprobiert, hatte da aber Probleme, sie über mein LAN/WLAN zu erreichen.
Deshalb: Kommando zurück: Steuerung ggf. remote über meine Windows-Computer.

Foto-Steuerung über APT (Windows)

Die bewährte Software APT funktioniert mit der neuen Kamera ASI294MC Pro genau so gut wie vorher mit der DSLR Canon EOS 600Da.

Foto-Steuerung über SharpCap (Windows)

Alternativ kann ich zum Fotografieren mit der neuen Kamera ASI294MC Pro auch die Software ShapCap einsetzen.

Astronomie: Software Regim

Gehört zu: Bildverarbeitung
Siehe auch: PixInsight, Fitswork

Was ist Regim?

Regim ist eine kostenlose Software des Entwicklers Andreas Röring.

Regim benötigt die Java Runtime Umgebung und läuft damit auf Windows, Linux und MacOS.

Allerdings ist die Benutzeroberfläche nach heutigen Maßstäben recht schlicht.

Auch ist Regim insgesamt recht langsam.

Probleme gibt es auch bei einigen Varianten der Bildformate TIFF und auch FITS.

Download der Software: https://www.andreasroerig.de/regim/regim.xhtml

Download der Dokumentation: https://www.andreasroerig.de/content/regim/regim.pdf

Version: 3.8 (5.1.2019)

Besondere Funktionen von Regim

Installation und Aufruf von Regim

xyz

Bekannte Probleme mit Regim

Bildformate TIFF und FITS

Java Heap Space

Links zu Regim

AstroHardy 23.01.2014: Vorbereitung von FITS-Dateien in Fitswork für Regim

AstroHardy 20.01.2014:  Automatische Farbkalibrierung mit Regim  Remove Gradient & B-V-Color Calibration

AstroHardy 19.01.2014: Farbkalibrierung mit Regim und Gimp

AstroCologne 09.09.2019: Richtige Farben in Deep-Sky-Bildern

AstroCologne 01.09.2011: Regim Tutorial Teil 1  Stacking

AstroCologne 01.09.2011: Regim Tutorial Teil 2 Fortsetzung des Stacking von Teil 1

Funktionen von Regim

Die wichtigsten Funktionen von Regim sind:

  • Stacking
  • Background Extraction / Gradient Removal
  • B-V Color Calibration / B-V-Farbkalibrierung
  • Plate Solving

Stacking mit Regim

Regim starten und in der Menüleiste “Preprocessing” anklicken. Dann im Drop-Down-Menü nochmals “Preprocessing” auswählen….

Eingabe für das Stacking sind:

  • LIght Frames  (Format FIT oder RAW,…)
  • Dark Frames
  • Flat Frames
  • “Flat Darks” sagt Regim. DSS nennt das “Bias Frames”

Ausgabe beim Stacken ist:

  • Ergebnisdatei FIT
  • Save as: Ergebnisdatei 16 Bit TIFF

Background Extraction / Gradient Removal mit Regim

Wir haben nun das Stacking bereits durchgeführt und haben also eine sog. “Summendatei”.

Als nächsten Schritt glätten wie den Hintergrund d.h. “Background Extraction” bzw. “Gradient Removal”. Der übernächste Schritt behandelt dann die Farben.

Als Eingabe benötigen wir eine Summendatei, die noch nicht gestretched ist, sich also noch in linearem Zustant befidet. Am Besten im Format TIFF.

Dann rufen wir die Funktion Gradient Removal auf indem wir in der Regim-Menüleiste auf “Edit” klicken und dann im Drop-Down-Menü “Remove Gradient” auswählen.

Daraufhin escheint eine kleine Dialogbox (Titel Remove Gradient) mit den Schaltflächen “Generate”, “Execute” und “Exit”.

Bevor wir auf “Generate” klicken füllen wir die Eingabefelder:

  • Number of Samples:   z.B. 21
  • Blur Radius: z.B. 11
  • Background: auto/Manuell

Wenn diese Eingabefelder gefüllt sind, können wir auf die Schaltfläche “Generate” klicken. Es werden dann etsprechend den Eingaben Messpunkte für den Hintergrund (Background) gesetzt.

Wenn die Messpunkte für den Hintergrund O.K. sind, können wir auf “Execute” klicken. Das dauert ein klein wenig und am Ende haben wir drei Fenster (Originalbild, Bild nur mit dem Hintergrund, Bild mit dem entfernten Hintergrund). Die Bilder sind noch linear; d.h. zum Betrachten müssen wir den rechten Regler ziehmlich weit aufdrehen.

Wir klicken nun auf die Schaltfläche “Exit” (sonst geht’s nicht weiter).

Wir können dann die nicht benötigten Fenster schießen und das Ergebnis als 16 Bit TIFF abspeichern.

Da Regim nicht so wahnsinnig stabil läuft, ist das Abspeichern eines solchen Zwischenergebnisses immer sehr zu empfehlen.

Farbkalibrierung mit Regim

Auf der Regim-Menüleiste klicken wir auf “Color” und in dem Dropdown-Menü dann auf “Automatic B-V Color Calibration” oder “Manual B-V Color Calibration”…

Die Idee ist, den Farb-Index (B-V-Index) eines oder mehrerer Sterne im Feld heranzuziehen für die Farbkalibrierung des Bildes.

Bei der “Automatic”-Variante ermittelt Regim zunächst per Plate Solving, welche Sterne im Bild vorhanden sind und kann dann zu den identifizierten Sternen die B-V-Indices aus einem Sternkatalog abrufen.

 

Astronomie Software KStars

Gehört zu: Astro-Software
Siehe auch: INDI, StellarMate, ASIair

KStars was ist das?

KStars ist eine Astronomie-Software, die einerseits als schönes Planetarium-Programm fungiert, andererseits die astronomischen Geräte (Montierung, Kameras, …) steuern kann und dabei diverse nützliche Zusatz-Funktionen hat, wie beispielsweise

Zu diesem Behufe enthält KStars ein Module names Ekos, welche als INDI-Client mit einem INDI-Server spechen kann.

KStars gibt es für Windows, MacOS und Linux.

Die aktuelle Version von KStars ist 3.3.9 (Jan 2020).

Quellen: Youtube-Video von GalaxyGazer: “Die Alternative zum Laptop KStars & Ekos”

Installation von KStars

KStars gibt es für verschiedene Betriebssysteme (Plattformen): Android, Windows, Linux, MacOS

Download bei: https://edu.kde.org/kstars/

Installation unter Windows

Download: https://edu.kde.org/kstars/

Installation unter Linux – Ubuntu

Wenn wir KStars auf unserem Linux Ubuntu installieren, können wir leicht mit Ekos kontrollieren, ob der INDI-Server dort auch läuft.

Zur Installation geben wir im Terminal-Fenster ein:

sudo apt-add-repository ppa:mutlaqja/ppa
sudo apt-get update
sudo apt-get install kstars-bleeding

Die Applikation "KStars" findet man danach unter: Menüleiste -> Applications -> Education -> KStars
Rechte Maustaste: Add this launcher to desktop

Erste Schritte mit KStars

Als Erstes soll man bei KStars den Standort einrichten.

Die Sprache von KStars ist manchmal komisch bis gewöhnungsbedüftig. Beispielsweise gibt es in der deutsche Version so etwas wie “STF” auf das ich mir so überhaupt keinen Reim machen konnte. Im Englischen heist das “FoV” – aha: “Field of View”, also “Gesichtsfeld”- aber KStars denkt “Sichtfeld”. abgekürzt “STF”.

Wie schalten wir die Sprachen bei KStars um?????

Große Frage – nicht bei den KStars-Einstellungen, sondern im Menü “Help -> Switch Application Language”

Menüleiste Einstellungen -> “KStars einrichten…”  (Kataloge etc.)

Menüleiste Extras:  Rechner, Himmelskalender, Sonnensystem, Was ist los heute

Erste Schritte mit Ekos

Eine wesentliche Funktion von KStars auf dem Windows-Computer ist ja, das Modul “Ekos” aufzurufen und damit das Astro-Equipment zu steuern.

Der Aufruf geschieht in der KStars-Menüleiste: Extras -> Ekos

Das setzt voraus, das wir unsere Astro-Geräte mit einem INDI-Server verbunden haben,

Der INDI-Server kann auch remote auf einem anderen Computer laufen z.B. einem Raspberry Pi mit Linux.

In Ekos haben wir dann sog. Profile, in denen über einen INDI-Server die angeschlossenen Astro-Geräte zugeordnet werden.

 


 

 

Astronomie: Computer StellarMate

Gehört zu: Astrofotografie
Siehe auch: Polar Alignment, ASIAir, INDI, KStars

StellarMate: Kleine Astrofotografie-Computer

Anstelle von ausgewachsenen Windows-Computersn hört man in letzter Zeit (heute ist Juli 2019) immer öfter von kleinen Geräten, wie “StellarMate” (von der Firma Ikarus Technologies), die den “großen” Windows-Computer ablösen sollen..

StellarMate ist eine kleine Kiste (ein Rasberry Pi Computer), den man an seine Monierung bzw. das Teleskop hängt, und der einiges kann…..

Ähnliche Produkte sind u.a.

  • Celestron StarSense
  • ASIair
  • Prima Luce Eagle (mit Windows 10 Pro)
  • Raspberry Pi mit freier Software z.B. AstroBerry

StellarMate ist ein kleiner Computer, mit dem man ohne traditionelle Computer Astrofotografie betreiben können soll – das Ding wird als “Astrofotografie-Computer” bezeichnet.

Es geht ja um eine Lösung zur Astrofotografie, die aus Hardware und Software besteht. Zum Testen der Software verwende ich als ersteinmal in aller Ruhe eine Virtuelle Maschine mit Ubuntu MATE. Wenn das alles wirklich funktioniert, werde ich mich mit der Hardware-Plattform beschäftigen.

Eigenschaften des StellarMate

  • Computer: Der StellarMate-Computer basiert auf einem Raspberry PI 3B+,
  • Betriebssystem: StellerMate OS auf der Basis von LINUX
  • Astro-Plattform: INDI   (nicht ASCOM)
  • Stromversorgung des StellarMate: 5 V
    USB: Der StellarMate hat 4 USB 2.0 Anschlüsse und fungiert so also als USB-Hub
  • 1 HDMI Anschluss
  • 1 Ethernet-Anschluss
  • WiFi/WLAN: StellarMate spannt einen WLAN Access Point auf, über den sich ein Tablet mit dem StellarMate verbinden kann. Auf dem Tablet läuft dann eine StellarMate-App.
    • StellarMate kann sich auch als WLAN-Client in ein vorhandenes WLAN einmelden.
  • Kameras: StellarMate unterstützt neben ASI-Kameras auch viele andere Kameras inkl. DSLRs.
  • Montierungen: StellarMate unterstützt und viele gängige Montierungen (siehe INDI Driver).
  • Steuerung der primären Kamera (am Teleskop) z.B. DSLR Canon EOS 600D
    Speicherung der Fotos auf der SD-Karte der Canon
  • Plate Solving:
    • Welcher Platesolver soll benutzt werden: Einstellbar: “online” d.h. über das Internet auf astromertry.net bzw. ANSVR, “offline”d.h. der Solver auf MacOS oder LINUX oder “remote” d.h. der Solver auf dem StellarMate
    • Was soll nach einem erfolgreichen Platesolving gemacht werden? (wird “Solver Action” genannt): Einstellbar: SYNC, Slew to Target, Nothing
  • Polar Alignment ….?
  • Autoguiding wahlweise über ST4 oder Pulse Guiding  – mit den “internen Guider” oder auch einem externen…. (PHD2 Guiding???)
    Als Guiding-Kamera dient meine vorhandene Altair-Cam….

Offene Fragen zum StellarMate

WLAN/WiFi: nicht nur als Access Point, sondern auch als Client?  Ja so ist es.

StellarMate-App: nicht nur für iOS und Android, sondern auch für Windows?

Moter Focusser: not supported

Polar Alignment: ?

PHD2 Guiding: ?

Erste Schritte mit StellarMate

Die Steuerung erfolgt über eine App auf dem SmartPhone. Dazu muss das Smartphone per WLAN mit der ASIair verbunden werden.

Als Kameras werden Astro-Kameras (nur ASI-Kameras) und einige DSLRs (Canon) unterstützt.

  • ASI USB 3.0 cameras, ASI Mini series cameras

Das Polar Alignment konnte in früheren Versionen ausschließlich mit der “Main Camera” vorgenommen werden. Jetzt geht es auch mit der “Guide Camera”

Plate Solving

Autoguiding wird auch direkt von der ASIair gemacht es sieht so ähnlich aus wie PHD2 Guiding Vor jedem Guding wird Kalibriert.

Als “Montierung” kann man bei ASIair angeben:

  • “On Camera” wenn man über ST4 Guiden will und keine eigentliche Verbindung zur Montierung hat.
  • Der ASIair wird mit der Montierung mit Hilfe eines mitgelieferten seriellen Kabels (Montierung) mit USB an der ASIair verbunden. Man gibt dann als Monitierung nicht “On Camera” an sondern “Synscan” oder “EQMOD” (beides wird von INDI unterstützt.
  • ASIAIR control the mount through INDI. iOptron, Sky-Watcher are all tested with ASAIR by us.
  • INDI Mount support list: http://indilib.org/devices/telescopes.html

Einrichten von Stellarmate

Heute am 18.1.2020 kam der StellarMate bei mir per DHL an.

Das StellarMate-Kästchen gehört lokal an das Teleskop; die Bedienung kann remote von einem Laptop über KStars und Ekos erfolgen.

  1. Einen Account eröffnen bei stellarmate.com   (mit E-Mail Verification)
  2. Das Stellarmate-Gerät registrieren: /support/licences.html (dazu muss man die Seriennummer des Geräts eingeben)
  3. KStars auf dem Windows-Computer aufrufen
  4. Innerhalb von KStars Ekos aufrufen: KStars-Menüleiste: Tools -> Ekos
  5. Im Ekos ein Profil einrichten; dabei
    1. INDI-Server “remote host” und dann nicht “localhost”, sondert die IP-Adresse des Stellarmate-Geräts (bei mir: 192.168.1.140)
    2. Select Devices: ….
    3. Select Telescops: ….

Ekos zeigt immer diese drei Reiter: “Select Profile”, “Start & Stop Ekos” und “Connect & Disconnect Devices”.
Im Ersten Reiter “Select Profile” legen wir ein neues Ekos-Profil an, indem wir au das “+” klicken (s. Bild)

Stellarmate-03

 

Das neue Ekos-Profil bekommt einen Namen “HEQ5” unter dem wir es später abspeichern und danach aus dem Drop-Down einfach auswählen können.

Wichtig ist. dass wir als “Mode” “Remote Host” auswählen, wenn wir von einem Windows-Computer über das Netzwerk auf den StellarMate-Computer zugreifen wollen.

Weiterhin können wir in dem Profile unsere “Devices” und “Telescops” angeben.

Stellarmate-04

Nachdem wir Ekos-Profile eingerichtet haben, wählen wir eines aus, mit dem wir jetzt arbeiten wollen und klicken unter dem Reiter “Start & Stop Ekos” auf das Start-Symbol (Dreck mit Spitze nach rechts).

Stellarmate-05

Jetzt versucht das Programm eine Verbindung zum INDI-Server auf dem StellarMate-Gerät herzustellen. Dau muss das StellarMate über unser Netzwert per TCP/IP erreichbar sein (Testen mit einem Ping) und der INDI-Server muss mit dem Ekos als INDI-Client über das INDI-Protokoll “sprechen” können (Test, ob der INDI-Server läuft).

Wie das Bild unten zeigt, funktioniert das leider nicht immer…..   “Failed to connect to remote INDI server”

Stellarmate-06

Nach vier Stunden probieren funktionierte es manchmal lokal (mit VNC sichtbar gemacht), aber “remote” ging niemals etwas; weder mit dem StellarMate als WLAN Access Point noch wenn der StellarMate sich in mein heimisches WLAN eingeloggt hatte.

Nun könnte man noch weitere Stunden herumprobieren z.B. mit einen Bildschirm über HDMI am StellarMate etc. etc. pp. Oder….

Also RETOURE an astroshop.de