Astrofotografie: Bildbearbeitung

Elektronische Bildbearbeitung (EBV) – Image Processing

Als Einsteiger in die Astrofotografie möchte ich mit einfachem Equipment Astrofotos machen, auf denen auch lichtschwache Objekte zu sehen sind, um eigene “Pretty Pictures” von eindrucksvollen Objekten zu erzielen, die man mit bloßem Auge gar nicht sehen kann.

In vielen Fällen sind längere Belichtungszeiten sinnvoll, sodass man sich mit der Kunst der Nachführung auseinandersetzen muss.

Die Ausbeute an Bildern einer Astro-Nacht wird man tags darauf sichten, speichern und nachbearbeiten (“post processing”) müssen; d.h. wir können dann verschiedene Funktionen und Techniken der elektronischen Bildverarbeitung anwenden.

Generelles

Farbtiefe – 8 Bit – 16 Bit – 32 Bit

Wenn eine Kamera das Signal  nur mit 8 Bit digitalisiert, wären das 2 hoch 8 = 256 verschiedene Stufen. Das ist sehr wenig.

Bei einer Digitalisierung von 16 Bit hätte man 2 hoch 16 = 65536 verschiedene Stufen. Das wäre sehr viel besser, um die Feinheiten eines Astro-Fotos darzustellen.

Das JPEG-Format hat leider nur 8 Bit; es ist also sehr zu raten, die Kamera so einzustellen dass im RAW-Format abgespeichert wird. Das ist in jedem Fall besser als JPEG.

Anwendungsbereiche der Bildbearbeitung

Grundsätzlich wird man unterschiedliche Anforderungen an die Bildverarbeitung haben bei

  • Mond und Planeten (und Sonne)                                             –> Aufnahme mit Software FireCapture
  • Nebel und Galaxien  (sog. “Deep Sky Objekte” = “DSO”)   –> Aufnahme mit Software APT

Bei ersterem (Mond, Planeten, Sonne) geht es eher um Detailverstärkung ( = Schärfen) evtl. auch um Kontrastreduzierung

Bei letzterem (Nebel und Galaxien) wird man nach einer Kontrastvertärkung (durch Stretchen) besonders das Rauschen wieder unterdrücken wollen.

Funktionen der Bildbearbeitung für Planeten

Hierbei ist ganz besonders die Luftunruhe (das sog. “Seeing“) ein Hauptproblem.

Die gängige Technik dafür ist das sog. “Lucky Imaging“, wobei man ein Video aufnimmt und dann später aus dem Video diejenigen Einzelaufnahmen benutzt, die am wenigsten durch schlechtes Seeing (Luftunruhe) beeinträchtigt sind.

Beliebte Software für dieses Lucky Imaging ist AutoStakkert. Auch Registax könnte man dafür nehmen.
Pionier auf diesem Gebiet war Georg Dittie mit seiner bahnbrechenden Software Giotto (Version 1.0 im Jahre 2000).

Funktionen der Bildbearbeitung für DSOs

Stacking – Summenbild – Signal Noise Ratio (SNR)

Bei der Astrofotografie von DSOs macht man viele Einzelaufnahmen (“Frames”, “Sub-Exposures”), die man dann “Stacken” muss.

Die beliebteste (kostenlose) Software zum Stacken ist der Deep Sky Stacker “DSS”…

Rand abschneiden

Nach dem Stacking hat man oft einen kleinen schwarzen Rand um das Bild, weil vielleicht eine kleine Verschiebung der Bilder mit im Spiel war.

Diesen kleine Rand sollten wir abschneiden, da er nicht zum “Nutzsignal” gehört und z.B. das Histogramm auf der linken Seite verfälscht.

Sehr einfach kann man das mit der kostenlosen Software Fitswork machen.

Vignettierung entfernen

Sehr einfach kann man eine Vignettierung mit der kostenlosen Software Fitswork entfernen.

Farbkorrektur

Wenn das Histogramm unterschiedliche Spitzen für die Farbkanäle (Rot, Grün oder Gelb) anzeigt, kann man diese zur Deckung bringen und so grobe Farbstiche korrigieren.
Das kann man sehr einfach mit der Software Fitswork machen.

Gradienten entfernen – Hintergrund ebnen

Der Bildhintergrund sollte im Idealfall einen gleichmäßig dunklen Himmel zeigen. Wenn es da aber einen Hellikeitsverlauf gibt (z.B. oben dunkler, unten heller), spricht man von einem Gradienten.

Mit Fitswork lässt sich so ein Gradient relativ leicht entfernen.

Stretching – Histogramm

Spreizen – Streckung – Abschneiden – Gradationskurve – Gamma

Die Bearbeitung des Histogramms kann durch Software wie Fitswork, GIMP, Photoshop o.ä. erfolgen. Wichtig ist, dass die Software dafür eine 16 Bit Digitalisierung benutzt.

Alles, was man im Histogramm manipuliert, kann auch mit einer Manipulation der Gradationskurve erreichen.

Der linke Regler beim Histogramm setzt “fast schwarze” Pixel auf “ganz schwarz”; d.h. es wird links abgeschnitten (“geclippt”).

Der rechte Regler schneidet die ganz hellen Pixel ab, sodass das verbleibende Bild heller und kontrastreicher wird. Gravierender Nachteil ist, dass im Bereich der helleren Sterne Information verloren geht; man sieht ein “Ausblühen” der Sterne. Im Normalfall muss der rechte Regler also völlig Tabu sein.

Der mittlere Regler beim Histogramm ist etwas dubios. Man kann damit die Gradationskurve anheben oder absenken.
Wenn man nur diesen mittleren Regler bewegt (und nicht den linken und nicht den rechten), dann sieht man, dass dadurch die Gradationskurve genau in der Mitte angehoben (Fitswork: Regler nach rechts) oder abgesenkt (Fitswork: Regler nach links) wird.

Experten empfehlen folgende Vorgehensweise:

  1. Linken Regler nach rechts an das “Gebirge” vorsichtig heranfahren  (Achtung: nichts abschneiden)
  2. Rechten Regler so lassen, wie er ist.
  3. Mittleren Regler etwas “aufdrehen” (Fitswork: nach rechts)  so etwa in den rechten Anfang des “Gebirges” fahren
  4. Abspeichern
  5. Punkte 1-2-3 wiederholen, ggf. mehrfach…

Kontrastverstärkung – Gamma-Kurve

Lineare Kontrastkurve –

Kontrastverstärkung in mehreren Schritten

xyz

Rauschunterdrückung – Rauschreduzierung – Glättung

Rauschfilterung wird auch als “Glätten” (z.B. bei Fitswork) oder auch als “Weichzeichner” bezeichnet.

Das Rauschen bedeutet Helligkeitsunterschiede in Flächen, die eigentlich einfarbig sein sollten, und ist in dunklen Bereichen meist am deutlichsten wahrnehmbar.

Bildrauschen entsteht, wenn das Licht nicht ausreicht, um das Bild ausreichend zu belichten.

Man kann dann den sogenannten ISO-Wert erhöhen. Dieser hellt das Bild auf, verursacht aber Bildrauschen.

Deep Sky Objekte (DSO)

Bei Deep-Sky-Aufnahmen ist es ja eigentlich immer so, dass “das Licht nicht ausreicht” – man hat also immer irgendwie mit “Rauschen” zu tun.

Allerdings wird man sich bei DSO als erstes mal mit dem Stretchen beschäftigen, um mehr Detail aus den lichtschwachen Objekten herauszubekommen (was hat Stretchen mit dem Begriff “Konstrastverstärkung”  zu tun? Mir hat das noch keiner erklärt.).

Durch das Stretchen hat man auch das Rauschen verstärkt, was man im zweiten Schritt dann “entfernen” oder Reduzieren möchte.

Ich habe das in einem ersten Anlauf mal mit Photoshop versucht:

Quelle: https://praxistipps.chip.de/photoshop-bildrauschen-entfernen-die-besten-tipps_38993

  • Ein DSO-Bild nach dem Stacken und Stretchen als 16-Bit in Photoshop geladen
  • Dann: Menüleiste –> Filter –> Camera Raw-Filter…
  • Bei den “Grundeinstellungen” auf das dritte Symbol von links (zwei Dreiecke) klicken
  • Dort gibt es “Schärfen” und Rauschreduzierung”. Schärfen will ich nicht;
    • bei Rauschreduzierung drehe ich den Luminanz-Schieber sehr weit nach rechts. Das bewirkt eine starke Rauschreduzierung
    • Luminanzdetails bedeutet, welcher welcher Luminanzbereich von der Rauschreduzierung verschont bleiben soll. Den stelle ich auf Null, weil ich die volle Wirkunk der Rauschreduzierung sehen möchte.

Zweiter Versuch mit Photoshop

Quelle: https://www.netzwelt.de/news/108131_2-photoshop-so-entfernen-bildrauschen.html

Die besten Ergebnisse erreichen Sie mit dem Filter “Rauschen reduzieren”. Diesen finden Sie im Menü unter “Filter” → “Rauschfilter”.

photoshop-01

In einem Dialogfeld mit Miniaturansicht nehmen Sie Ihre Einstellungen mithilfe von Schiebereglern oder der Eingabe von Werten vor. Dabei haben Sie folgende Optionen:

  • “Stärke”: Sie reduzieren das Luminanzrauschen gleichzeitig auf den drei Bildkanälen “Rot”, “Blau” und “Grün”.
  • “Details erhalten”: Sie können möglichst viele Bilddetails und Kanten bewahren. Je höher dabei der Wert eingestellt wird, umso mehr Details bleiben erhalten.
  • “Farbrauschen reduzieren”: Mit diesem Regler passen Sie das chromatische Rauschen an.
  • “Details scharfzeichnen”: Durch die Rauschreduzierung treten Schärfeverluste auf, die Sie hier anpassen können.
  • Wenn Sie die Checkbox “JPEG-Artefakt entfernen” aktivieren, versucht Photoshop, pixelige Bildfehler automatisch zu reparieren.

photoshop-02

Geübte Photoshop-Nutzer können in der Registerkarte “Pro Kanal” ihre Einstellungen kanalweise vornehmen. Für die nächste Bearbeitung speichern Sie Ihre Einstellungen optional im Dialogfenster mit Klick auf das Laufwerkssymbol neben “Einstellungen”.

Weichzeichner

Die beiden Filter “Selektiver Weichzeichner” und “Gaußscher Weichzeichner” verringern Bildfehler durch das Weichzeichnen, eine spezielle Art der Kontraständerung. Mit diesen Filtern arbeiten Sie differenzierter als mit “Rauschen reduzieren” und bewahren mehr Bilddetails. Sie finden beide Filter im Menü unter “Filter” → “Weichzeichnungsfilter”.

Im Dialogfeld des Gaußschen Weichzeichners senken Sie mit dem Schieberegler unter “Radius” den Kontrast benachbarter Pixel. Das Bild wirkt glatter. Stellen Sie jedoch den Radius nicht zu hoch ein, da das die Bildschärfe mindert.

Mit dem selektiven Weichzeichner können Sie neben dem Radius auch den Schwellenwert einstellen. Gehen Sie jedoch auch hierbei behutsam vor. Bei zu starker Weichzeichnung “verschwimmen” die Kanten.

Die Entfernung des Bildrauschens geht immer ein bisschen mit der Reduzierung der Bildschärfe einher. Sie müssen daher je nach Bild entscheiden, inwieweit die Rauschentfernung angewendet werden soll.

 

Schärfen

Quelle: Erik Wischnewski: Astronomie in Theorie und Praxis, 7. Auflage, S. 172

Unscharf bedeutet, dass Hell-Dunkel-Übergänge sanft verlaufen. Scharf bedeutet, dass diese Übergänge härter (schneller und auf kurzer Strecke) erfolgen.

Schärfungsalgorithmen versuchen also aus einem weichen Übergang einen harten zu machen.

Schärfung darf nicht übertrieben werden. Was im Original nicht scharf ist, kann auch nicht mehr im nachhinein scharf gemacht werden.

Zum Schärfen gibt es spezielle Schärfungsfilter z.B. Iterative Gauß-Schärfung.

Schärfen erhöht das Bildrauschen….

Der Schwellwert des Schärfefilters sollte so klein eingestellt werden, das kleinere Helligkeitsunterschiede beim Schärfen ignoriert werden.

xyz

Gezielt nur Teile eines Bildes bearbeiten: Ebenen und Masken

xxxx

 

 

 

 

 

Astrofotografie mit der Software qDslrDashboard 2018

Software: qDlsrDashboard per WLAN auf Notebook

Kultig ist auch die Windows-Software qDslrDashboard, die es für Canon und Nikon gab und neuerdings auch für Sony. qDlsrDashboard gibt es für Windows, iOS und für Android.

Im Einsatz bei mir ist die Version v3.5.1 für Windows von http://dslrdashboard.info/

Mit “qDslrDashboard” kann ich vom Windows-Notebook her die Kamera per WLAN fernbedienen; wobei nicht alle Funktionen, die bei direkter Bedienung der Kamera möglich sind, auch per Ferbedienung unterstützt werden. Per Fernbedienung kann ich:

  • Den Live-View der Kamera remote auf dem Notebook betrachten
  • Den Aufnahmenodus einstellen (M=manuell, A=Blendenpriorozät, S= Verschusszeitpriorität,…)
  • Die Empfindlichkeit einstellen: ISO 100 – ISO 25600
  • Die Belichtungszeit einstellen: 1/4000 Sekunde bis 30 Sekunden (Bulb ist nicht möglich)
  • Die Blende einstellen (wenn ein Objektiv mit elektischer Verbindung benutzt wird)
  • Den Fokus einstellen (wenn ein Objektiv mit elektischer Verbindung benutzt wird)
  • Gitternetz bzw. Fadenkreuz einblenden
  • Eine Aufnahme auslösen (“capture”)
  • Settings: Rückblick-Bildgröße: “Original” oder “2M”
  • Settings: Rückblick-Bild: Anzeigen nach der Aufnahme: Ein, 2 Sek, Aus
  • Settings: “Optionen speichern” Nach der Aufnahme das Rückblick-Bild auf dem Smartphone (iPad) zu speichern…

Fotos, die mit qDslrDashboard als Fernauslöser aufgenommen werden, werden auf der SD-Karte der Kamera gespeichet und auf den Windows-PC heruntergeladen. Dafür wird ein Ordner auf dem PC angegeben. Die Fotos werden als JPGs von der Kamera auf den PC übertragen und zwar in Originalgröße – allerdings haben die JPG-Dateien auf der Kamera und auf dem PC völlig verschiedene Namen.

Astrofotografie: Remote Control – Aufnahme-Software – Capturing

Astrofotografie: Remote Control – Aufnahme-Software – Capturing

Bei der Astrofotografie benötigt man neben einer Kamera auch gleich so etwas wie eine “Fernbedienung” oder “Fernsteuerung” für die Kamera.

Unter “Fernsteuerung” kann man sehr einfache oder auch umfassendere Fern-Funktionalität verstehen; etwa vom einfachen Drahtauslöser bis zu einer umfangreichen Fernsteuerung der Kamera über einen Windows-Computer, Tablet oder so.

Fern-Funktionalitäten können sein:

  • Einstellen von Belichtungszeit, ISO, Blende für die nächste Aufnahme
  • Starten (Benden) einer Aufnahme
  • Programmieren einer Sequenz von Aufnahmen (“Intervallometer”)
  • Betrachten eines Bildes auf einem Windows-Computer, Tablet, Smartphone,…
  • Speichern eines Bildes auf dem Windows-Computer
  • Analyse eines Bildes auf dem Windows-Computer (z.B. Plate Solving)
  • Steuern nicht nur der Kamera, sondern auch anderer astronomischer Geräte wie Montierung, Filterrad, Motorfokusser,…
  • ….

Je nach Kamera gibt es meistens verschiedene Möglichkeiten für “Fernsteuerung”. Die Kamera muss ja mit dem Fernsteuerungs-Gerät irgendwie verbunden sein.

Verbindungen können sein:

  • Dirkete Verbindung zur Kamera (spezielles Draht, Kabel,…)
  • USB-Kabel
  • Infrarot
  • WLAN

Fernsteuerung für die DSLR Sony NEX-5R

Zur Steuerung meiner Sony NEX-5R habe ich mehrere Möglichkeiten:

Fernsteuerung für die DSLR Canon EOS 600D

Zur Steuerung meiner Canon EOS 600D verwende ich Software auf meinem Windows-Computer. Die Verbindung wird dabei per USB-Kabel hergestellt.

 

Meine Anforderungen an eine mobile Montierung für Astrofotografie

Auswahl einer mobilen Montierung für Astrofotografie

Auf meiner Geräteliste ist die Montierung ein ganz wichtiges Teil.

Als in der Großstadt Hamburg lebender Wiedereinsteiger in die Amateurastronomie möchte mit einfachen Mitteln Astrofotos machen, die für mich persönlich Beobachtungen festhalten, die ich so noch nie gemacht habe.

Das bedeutet insbesondere:

  • Die Geräte müssen leicht transportabel sein (z.B. mit dem Auto) und im Felde leicht aufstellbar und betreibbar sein (-> Gewicht, Alignment, Stromversorgung)
  • Es müssen Belichtungszeiten von 30 Sekunden oder mehr möglich sein (-> Nachführung)
  • Die Optik (z.B. Kamera) muss einfach und sicher auf das Beobachtungsobjekt positioniert werden können   (-> Sucher, -> GoTo )
  • Die Optik (z.B. Kamera) muss auf das Beobachtungsobjekt genau scharf gestellt werden (-> Fokussierung)

Angefangen habe ich mit einer Montierung von iOptron, nämlich der SmartEQ ProSeit 2017 bin ich umgestiegen auf eine SkyWatcher HEQ5 Pro.

Contine reading

Astrofotografie Software: FireCapture

Warum FireCapture?

Um meine USB-Kamera Altair GPCAM zu betreiben, benötige ich eine Software auf meinem Windows-Computer, die die Funktionen der USB-Kamera bedient:

  • Betrachtung des Bildes (“Life View”)
  • Einstellen von Belichtungszeit etc.
  • Aufnehmen von Einzelfotos (“image acquisition”, “capture”, “still images”)
  • Polar Alignment – Einnorden / Einsüden
  • Programmieren von Foto-Serien (“sequencing”)
  • Aufnehmen von Videos
  • Diverses (Fadenkreuz, Stacking, Bahtinov,…)

Zu diesem Zweck gibt es verschiedene Windows-Software:

  • Altair Capture – mitgeliefert vom Hersteller der Kamera
  • SharpCap – allgemein bekannte Software, die auch vom Hersteller für meine Altair GPCAM empfohlen wird
  • FireCapture –  unterstützt ab der Version 2.5 auch meine Altair GPCAM
  • APT Astronomy Photography Tool – das wird von einer großen Community benutzt — unterstützt neben Canon alle Kameras, die ASCOM können

Download und Installation von FireCapture

FireCapture ist eine kostenlose Software und kann bezogen werden von: http://www.sharpcap.co.uk/sharpcap/downloads

FireCapture ist eine Java-Anwendung.  Eine java Virtual machine (JVM) ist in FireCapture gebündelt und mus nicht separat installiert werden.

Ab der Version 2.5 wird ….. unterstützt.

Benutzung von FireCapture

Capture Folder

 

 

 

Astrophotography: Dithering

Eine Empfehlung für Dithering

Tony Hallas sagte auf seinem Vortrag “DSLR Astrophotography” beim 1st Annual SCAE Imaging Symposium,
dass man Dithering verwenden sollte speziell wenn man DSLRs einsetzt, die Farbsprenkel produzieren (“color mottle is your number one enemy when you are using a DSLR”) und ja einen ungekühlten Sensor haben; d.h. Darks zu benutzen wird schwierig, da die Temperaturen kaum richtig passen werden.

Was ist Dithering?

Von einer Aufnahme zur nächsten eine kleine “zufällige” Bewegung um 2 oder 3 Sterndurchmesser.

Wie macht man Dithering?

Beim Dithering muss man unterscheiden, ob man Autoguiding einsetzt oder nicht, denn im Falle von Autoguiding muss der Leitstern  ja koordiniert werden mit der Dithering-Bewegung.

Beim Stacking werden mit Hilfe von “Sigma Clipping” die “zufälligen” Schmutzeffekte dann entfernt.

Man sagt, es werden mindestens 6 Einzelaufnahmen, besser 10 Einzelaufnahmen benötigt, damit dieses Dithering funktioniert.

Dithering mit APT – ohne Autoguiding

Im ersten Versuch mache ich es erst ein Mal ohne Autoguiding – nur mit APT das mit der Canon-Kamera und  mit meiner Montierung per ASCOM verbunden ist.

Beim Verbinden der Montierung  (“connect scope”) mit APT muss ich immer auf zwei wichtige Punkte achten:

  • die Nummer der COM-Schnittstelle muss korrekt angegeben werden
  • die Handbox der Montierung muss auf “PC Direct Mode” eingestellt sein

Wenn mann im APT auf die Schaltfläche “Connect Scope” ein “Shift-Click” macht, kann man eine Montierung auswählen per “ASCOM Telescope Chooser”:

APT_ConnectScope-01

Im ASCOM-Setup muss man dann als “Port” die COM-Schnittstelle auswählen, an der die Montierung hängt (z.B. per USB-Serielle-Adapter):

APT_ConnectScope-02

Um das APT-Dithering einzustellen müssen wir im APT auf den Reiter “Gear” und dann auf die Schaltfläche “GUIDE” gehen.
Der Hilfetext erklärt, was gleich passiert, wenn wir klicken:

APT_Dithering-01

Nun klicke ich auf die Schaltfläche “Guide” und das Fenster “Guiding Settings” öffnet sich, wo ich jetzt “Auto Dithering” auf “ON” schalte.

APT_Dithering-02

Wir geben nicht nur “Auto Dithering ON” ein, sondern insgesamt folgendes:

  • Auto Dithering:   ON
  • Guiding Program: APT Dithering   (oder: APT Pulse Dithering)
  • Dithering Distance:  5   (wieviel soll zwischen den Einzelaufnahmen bewegt werden – nicht zuviel, das kostet Zeit und die Montierung wackelt….)
    • Im Falle von APT Pulse Dithering ist das die maximale Pulslänge in Millisekunden in Hunderten. Z.B. 5 bedeutet also 500ms maximale Pulsdauer)
    • Im Falle von APT Dithering ist das duíe Angabe der Pixel um die maximal verschoben werden soll. APT rechnet das in Bogensekunden um und generiert einen entsprechenden GoTo-Befehl.
  • Dithering Settle Time:  15 Sekunden   (wir müssen ein wenig warten, damit die Montierung zur Ruhe kommt – sonste werden die Stern kleine Striche)
    • Nur wenn wir “APT Dithering” statt “APT Pulse Dithering” ausgewählt hatten

Wenn man alles eingegeben hat und dann auf OK klickt, sieht man dass die Beschriftung der Schaltfläche “Guide” sich auf “Guide [D]” geändert hat, um anzuzeigen, dass Dithering aktiv ist.

APT_Dithering-03

Dithering mit APT – mit Autoguiding (hier: PHD Guiding)

Wenn wir im APT Dithering mit Autoguiding machen wollen wollen, müssen wir das spezielle Autoguiding-Programm angeben.
Also:

  • Auto Dithering:   ON
  • Guiding program:  PHD Guiding (also nicht “APT Dithering”)

Im Auto Guiding Programm PHD Guiding müssen noch einige Einstellungen vorgenommen werden:

Menü -> Einstellungen -> PHD-Server aktivieren

Brain-Symbol -> Reiter “Global” -> Abschnitt “Dither Einstellungen”: Vergrößern = 1,0    (Faktor zum Multiplizieren der APT-Einstellung)

Astronomie Software: Canon EOS Utility & DPP

Canon Software

Nachdem ich eine Canon EOS 600D neu erworben hatte, stand die Namibia-Reise ins Haus. Also nahm ich gleich die “neue” Canon mit.
Bei meinem Aufenthalt auf Kiripotib hat mich Bernd Müller astronomisch betreut. Er machte mich auf die Canon-Software “EOS Utility” und “DPP” aufmerksam.

Canon liefert mit seinen EOS Kameras folgende (kostenlose) Software mit aus:

  • EOS Utility: Aufnahmen und Steuerung der Kamera über ein USB-Kabel
  • DPP Digital Photo Professional: Zur Bearbeitung und Verwaltung der Fotos (RAW = CR2 und JPEG)

Primär muss das EOS Utility installiert werden und konfiguriert werden.

Sehr häufig möchte man die mit EOS Utility aufgenommenen Fotos auf dem Notebook-Computer speichern und mit DPP bearbeiten. Deshalb sind im EOS Utility folgende Einstellungen erforderlich:

  • Voreinstellungen -> Zielordner -> hier einen sinnvollen Ordner einstellen, der auch in DPP eingestellt ist
  • Voreinstellungen -> Verknüpfte Software -> hier Dpp4.exe einstellen
  • Voreinstellungen -> Grundeinstellungen -> nicht anhaken “Schnellvorschau-Fenster automatisch anzeigen” (denn wir wollen ja statt dessen DPP automatisch aufrufen)

EOS Utility: Voreinstellungen

EOS_Utility_001

EOS Utility: Zielordner

EOS_Utility_002

EOS Utility: Verknüpfte Software DPP

EOS_Utility_003

EOS Utility: Schnellvorschau ausschalten

EOS_Utility_004

Astrofotografie: Speicherkarten

In Namibia 2017 möchte ich mit meiner Kamera Canon EOS 600D viele schöne Aufnahmen schießen.

Deshalb habe ich eine Menge von SD-Karten über Amazon angeschafft:

  • SanDisk Ultra Android microSDHC 32GB
  • bis zu 80 MB/Sek Class 10 Speicherkarte
  • + SD-Adapter
  • Zum Preis von Euro 15,99 inkl. Versand

Wieviel Fotos passen auf eine 32GB-Speicherkarte?

Größe eines durchschnittlichen Fotos

  • Raw: 24000 kB
  • Jpg:  4500 kB
  • Gesamt (Raw+Jpg): ca. 29 MB
  • Also passen auf eine 32 GB Karte ca. 1103 Fotos

Zeitraffer / Time Lapse

Zum ruckelfreien Abspielen eines Zeitraffers bracht man 25 Frames pro Sekunde.
Für ein Video von 1 Minute braucht man also mindestens 60 x 25 = 1500 Frames.

Wie lang sollte ein Zeitraffer-Video sein?

In welchem Rhythmus man Aufnahmen macht hängt davon ab, wieviel Bewegung das Motiv bietet.
Hier ein paar Richtwerte:

  • Ziehende Wolken: ca. 5-15 Sekunden
  • Menschen auf einem Platz: 1-5 Sekunden
  • Sonnenuntergang: 5-15 Sekunden

Beispiel:

  • Von Sonnenuntergang 18:41 bis Ende der Dämmerung 19:56 sind es 75 Minuten oder 75 x 60 = 4500 Sekunden
  • Wenn ich jetzt alle 3 Sekunden (4500 /1500) ein Foto schieße, werden das 4500 / 3 = 1500 Frames; was für ein Video von 1 MInute reicht.

 

 

 

Astronomie: Drei-Wege-Neiger MH-4

Für ein Fotostativ benötigt man Stativköpfe als Zubehör. In meiner Geräteliste befinden sich Kugelköpfe und Neiger. Für bestimmte Aufgaben ist ein Neiger besser geeignet als ein Kugelkopf.

Der MH-4 ist schön leicht und aus Plastik, was meine Magnet-Sensoren nicht ablenkt.

Der MH-4 war als Unterbau für den NanoTracker gedacht, wurde von mir aber bald durch eine Skywatcher Equatorial Wedge ersetzt, mit der man Polhöhe und Azmut viel feinfühliger einstellen kann.

DK_20170902_1961