Astrofotografie mit speziellen Astro-Kameras

Astrofotografie mit speziellen Astro-Kameras

Gehört zu: Geräteliste zur Astrofotografie

Wozu Astro-Kameras?

Nach dem Einstieg in die Astrofotografie mit Digital-Kameras wäre ein nächste Schritt, eine spezielle Astro-Kamera einzusetzen.

Ich habe mir ganz am Anfang meines Wiedereinstiegs in die Amateur-Astronomie ein Altair GP-CAM gekauft und wollte da nur mal etwas herumprobieren, ohne zu wissen, was man damit eigentlich machen kann. Als erstes dachte ich daran, mit der GP-CAM einen elektronischen Sucher zu bauen. Später habe ich die GP-CAM zum Autoguiding eingesetzt.

Gekühlte Astro-Kameras sind eigentlich für Deep Sky (DSO) gedacht, weil dabei längere Belichtungszeiten erforderlich sind.

Gängige Astro-Kameras kommen von:

  • Altair
  • ZWO ASI
  • QHY ALCCD   AstroLumina

Ich habe eine Altair GP-CAM MT9MO34M    Altair GPCAM MT9M034M  (schwarz/weiss).

Mein Bruder Rainer hat sich in 2018 eine ZWO ASI 174 MCC  (Farbe, gekühlt)  zugelegt.

Der Verein hat sich in 2018 eine ASI 1600 (monochrom, gekühlt) zugelegt.

AR = Anti-Reflexion

Vergleich typischer Astro-Kameras

xyz

GP-CAM MT9M934M ASI 174 MCC ASI 1600 MM-Cool V3
Preis (Nov. 2018) 219,– 942,– 1599,–
Sensor-Auflösung 1280 x 960 1936 x 1216 4656 x 3520 Pixel
Pixelgröße 3,75 μ 5,86 μ 3,8 μ
Chip-Größe 4,8 x 3,6 mm 13,4 x 11,34 mm 17,6 x 13,6 mm
Sensortyp 1/3 Zoll CMOS 1/1.2 Zoll CMOS 4/3 Zoll CMOS
Farbe/Mono Mono Farbe Mono
Bittiefe ADC 8 Bit /  12 Bit umschaltbar 12 Bit 12 Bit
Aktive Kühlung nein ja ja
Belichtungszeiten 0,4 ms bis 800 s 32 μs – …15 Minuten (?) max. 30 Minuten
Anschluss (teleskopseitig) 1,25 Zoll 1,25 Zoll, 2 Zoll,T-Gewinde (M42x0,75) 1,25 Zoll, T-Gewinde (M42x0,75)
Anschluss (objektiv) C-Mount

 

 

 

Astrofotografie: Überblick

Astrofotografie

Bei den Astros kann man zwei “Lager” unterscheiden:

  • visuelle
  • fotografische

Ich persönlich möchte meine astronomischen Beobachtungen unbedingt festhalten, sprich als Foto dokumentieren.

Bei der Astrofotografie benötigt man deutlich mehr Technik als für die “nur” visuelle Astronomie.
Technik bedeutet hier: Gerätschaften (meine Geräteliste) und Computer-Software (meine Softwareliste).

Welche Websites können helfen?

Im Internet gibt es viele Quellen, die bei der Astrofotografie helfen können z.B.

Welche Objekte will ich fotografieren?

Da gibt es ganz unterschiedliche Motive:

  • Weitwinkel: Sternbilder, Milchstraße, Zodikallicht, Erdschattenbogen, Halo-Erscheinungen, Leuchtende Nachtwolken,…
  • Planeten/Mond/Sonne
  • Deep Sky Objekte (“DSO”) Galaxien
  • Deep Sky Objekte: Sternhaufen, Asterismen
  • Deep Sky Objekte: Planetarische Nebel
  • Deep Sky Objekte: Emmissionsnebel, Absoptionsnebel

Wie ziele ich auf mein Beobachtungsobjekt?

Um das Beobachtungsobjekt in das Gesichtsfeld zu bekommen (“Framing”) gibt es verschiedene Methoden:

Wie hell ist das Beobachtungsobjekt?

Wenn es hell ist, kann man sehr kurz belichen

Wenn es dunkel ist, muss man sehr lange belichten

Wenn man lange belichtet, muss man evtl. nachführen, um die Erdrotation zu kompensieren.

Wie groß ist das Beobachtungsobjekt?

Das Beobachtungsobjekt muss in das Gesichtsfeld (Field of View = FoV) passen.

Bei der Astrofotografie macht es keinen Sinn von “Vergrößerung” zu sprechen. Das Bild entsteht auf dem elektronischen Sensor und kann dann in verschiedener Größe angezeigt werden. Wir haben ja kein Okular, mit dem wir das Bild betrachten (visuelle Astronomie). Bei Betrachtung durch ein Okular kann man von einer Vergrößerung sprechen und diese berechnen als f1/f2.

Womit kann ich fotografieren?

Zum Fotografieren benötigt man eine bildgebende Optik (Fotoobjektiv oder Teleskop) und einen bildaufnehmenden Sensor (DSLR oder Astro-Kamera CCD/CMOS).

Als Optiken für die Astrofotografie kommen infrage:

Bei Fotografieren entseht das Bild auf einem sog. Sensor:

  • Fotoapparate (DSLR)
  • Astro-Kameras (CCD/CMOS)

Linse und Sensor müssen zusammenpassen, um die beste Auflösung zu erzielen.

 

 

 

Astronomie: Auflösungsvermögen

Auflösungsvermögen eines Teleskops

Siehe auch: Nachführung

Das sog. Auflösungsvermögen eines Teleskops bedeutet, welchen kleinen Einzelheiten noch getrennt dargestellt werden können (deswegen auch “Trennschärfe” genannt).  Das hängt von der Öffnung des Teleskops ab.

Siehe: http://www.clearskyblog.de/2009/09/22/mathematik-in-der-astronomie-teil-4-das-aufloesungsvermoegen-von-teleskopen/

Airy-Scheibe

Das Abbild einer punktförmigen Lichtquelle (ein Stern) ist im Teleskop ein Beugungsmuster mit einem Beugungsscheibchen in der Mitte als Maximum.

Der Radius des Beugungsscheibchens, gemessen bis zum ersten Minimum, ist (in Bogensekunden) ist nach George Airy:

α = 1,22 *  (λ /D) * 206265 ”       

wobei

  • 206265 = 360 * 60 * 60 / 2π    
  • λ die Wellenlänge des Lichts,
  • D die Öffnung des Teleskops ist

Teleskop-Verkäufer lassen gern den Faktor 1,22 weg, um zu besser aussehenden Werten zu kommen. Die 1,22 ergibt sich aber als die erste Nullstelle der Besselfunktion, die für den Radius des ersten Beugungsminimums zuständig ist.

Auflösungsvermögen: Rayleigh-Kriterium

Das sog. Rayleigh-Kriterium besagt, dass der minimale Abstand zweier Lichtpunkte, der noch eine Trennung ermöglicht, dann erreicht ist, wenn der Mittelpunkt des zweiten Lichtpunkts genau im ersten Minimum des Beugungsmusters des ersten Lichtpunkts liegt.

Wenn wir als Lichtwellenlänge λ annehmen 550 nm (grün), ergeben sich folgende (theoretische) Zahlen:

Teleskop Öffnung in mm Auflösungsvermögen in “
LidlScope 70 1,98″
Orion ED 80/600 80 1,73″
Vixen 114/900 114 1,21″

Als Faustformel gilt:

Auflösungsvermögen (in “) =  138 / D   (in mm)

Oversampling / Undersampling

Oft wird die Frage gestellt, welche Pixelgröße die Aufnahmekamera (der Sensor) bei gegebener Teleskopbrennweite haben sollte. Hierzu folgende Betrachtung: Zwei Objekte lassen sich auf dem CCD-Chip nur dann trennen, wenn zwischen ihnen ein weiterer Pixel liegt. Der Abstand dieser Objekte auf dem Chip berägt also das Zweifache der Pixelgröße (2 x p).

Bei der Astrofotografie muss mann die absolute Größe des Beugungsscheibchen (von der Optik) in Relation zur Pixelgröße des Sensors setzten.
Die absolute Größe des Beugungsscheibchenes hängt dabei von der Brennweite des Teleskops ab, bzw. bei längerer Belichtung vom Seeing.  Das Sternenscheibchen durch Seeing kann je nach Luftunruhe 2″ bis 5″ (FWHM) betragen (Link: https://sternen-surfer.jimdo.com/tipps/pixelgr%C3%B6%C3%9Fe-und-brennweite/).

Um die Größe des Beugungsscheibchens mit der Pixelgröße der Kamera vergleichen zu können, rechnen wir den Winkel in Länge um,

Radius [µm]  = Brennweite [mm] * 1000 * Auflösungsvermögen [arcsec] * π / (60*60*180)

Also spielt die Brennweite (f) eine entscheidende Rolle:

Teleskop Öffnung in mm Auflösungsvermögen in “ Brennweite in mm Radius Beugungsscheibchen
in μ
Optimale Pixelgröße in μ
LidelScope 70 1,98 “ 700 6,71 μ 3,3 μ
Orion ED 80/600 80 1,73 “ 600 5,03 μ 2,6 μ
Vixen 114/900 114 1,21 “ 900 5,30 μ 2,6 μ
Seeing FWHM 2,00″ 510 4,95 μ 2,5 μ

Nach dem Nyquist-Shannon-Sampling-Theorem brauche ich einen Abstand von 2 Pixeln (also einen leeren Pixel dazwischen) um zwei Punkte zu unterscheiden. Der Abstand zwischen den Abbildungsscheibchen darf der Radius eines Scheibchens sein. Ist die Pixelgröße kleiner, spricht man von Oversampling, ist die Pixelgröße größer, spricht man von Undersampling.

Astrofotografie: Photoshop – Luminanzmasken

Photoshop: Masken

Link: http://www.imagingdeepsky.com/Tutorials/Masks/Masks.htm

Grundlagen

Masken sind im standardmäßig im Fenster “Ebenen- Kanäle  Pfade” (Anschalten über Menü -> Fenster -> xyz).

Zu einer Ebene kann eine (mehrere?) Maske “Ebenenmaske” angelegt werden.

Eine Maske ist ein Graustufenbild.

Die Funktion einer Maske ist: Schwarz verdeckt, Weiß lässt durch (bezogen auf das Bild in der Ebene).

Bearbeiten einer Maske: Durch “Alt-Klick” auf das Miniaturbild der Maske wird die Maske im Hauptfester angezeigt und kann bearbeitet werden.

Arbeitsschritte:   (“Work Flow”)

Das Bild als neue Ebene kopieren (damit das Original erhalten bleibt “non-destructive”)

Kontrast erhöhen z.B. durch Menü -> Bild -> Korrekturen -> Helligkeit/Kontrast: Beiden auf 100%

Auswahl erstellen z.B. durch Menü -> Auswahl -> Farbbereich

Drop-Down “Auswahl” bleibt auf “Aufgenommene Farben”

Wir klicken mit der Pipette auf den hellen Bereich und sehen das jetzt alles gleich helle selektiert wird.

Mir “Shift-Click” können wir zusätzliche Helligkeitsbereich zu der Auswahl hinzufügen.

Drop-Down “Auswahl” geht auf “Lichter”

Dann wird ja auch alles Helle selektiert

Durch die Schieberegler “Bereich” und “Toleranz” können wir die Auswahl noch leicht verändern

Nun aus der Auswahl eine Maske machen:

Während die Auswahl aktiv ist (“marching ants”) klicken wir im Ebenen-Fenster auf das Symbol in der unteren Leiste “Ebenenmaske hinzufügen”

Dann die Maske verfeinern:

Alt-Klick auf die Maske

Rechte Maustaste – Im Kontextmeü erscheinen eine eine Reihe von Tools für Ebenenmasken

In diesem Kontext-Menü: Auswählen und Maskieren

Kantenerkennung:

Smart Radius anhaken

Radius vergrößern: Schieberegler nach rechts auf Maximum 250 Px

Globale Verbesserungen

Kante verschieben (Shift Edge)

Weiche Kante (Feather)

Abrunden (Smooth)

Output: Ebenenmaske

Nun den Hintergrund (Sterne etc.) komplett auf Schwarz setzen

Mit dem Lasso-Tool das Objekt vorsichtig umfahren

Auswahl umkehren

Hintergrundfarbe auf Schwarz setzten

Taste “Backspace”: Dies löscht den ausgewählten Bereich (auf die Hintergrundfarbe)

Nun die Maske abspeichern (für weiteren Gebrauch)

Da es sich um eine Ebenenmaske handelt, erscheint diese Maske im “Kanäle”-Fenster

Eine Ebenenmaske ist nur ein temporärer Kanal

Durch Rechts-Kick auf die Maske und im Kontextmenü dann auswählen: “Kanal duplizieren” kann der Kanal (die Maske) permanent gespeichert werden

xyz

 

 

Luminanzmasken I: Photoshop

26.8.2018

  1. Das Bild laden
  2. Menü -> Fenster -> Kanäle
  3. Den Kanal, der gut ist, auf das Symbol (Rechteck mit Bogen unten links) ziehen ==> Kopie
  4. Den Kanal aufhellen
    Tonwertkorrektur: menü Bild -> Korrekturen -> Tonwert
    Schattenbereiche aufhellen
    OK
  5. Kanal invertieren: Strg-I
  6. Auswahl: Strg-Klick auf kanal auf die Miniaturen
    Ebenen RGB
    Reiter “Ebenen”
  7. Erstellen Gradationskurve
    Menü Fenster -> Korrekturen (die Auswahl wird automatisch als Maske hinzugefügt)

Luminanzmasken II

Aus: http://www.kitea.de

Auswahl -> Farbbereich -> Lichter 40%

( Kanäle, Maskensymbol)

Werkzeuigleiste  — Symbolleiste
— rechte Maustaste

Auswahl: Farbe, Luminanz, Lasso,….

Auswahl  —–> (erzeugt)  —>  Maske

Maske   —-> erstellt —-> Auswahl

Astronomie Software Nebulosity

Die Software “Nebulosity” wird von Stark Labs angeboten.

Nebulosity ist eine Aufnahme-Software (Capturing) und unterstützt auch meine DSLR Canon EOS 600D.

Nebulosity ist kostet $95.

Belichtungszeiten länger als 30 Sekunden gehen nur mit einem zusätzlichen Shoestring-Adapter.

Nebulosity hat auch eine Fokussierhilfe.

Ich habe mich für gegen Nebulosity und für die Software APT entschieden. APT ist billiger und kann von sich aus Belichtungszeiten länger als 30 Sekunden.

 

Astrofotografie: Mondfinsternisse

Gehört zu: Das Sonnensystem
Siehe auch: Astrofotografie: Der Mond

Mondfinsternisse

Mondfinsternisse sind besonders spektakulär und können (ähnlich wie die Sonne) leicht beobachtet und fotografiert werden.

  • Halbschattenfinsternisse geben zum Fotografieren nicht viel her.
  • Eine partielle Mondfinsternis ist gut zu fotografieren.
  • Eine totale Mondfinsternis ist gut zu fotografieren und ist auch sehr beeindruckend.

Fotografieren einer Mondfinsternis

Fotografische Gerätschaften (mobil)

Ich habe die Mondfinsternis vom 27.7.2018 wie folgt fotografiert:

  • Teleskop: Orion ED 80/600 mit Reducer 0,85x; d.h. f=510 mm und damit Blende f/6,8
  • Kamera: Canon EOS 600D mit APS-C CMOS, 5184 x 3456 Pixel, Pixelgröße 4,3 μ
  • Montierung: SkyWatcher HEQ5 Pro mit “Lunar Tracking” (bei sauberem Polar Alignment)
  • Aufnahme-Software: APT auf Windows 10

Fokussieren bei Mondfinsternissen

Allerdings kann man bei einer totalen Mondfinsternis nicht gut auf dem Mond selber fokussieren; denn auf dem Mond selber ist die Beleuchtung direkt “von oben” und die Schattengrenze (Erdschatten) ist sehr diffus. Es empfiehlt sich also, vor der Mondfinsternis auf sichtbare helle Fixsterne zu fokussieren – notfalls auch währen der Finsternis..

Aufnahmedaten

  • ISO 100
  • Blende 6,8
  • Belichtungszeiten:
    • Totalität 5-1 sec,
    • Partielle Phase:  1 sec für den dunklen Teil, 1/100 für den hellen Teil

Nachbearbeitung der Fotos

  • Serie von Einzelfotos:
    • Auswahl einiger weniger Einzelfotos im zeitlichen Abstand von etwa 20 Minuten
    • Etwas vergrößert, dabei alle Fotos in genau dem gleichen Maßstab vergrößert
    • Histogramm und Gamma so dass die Einzelfotos ungefähr gleich aussehen
    • Ergebnis:  Flickr
  • Video
    • Aus den vielen Einzelbildern kann man leicht mit z.B. Microsoft Movie Maker ein Video machen
    • Allerdings sind trotz Lunar Tracking einige Bildsprünge in der Aufnahmeserie, die über fast 1,5 h Stunden ging
    • Ergebnis: YouTube

Auf der Suche nach einer Software, die meine Bildserie schön ausrichtet, sodaß die “Bildsprünge” verschwinden, bin ich gestossen auf:

  • PIPP  Planetary Imaging PreProcessor   “center planet in the frames”
  • https://sites.google.com/site/astropipp/example-uasge/example5
  • http://stargazerslounge.com/topic/184192-full-disc-lunar-imaging-with-a-dslr/

Wann sind die nächsten Mondfinsternisse?

Quelle: http://www.mondfinsternis.net/wann.htm

Partielle MoFi am 7.8.2017

Wenn der Mond am Abend des 07.08.2017 (ein Montag) um 18h 43m aufgeht, ist das Maximum dieser bescheidenen partiellen Finsternis bereits vorbei (18h 21m, 25%). Noch in der hellen bürgerlichen Dämmerung endet die Kernschattenphase (19h 19m). Doch bis dahin bieten sich reizvolle Fotomotive, wenn der “angeknabberte” Mond knapp über dem Horizont in der Gegendämmerung steht, die im angelsächsischen Raum als “Belt of Venus” (Gürtel der Venus) bezeichnet wird. Um in den Genuss dieses Schauspiels zu kommen, benötigen Sie unbedingt einen Standort mit freiem Blick zum Südost-Horizont, denn selbst am Sichtbarkeitsende der Halbschattenphase steht der Mond gerade einmal 10 Grad hoch.

Totale Mondfinsternis am 27.7.2018

Quelle: https://www.mofi2018.de/

Die Totale Mondfinsternis am 27.07.2018 gehört zweifelsohne zu den ganz großen astronomischen Ereignissen unserer Zeit. Mit einer Totalitätsdauer von 103 Minuten ist sie die längste totale MoFi des 21. Jahrhunderts.

Meine Meinung: ob die Totalität 5 Minuten länger oder kürzer ist, interessiert mich nicht die Bohne.

Da der Mond in Mitteleuropa während der einleitenden partiellen Phase aufgeht, kann die Totalität am dunkelblauen Dämmerungshimmel in voller Länge verfolgt werden

Das ist ziehmlicher Blödsinn: beim Anfang der Totalität steht der Mond 1 Grad über dem Horizont und der Himmel ist ganz hell

Etwa 6 Grad unterhalb des Roten Mondes steht Mars, der Rote Planet. Wenn ein Planet sich in der Nähe des Vollmonds befindet, dann steht er zwangsläufig in Opposition zur Sonne und erreicht mithin seine maximale Helligkeit. Diese fällt bei Marsoppositionen wegen der stark schwankenden Abstände zur Erde sehr unterschiedlich aus. Am 27.07.2018 haben wir es mit einer außerordentlich günstigen Marsopposition zu tun; der Rote Planet erreicht mit -2.8 mag fast seine größte überhaupt mögliche Helligkeit und übertrifft sogar den Jupiter an Glanz. Da sich das gesamte Geschehen horizontnah in der Dämmerung abspielt, kommen auch Naturfotografen voll auf ihre Kosten.

Astro-Fotografen finden die Horizont-Nähe sehr negativ.

Selbst der Kalender meint es diesmal gut mit den Beobachtern, denn die Jahrhundert-Finsternis findet an einem Freitagabend statt.

Totale Mondfinsternis am 21.01.2019

Link: http://www.mofi2019.de/#ueberblick

Astrofotografie Bildbearbeitung: Schärfen

Gehört zu: Bildbearbeitung

Was bedeutet “Schärfen”?

Quelle: Erik Wischnewski: Astronomie in Theorie und Praxis, 7. Auflage, S. 172

  • Unscharf bedeutet, dass Hell-Dunkel-Übergänge sanft verlaufen.
  • Scharf bedeutet, dass diese Übergänge härter (schneller und auf kurzer Strecke) erfolgen.

Schärfungsalgorithmen versuchen also aus einem weichen Übergang einen harten zu machen.

Schärfung darf nicht übertrieben werden. Was im Original nicht scharf ist, kann auch nicht mehr im nachhinein scharf gemacht werden.

Zum Schärfen gibt es spezielle Schärfungsfilter z.B. Iterative Gauß-Schärfung.

Schärfen erhöht das Bildrauschen….

Der Schwellwert des Schärfefilters sollte so klein eingestellt werden, das kleinere Helligkeitsunterschiede beim Schärfen ignoriert werden.

Siehe auch: http://www.photomonda.de/bilder-schaerfen

Genau genommen werden Bilder nicht schärfer, sondern es wird der lokale Kontrast an Grenzen erhöht, indem lokal dunkle Pixel noch weiter abgedunkelt und helle Pixel noch weiter aufgehellt werden. Unserem Gehirn wird damit vorgegaukelt, das die Fotos schärfer sind, da die Konturen prägnanter heraustreten.
Die Methode, die hier von den meisten Bildbearbeitungsprogrammen angewendet wird, heißt „Unsharpen Mask“ (=unscharfe Maske). Dieser seltsame Name kommt noch aus den Zeiten der Analogfotografie, da damals tatsächlich eine unscharfe Maske zum Schärfen verwendet wurde.

Da es sich um eine Kontrasterhöhung handelt, kann man es mit dem Bilderschärfen auch übertreiben…

Anwendungsbereiche

Bei Planetenfotos wird man zuerst mit “Lucky Imaging” die Luftunruhe (das schlechte Seeing) überlisten. Das Ergebnis muss dann aber noch häufig etwas geschärft werden; d.h. man  möchte die Details noch besser im Foto sichtbar machen…

Techniken zum Schärfen

Bildbearbeitungssoftware unterstützt unterschiedliche Techniken z.B:

  • sog. Wavelet-Filter, wie z.B. in RegiStax
  • Unscharfe Maskierung  (wird klassisch zum Schärfen benutzt)
  • Gauss schärfen  (z.B. in Fitswork)
  • Adobe Photoshop
  • etc.

Problem beim Schärfen des Mondes: Der Rand des Mondes wird eine helle Kante.

Link: https://www.reddit.com/r/astrophotography/Comments/7vsif7/the_moon_242018_processing_stages/

Es läßt sich nicht leicht vermeiden, aber es kann wie folgt abgemildert werden:

  • Das ungeschärfte Mondfoto in Photoshop laden.
  • Den dunklen Hintergrund mit dem “Magic Wand”-Werkzeug selektieren
  • Erweitern der Selektion ein bisschen in den Mond hinein: Select -> Modify -> Expand  mit ein paar Pixeln in den Mond hinein
  • Auf gleichem Wege “Feather” die Auswahl mit einem Betrag, der halb so groß ist wie beim “Expand”
  • Rechts-KLick und die Auswahl als neue Ebene kopieren
  • Schärfen des restlichen Mondes nach Geschmack (aufpassen: nicht den abgemilderten Rand schärfen). Das geschärfe Bild als Ebene einfügen.
  • Den abgemilderten Mond als Ebene oberhalb der Ebene des geschärften Mondes legen
  • Die obere (abgemilderte) Ebene sichtbar machen und mit der Opazität spielen. Sodaß einerseits die geschärften inneren teile sichtbar sind und andererseits ein natürlicher aussehener Rand entsteht.

Astrofotografie mit Autostakkert – Bildbearbeitung – Lucky Imaging

Bildbearbeitung

Wenn man seine Astro-Aufnahmen gemacht hat, beginnt die sog. Bildbearbeitung – dafür braucht man oft ein Vielfaches der Zeit, die man für die eingentlichen Aufnahmen in der Nacht investiert hatte.

Lucky Imaging

Das sog. Lucky Imaging bedeutet, dass wir, um die Luftunruhe “Seeing” zu überlisten, sehr viele kurzbelichtete Aufnahmen unseres Beobachtungsobjekts (typisch: Planeten, Mond,…) machen und davon dann die zufällig besten “lucky” auswählen…

Die Astro-Spezis machen also Videos z.B. vom Jupiter und benutzen dann eine spezielle Software fur “Lucky Imaging”, nämlich AutoStakkert (oder RegiStax).

Erfunden hat das Georg Dittie und seine erste Software dafür war Giotto.

Download AutoStakkert:  http://www.astrokraai.nl/software/latest.php

Nachdem man die besten Einzelaufnahmen “lucky” zu einem Summenbild “gestackt” hat, ist der nachste Schritt das Schärfen. AutoStakkert selbst bietet eine rudimentäre Schärfungsfunktion, die aber typisch nur zur optischen Kontrolle der Summenbilder eingesetzt wird. Die Astro-Spezis verwenden zum Schärfen gerne die kostenlose Software RegiStax.

Video-Formate für Autostakkert

Siehe auch: Video-Formate

Als Eingabe für Autostakkert benötigt man Video-Dateien im Format AVI uncompressed.

Heutige Digitalkameras erstellen häufig Videoformate MP4 oder MOV. Wir müssen das also konvertieren.

Als Beispiel haben wir ein Video im MP4-Format:  Saturn_Original.mp4. Dieses  wollen wir in AVI uncompressed konvertieren.  Früher hatte ich dafür ein Utility namens “SUPER” verwendet, was ich aber zur Zeit nicht mehr zur Verfügung habe. Als Umgehung ist nun die Idee: zuerst mit MediaCoder in ein schönes AVI konvertieren und dieses dann mit VirtualDub “uncompressed” abspeichern.

Ein weiterer Versuch zur “automatischen” Konversion wäre FFmpeg, was viel einfacher wäre – wenn es funktionieren würde. https://www.heise.de/download/product/ffmpeg-53902

Ein dritter Versuch zur Konversion wäre PIPP, wo man zur Reduktion der Dateigröße einen Ausschnitt wählen kann “Enable Cropping”.

Konversion mit FFmpeg

Download FFmpeg von http://ffmpeg.zeranoe.com/builds/

Auswählen Version für: Windows, 32-Bit oder 64-Bit, Static

Aus dem ZIP-File ffmpeg-20180831-3ad0e67-win64-static.zip ffmpeg.exe kopieren…

AutoStakert: ffmpeg

…in den Autostakkert-Ordner (bei mir: F:/bin/AutoStakkert)

Mein AutoStakkert-Ordner

Wenn ich nun Autostakkert aufrufe und das MP4-Video öffne,  startet die Konversion des MP4-Videos tatsächlich automatisch. Das konvertierte Video kann dann sehr groß werden (weil uncompressed) d.h. der Ausgabe-Ordner muss genügend freien Speicherplatz haben. Als Ausgabe-Ordner nimmt Autostakkert immmer den selben Ordner wie für die Eingabe.

Im Testfall wird das Ausgabe-Video größer als 4 Gigabyte und Autostatkkert kann das nicht verarbeiten.

Konversion mit PIPP

Wenn AutoStakkert ein Video nicht lesen will, wird als Abhilfe auch die Konversion des Videos mit der Software PIPP empfohlen. PIPP steht für “Planetary Imaging PreProcessor”.

Mit PIPP bekommen wir eine kleinere Ausgabedatei, wenn wir im Reiter “Processing Options”  “Enable Cropping” anhaken.

Download PIPP: https://sites.google.com/site/astropipp/downloads

PIPP 1: File -> Add Source Files

PIPP-01

PIPP 2: Source File

PIPP-02

PIPP 3: Processing Options

PIPP-03

PIPP-4: Output Options

PIPP-04

PIPP-5: Do Processing

PIPP-05

Konversion mit MediaCoder

Laut MediaCoder hat die Video-Datei Saturn_Original.mp4 folgendes Format:

  • Container: MP4  = MPEG-4
  • Video-Codec: AVC1
  • Bitrate: 2411 kbps
  • Resolution: 1920 x 1080
  • Framerate: 30 FPS

Wir konvertieren dies mit MediaCoder in das Video-Format:

  • Container: AVI
  • Video-Stream
    • Codec:   H.264 / x.264
    • Bitrate: 2500 kbps
  • Audio-Stream
    • egal, aber nicht VBR

VitualDub kann das erzeugte Video noch nicht lesen, weil VirtualDub kein Codec für x.264 von sich aus hat – und der gute alte VirtualDub benötigt ein VfW-Codec für x.264.

(Angeblich soll Autostakkert auch MOV-Formate ohne vorherige Konversion als Input verarbeiten können, wenn FFmpeg vorher installiert wurde. FFmpeg kann man z.B. bei Heise downloaden.)

Das x.264 Codec muss man also noch mal schnell installieren. Das gibt es z.B. auf SourceForge unter: https://sourceforge.net/projects/x264vfw/

Nach der Installation dieses VfW-Codecs kann VirtualDub die Video-Datei lesen und wir können dort einstellen:

  • Video: Full Processing Mode & Compression = Uncompressed
  • Audio:  No Audio
  • File: Save as AVI…

Erste Schritte mit Autostakkert

AutoStakkert unterstützt eine sog. Multi-Punkt-Ausrichtung d.h. die einzelnen Frames des Videos werden so übereinander gelegt, dass nicht nur ein Punkt sondern mehrere Punkte zur Deckung gebracht werden.

Ich habe die Version 3.0.14 (x64)

Ich habe am 10.3.2017 mit meinem iPhone ein Mond-Video aufgenommen. Dies habe ich dann mit AutoStakkert wie folgt bearbeitet:

  1. Programm aufrufen: Das Hauptfenster von Autostakkert erscheint
  2. Open: AVI-Video laden
    1. Es erscheint dann ein zweites Fenster in dem der erste Frame des Videos gezeigt wird
    2. Image Stabilization: “Surface” oder “Planet”   (wenn kein ganzer Planet: Surface)
    3. Falls “Surface” dann Image Stabilization Anchor setzen (zum Vorzentrieren)
  3. Schaltfläche “Analyse”
    1. Nun macht Autostakkert die Vorzentrierung (“Surface Image Stabilization”) und anschließend die “Image Analysis”
    2. “Image Analysis” bedeutet, dass die Frames nach Qualität sortiert werden.
  4. Parameter setzen: Prozentsatz der “guten” bestimmen und eingeben
  5. Alignment Points (AP) setzen (vorher ist die Schaltfläche “Stack” ausgegraut)
  6. Schaltfläche “Stack”
  7. Ergebnis so drehen, dass Norden oben ist.

AutoStakkert produziert so zwei Bilder als Ergebnis: Ein geschärftes (“Sharpened”) und ein ungeschärftes. Wir werden das ungeschärfte Bild nehmen und dieses dann in einer anderen Software richtig schön schärfen. Das von AutoStakkert geschärfte Bild benutzen wir nur zur ersten visuellen Beurteilung unserer Fotos.
Zum separaten Schärfen verwenden wir gerne die Software “RegiStax” mit den dort unterstützten feinen Wavelet-Filtern.

Bild 1: AutoStakkert: Wählen der sog. “Frame Percentage” vor dem “Stack” (vorher müssen noch die “Alignment Points” gesetzt werden)

AutoStakkert-01

Bild 2: AutoStakkert Alignment Points

AutoStakkert-02

 

Astrofotografie: Bildbearbeitung – Wavelets

Schärfen und Rauschunterdrückung mit Wavelet- Filtern

Gehört zu: Bildverarbeitung

Siehe auch: AutoStakkert

Wavelet-Filter spielen eine wichtige Rolle beim sog. Post Processing von Astrofotos.

Mit einem Wavelet-Filter kann man auf der eines Seite ein Bild schärfen und gleichzeitig das (das durch Schärfen verstärkte)  Rauschen und andere “Schärfungsartefakte” unterdrücken.

Im Vordergrund steht das Schärfen. Das braucht man z.B. bei Planetenbildern, Mondbildern u.ä. Durch das Schärfen wird häufig das Rauschen erhöht, weshalb man das im gleichen Arbeitsgang gleich beseitigt.

Wavelets in Registax

Eine kostenlose Software, die Wavelet-Filter gut unterstützt ist RegiStax.

Wenn man garnicht Schärfen will, sondern nur das Rauschen reduzieren will, gibt es andere, einfachere Möglichkeiten.

Der Wavelet Filter bei RegiStax bietet folgendes Bild:

RegiStaxx

Eine der grundsätzlichen Einstellungen für die Wavelet-Filter ist “Default” oder “Gaussian“. Wir arbeiten immer mit “Gaussian”, da werden die Wavelets mit einer Gauss’schen Glockenkurve gebildet.

Der Wavelet-Filter hat verschiedene Ebenen Im Bild: Layer 1 bis Layer 6. Ich weiss leider nicht, was diese Ebenen bedeuten.

RegiStax bietet zwei Waveletschemas an.
Linear bedeutet, dass die Filterbreite von Ebene zu Ebene linear zunimmt.
Bei Dyadic nimmt die Filterbreite in einer geometrischen Reihe zu, d.h. sie verdoppelt sich von Ebene zu Ebene.
Diese Einstellung ist besonders bei der Bearbeitung von DeepSky-Objekten wie Nebeln vorteilhaft.

Im Falle der Einstellung “Gaussian” sind die Wavelet-Filter der sechs Ebenen (Layer) unabhängig von ein ander.

Für jeden Layer kann man einstellen:

  • Wert (Größe? Durchmesser?) für “Denoise”
  • Wert (Größe? Durchmesser?) für “Sharpen”
  • Häckchen setzen für Layer anzeigen/Layer nicht anzeigen
  • Schieberegler, der den Wert “Preview” setzt, welcher in der ganz rechten Spalte angezeigt wird.

Es wird gesagt, dass das Schärfen in den verschiedenen Layern verschieden große Details im Bild hervorherheben soll. Parallel dazu kann auch das Rauschen hervorgehoben werden.

“Größe” der Filter

Nun besteht sich das Rauschen aus Bilddetails in der Größe von einzelnen Pixeln; aber die Schärfung bezieht sich auf Bilddetails, die in der Regel mindestens zwei Pixel groß sind (Nyström).

Die Ideen ist nun, das Schärfen auf den Ebenen 2, 3, 4, 5 und 6 vorzunehmen und das Rauschen auf Ebene 1 zu unterdrücken. Dazu muss man die Ebenen so einstellen, dass auf Ebene 1 die Filter auf Pixelgröße arbeiten und die Filter auf den Ebenen 2 ff. auf größere Details ansprechen.

 

Astronomie: Motor Fokus

Das Problem: Optimales Fokussieren

Teil von: Meine Geräteliste

Siehe auch: Fokussierung

Besonders bei der Astrofotografie fällt es unangenehm auf, wenn bei einem mühsam erarbeiteteten Foto die Scharfstellung (Fokussierung) nicht hundertprozentig ist.

Es gibt ja mehrere Methoden, wie man den genauen Fokuspunkt  findet; z.B. Live View mit Bildschirmlupe,  Hartmann-Maske, Bahtinov-Maske,… Es bleibt aber das Problem das jede Berührung des Einstellrades am Okularauszug ( OAZ) das Teleskop ein wenig (oder mehr) zum Wackeln bringt. Um dieses Wackeln zu vermeiden, gibt es Motoren, die man am Stellrad des OAZ befestigt…

Einfache Lösung: Live View

Einen hellen Stern ins Gesichtsfeld einstellen – dazu muss der Sucher vorher gut justiert werden. Fokussieren im Live View z.B. mit APT.

Komfortable Lösung: Motor Fokus

Eine Motor-Fokus-Lösung besteht aus einem Motor (Schrittmotor oder Gleichstrommotor), dessen Drehachse irgendwie an die Drehachse des OAZ gekoppelt wird. Contine reading