Astronomie: IC 2944 Running Chicken

Gehört zu: Beobachtungsobjekte
Siehe auch: HII-Regionen, Filter, Nebel, Namibia

IC 2944 der Running-Chicken-Nebel ist ein klassisches Nebel-Objekt für Namibia.

Ein klassisches H-Alpha-Objekt für kleinere Teleskope.

  • Scheinbare Helligkeit von 4,5 mag
  • Scheinbare Ausdehnung von 40′ x 20′
  • IC 2944 ist ein Emissionsnebel und strahlt vorwiegend in H alpha.
  • Entfernung 6500 Lichtjahre.

Bei meinem Aufenthalt in Namibia im August 2019 habe ich endlich ein Foto vom Running Chicken Nebel erstellen können.

Running Chicken

Diese Fotografie habe ich von Kiripotib, Namibia geschossen. Dabei hat ein Tri-Narrowband-Filter geholfen.

Astronomie: M8 und M20 Lagoon- und Trifid-Nebel

Gehört zu: Beobachtungsobjekte
Siehe auch: HII-Regionen, Filter, Nebel, Namibia

M8 und M20 (Lagoon-Nebel und Trifid-Nebel) sind zwei nahe beieinander liegende Emissionsnebel im Schützen (Sgr).

Ein klassisches H-Alpha-Objekt für kleinere Teleskope mit einem entsprechenden Gesichtsfeld.

  • Scheinbare Helligkeit von 6,0 und 6,3 mag
  • Scheinbare Ausdehnung von 60′ x 40′ und 28′ x 28′
  • M8 ist ein Emissionsnebel und strahlt vorwiegend in H alpha.
  • Entfernung 9500 Lichtjahre.

Bei meinem ersten Aufenthalt in Namibia im September 2017 habe ich erste Fotos von M8 und M20 erstellen können. Zwei Jahre später 2019 habe ich es dann noch schöner mit einem Tri-Narrowband-Filter gemacht:

Lagoon- und Triffid-Nebel

Diese Fotografie habe ich von Kiripotib, Namibia geschossen. Dabei hat ein Tri-Narrowband-Filter geholfen.

Astronomie: NGC 6334 Katzenpfoten-Nebel

Gehört zu: Beobachtungsobjekte
Siehe auch: HII-Regionen, Eta-Carinae-Nebel, Filter, Nebel, Namibia

NGC 6334 den sog. Katzenpfoten-Nebel ist ein Emissionsnebel im Skorpion.

Er ein klassisches H-Alpha-Objekt für kleinere Teleskope.

  • Scheinbare Helligkeit von ??? mag
  • Scheinbare Ausdehnung von 35′ x 20′
  • NGC 6334 ist ein Emissionsnebel und strahlt vorwiegend in H alpha.
  • Entfernung 5500 Lichtjahre.

Bei meinem ersten Aufenthalt in Namibia im September 2017 habe ich ein erstes Foto von NGC 6334 erstellen können. Zwei Jahre später 2019 habe ich es dann noch schöner mit einem Tri-Narrowband-Filter gemacht:

NGC6334 Katzenpfoten-Nebel, Kiripotib

Diese Fotografie habe ich von Kiripotib, Namibia geschossen. Dabei hat ein Tri-Narrowband-Filter geholfen.

Astrofotografie: NGC 253 Silver Dollar Galaxie

Gehört zu: Welche Objekte?
Siehe auch: Galaxien, Deep Sky Objekte, Namibia

Die Silver Dollar Galaxis

NGC 253, genannt “Silver Dollar Galaxy”, im Sternbild Sculptor ist das klassische klassische “Anfängerobjekt” auf der Südhalbkugel.

Generelle Vorbereitungen für das Fotografieren von NGC 253

Der Standort für die Beobachtung ist Kiripotib in Namibia. Ich war dort vom 12. bis 18.9.2017.

Wann ist der günstigste Zeitpunkt; d.h. wann steht NGC 253 in Namibia schön hoch am Himmel?

  • In 2017 in Kiripotib: ab 12. September, 20:43 Uhr (h>30°)

Welche Ausrüstung soll eingesetzt werden?

  • Kamera: Canon EOS 600Da
  • Optik: APM APO 107/525 (mit Flattener/Reducer 0.85) also ein Öffnungsverhältnis von f/4.9
  • Montierung:  Fornax 51
  • Polar Alignment: vorhanden
  • Windows 10 Notebook-Computer
  • Aufnahme-Software: APT

Mit welchen Einstellungen sollen die Fotos geschossen werden?

  • Geplante Belichtungszeit: 30 x 240 Sekunden bei ISO 800
  • Probefotos ergaben, dass bei dieser Belichtung das Histogramm der Einzelfotos “gut” aussah; d.h. deutlich vom linken Rand abgesetzt und von rechten Rand noch sehr weit entfernt
  • Aufnahmeformat: Raw d.h. CR2
  • Auto Guiding mit PHD2 Guiding

Das Foto am 17.09.2017

Im Jahre 2017 war ich mit meinen astrofotografischen Übungen dann so weit und konnte in Kiripotib folgende Aufnahme gewinnen:

Ergebnis: NGC 253 im Sculptor

Sculptor Galaxy

 

 

Astronomie: Backfokus für die ASI294MC Pro

Gehört zu: Astronomie
Siehe auch: ASI294MC Pro, Flattener

Was ist Backfokus?

Als Backfokus bezeichnet man den genauen Abstand, den die Sensor-Ebene der Kamera vom Ende des Teleskops haben muss.

Meist ist das Endstück eines Teleskops ein Flattener/Reducer bzw. ein Koma-Korrektor.

Bei der Längenberechnung werden die Gewinde nicht mitgezählt, denn die sollten ja nach dem Reindrehen “verschwunden” sein. Also immer von Flansch zu Flansch zählen.

Backfokus für die Kamera ZWO ASI294MC Pro

Bei der Kamera selbst ist die Sensorfläche 6,5 mm hinter der Vorderkante der Kamera, wo sich direkt ein M42 Aussengewinde befindet.

Da man üblicherweise ein M42 Innengewinde kameraseitig benötigt, ist ein kleiner Adapter mit M42 Innengewinde vorn und hinten erforderlich. Dieser hat eine optische Länge von 11 mm.

Damit hat die so ausgestattete Kamera schon 6,5 mm + 11 mm = 17,5 mm optisch wirksamen Abstand vor der Sensorfläche.

Anschluss in Namibia an APM Apo 107/700 mit Riccardi-Reducer

Der Riccardi_Reducer hat kameraseitige ein M82-Gewinde.

Der Backfokus des Reducers ist 80 mm.

 

Anschluss in Namibia an Foto-Newton mit Paracorr Komakorrektor

Der Paracorr hat kameraseitig ein M48*0,75 Aussengewinde.

Der Backfokus soll 55 mm betragen.

 

Anschluss in Namibia an TS APO 90/600 mit TS-Flattener 1.0x

Der TS-Flattener hat kameraseitig ein M48*0,75 Gewinde.

Der Backfokus soll 113.114 mm betragen.

 

Anschluss an mein Teleskop ED80/600 mit Flattener

Der Flattener hat kameraseitig ein M48*0,75-Aussengewinde.

Der Backfokus soll 55 mm betragen.

Anschluss an das Teleskop ggf. den Flattener/Reducer des Teleskops

Die Kamera ASI294MC Pro selbst hat einen M42*0.75-Aussengewinde (das wird auch T2-Gewinde genannt) als primären Anschluss.

Mit der Kamera kommen folgende Verlängerungsstücke bzw. Adapter mit:

  • M42/M42 Verlängerung um 11 mm (vor-eingebaut)
  • M42/M42 Verlängerung um 21 mm
  • M48/M42 Verlängerung um 16,5 mm

Backfocus der Kamera ohne alle Adapter: 6,5 mm
Insgesamt also 6,5 + 11 + 21 + 16,5  = 55 mm

Der Flattener/Reducer hat am kameraseitigen Ende ein M48*0,75 Aussengewinde…

Bildbeschreibung: Zusammenbau ASI294 mit Flattener

Kamera ASI294MC Pro an Flattener/Reducer

Astrofotografie: Lessons learned

Gehört zu: Astrofotografie
Siehe auch: Mein Workflow mit APT, Mein Beobachtungsbuch, Meine Astro-Geräteliste

Im Jahre 2020 hatte ich unter den leider gegebenen Umständen mehr Zeit als sonst und habe mal einige Erkenntnisse zur Verbesserung meiner persönlichen Fertigkeiten bei der Astrofotografie aus meinem Beobachtungsbuch herausgeholt und hier zusammengefasst.
Vielleicht ist für den einen oder anderen auch ein Denkanstoss dabei – oder ein Punkt zur Diskussion…

Lessons learned 2020

Astro-Kamera Meine DSLR (Canon EOS 600D) entwickelte hohe Sensor-Temperaturen (30 Grad und mehr), die zudem noch veränderlich waren.
Jetzt habe ich mir eine echte (dedizierte) Astro-Kamera (ZWO ASI294 Pro) zugelegt, die diese Temperaturprobleme löst (geregelte Kühlung) und auch über APT ansteuerbar ist.
Allerdings ist die Live-View-Funktion unter APT bei der ASI294 schlechter als mit der Canon-DSLR.
Die Kamera (ZWO ASI294 Pro) ruhig auf minus zehn Grad kühlen (mindestens Null Grad); dann geht das thermische Rauschen stark zurück.
Der Gain sollte schon über 120 (sog. Unity Gain) liegen, dann ist das Ausleserauschen extrem gering. Gain 300 geht auch gut.
Barlow-Linse Um die effektive Brennweite meines Refraktors Orion ED80/600 zu erhöhen und damit den Abbildungsmaßstab zu vergrößeren, habe ich eine Barlow-Linse erstanden.
Geplant war, den Merkurdurchgang im November 2020 damit zu fotografieren. Das fiel wegen schlechten Wetters aus.
Auch in der Marsopposition im Oktober 2020 wollte ich die Barlow-Linse ausprobieren.
Problem 1: Welchen Abstand soll das Barlow-Element von der Sensorebene meiner Kamera haben?
Problem 2: Welche effektive Brennweite hat dann mein Teleskop ED80/600 mit der so montieren Barlow-Linse? Dies muss ich nämlich für das Platesolving wissen.
Belichtung Die Gesamtbelichtungszeit bei Deep Sky Objekten (DSOs) sollte schon bei mindestens 2 Stunden liegen.
Die maximale Belichtungszeit der Einzelaufnahmen wird begrenzt durch zweierlei: (1) Himmelshelligkeit (2) Nachführgenauigkeit
Beide Grenzen müssen immer wieder durch praktische Versuche ermittelt werden.
Bei zu langen Einzel-Belichtungszeiten kann das gefürchtete AmpGlow stören.
Beobachtungsbuch Mein schon seit vielen Jahren geführtes Beobachtungsbuch in Excel habe ich ergänzt um einen zusammenfassenden Abschnitt: “Die schönsten Fotos aus diesem Jahr”
Auf dieser Basis habe ich ein Fotobuch mit den für mich eindruckvollsten “Pretty Pictures” erstellt. Als Vorstufe zu diesem Fotobuch habe ich zuerst ein Web-Album bei Flickr angelegt.
Bildbearbeitung Die Software Astro Pixelprocessor (“APP”) ist noch etwas besser als der Deep Sky Stacker (“DSS”)
APP scheint das Stacken selbst etwas genauer zu machen als DSS.
Mit APP wir dann auch gleich das erstellte Summenbild nachbearbeitet durch (1) Entfernen von Lichtverschmutzung und Gradienten (Background-Extraction) (2) Sternfarben-Kalibrierung (3) Farbsättigung
APP wird auch das PixInsight des kleinen Mannes genannt (geringere Kosten, schnellere Lernkurve).
Calibration Frames Darks zur Eliminierung des AmpGlow bei der ASI294 erforderlich (gleiche Temperatur kein Problem)
Flats zur Korrektur der Flecken (“Donuts”) erforderlich. Flatbox einsetzen.
Biases erforderlich, wenn ich Flats mache.
Flat Frames Flat Frames benötige ich immer. Damit das so einfach wie möglich geht, habe ich mir eine FlatBox angeschafft.
Die Belichtungszeiten sollten nicht zu kurz sein, dann könnte es Streifen geben. Etwas länger Belichten (z.B. 3 Sekunden) ist bei Flats besser, dazu muss ich die Helligkeit der Flats etwas herunterregeln.
Fokussieren Das manuelle Fokussieren hatte zwei Nachteile: (1) Beim manuellen Fokussieren zittert das Bild (2) Für einen Remote-Betrieb ist ein Motor-Fokusser erforderlich.
Ein Motor-Fokusser muss ganz fest am Okularauszug befestigt sein, ohne dass dabei Schrauben des OAZ verwendet werden, die am OAZ selbst eine wichtige Funktion haben.
Zum Fokussieren selbst benutze ich die Bahtinov-Masken nicht, sondern mache das auf Sicht:
Also bei welcher Fokuseinstellung ist eine Sternenscheibchen am kleinsten und wo tauchen neben dem hellen Zielstern auf einmal viele schwächere Sternenpunkte auf?
Das mache ich mit der Software SharpCap, wo ich quasi ein Life-Bild habe und dieses auch schön vergrößern kann.
Voraussetzung: Ein heller Stern ist im Gesichtsfeld – dafür benutze ich manchmal mein sonst nutzloses Sucherfernrohr.
Der helle Zielstern darf nicht zu weit weg vom Fokus sein – Deshalb grobe Fokussierung schon am Tage an einem entfernten terrestischen Objekt.
Mit der Software N.I.N.A. habe ich sogar eine Auto-Fokus-Funktion, die mit einer V-Kurve arbeitet. Aber dann muss man N.I.N.A. ersteinmal lernen.
Lichtverschmutzung Tri-Narrowband-Filter in Hamburg sinnvoll auch mit Farbkamera (Beispiel: Pacman-Nebel) – schön lange belichten.
Polar Alignment Polar Alignment mit SharpCap funktioniert genau und bequem mit vorhandenem Gerät (Guiding-Rohr). PoleMaster verkauft.
Teleskopsteuerung Die Erprobung eines Raspberry Pi mit Linux war für mich nicht richtig zufriedenstellend. Raspberry Pi verkauft.
Die von Windows her gewohnte Software musste teilweise ersetzt werden
Die Remote-Bedienung über VNC habe ich nach einigem Fummeln schon hinbekommen.
Auch gibt es PHD2 Guidung wohl auf Linux; aber mit KStars und Ekos und INDI konnte ich mich nicht anfreunden.
Wetter Gute astronomische Wetterberichte gibt es z.B. bei: http://clearoutside.com und bei Kachelmann

_._,_._,_

Astrofotografie: PegasusAstro FlatMaster

Gehört zu: Astrofotografie, Calibration Frames
Siehe auch: Meine Astro-GerätelisteWie mache ich Flat Frames?

Flat Frames mit dem PegasusAstro FlatMaster

Am 26.9.2020 erhielt ich die PegasusAstro FlatMaster 120 mm aus den Niederlanden (http://www.ganymedes.nl) für Euro 169,–.
Dieses Modell war bei meinen Standard-Händlern vergriffen, weil PegasusAstro jetzt größere Modelle herstellt.

Ein dim-bares EL-Panel mit einem Durchmesser von 120mm. Es passt perfekt auf mein Teleskop Orion ED80/600.

Die Spannungsversorgung (5V) und Helligkeitssteuerung erfolgt über ein einziges Kabel, ein Standard USB ohne Inverter und ähnlichen Schnickschnack..

Mit diesem Teil kann ich endlich ganz bequem gute Flat Frames zum Kalibrieren meiner Astro-Fotos (der Light Frames) machen.

Die Helligkeitssteuerung kann über eine vom Hersteller gelieferte Windows-Software (Standalone Software) erfolgen. Alternativ kann ich über ASCOM die Helligkeit steuern z.B. mit meiner Aufnahme-Software APT und auch mit N.I.N.A.

Bildbeschreibung: PegasusAstro FlatMaster 120

PegasusAstro FlatMaster 120

Astrofotografie: Wie mache ich Flat Frames?

Gehört zu: Bildbearbeitung
Siehe auch: Problme lösen mit Stacking, Astro-Geräteliste, PegasusAstro FlatMaster

Überblick: Astrofotos kalibrieren

Wir machen neben den Nutz-Fotos (den sog. Light Frames) zur Korrektur (zum Kalibrieren) noch folgende zusätzlichen “Frames”:

  • Dark Frames
  • Light Frames
  • Bias Frames (manchmal auch Offset Frames genannt)

Eine Stacking-Software, wie z.B. Deep Sky Stacker oder Astro Pixel Processor verarbeitet diese Frame-Typen zu einem Summenbild.

Die prinzipielle Vorgehenweise ist wie folgt:

  • Die Darks werden von den Lights abgezogen.
  • Da diese Darks bereits das Bias enthalten, ist damit auch schon das Bias vom Light abgezogen.
  • Es bleibt das Flat. Bevor durch das Flat dividiert wird, muss also noch aus dem Flat aus Bias abgezogen werden.

Welche Kalibrierungs-Frames brauche ich?

Das Wichtigste sind die Flat Frames.

Wenn ich eine Kamera mit Amp Glow habe, sind Dark Frames erforderlich.

Kalibrieren mit Flat Frames

Flat Frames sollen theortisch ein gleichmäßig weisses Feld zeigen, Abweichungen von der Gleichmäßigkeit können sein:

  • Randverdunkelung (sog. Vignettierung)
  • Schatten von Staubpartikeln (sog. Donuts)
  • Helligkeitsstrahlen durch Wärme in der Kamera in Sensornähe (sog. Ampglow)  – So ein “Ampglow” wird aber erst bei längerer Belichtungszeit sichtbar

Wenn das Bild einen nicht ganz gleichmäßigen Hintergrund hat, wird das beim Stretchen schnell zu einem Problem. Also brauche ich Flats, wenn ich ein Bild stark stretchen will z.B. bei einem feinen Nebel…

Ich versuche mich erst seit neuester Zeit mit Flat Frames (T-Shirt-Methode und Flat-Frame-Folie). Manchmal waren die Ergenisse richtig gut, manchmal hatte ich eine hässliche Überkorrektur. Deswegen beschäftige ich mich jetzt etwas detaillierter mit dem Thema “Flats”.

Am 26.9.2020 erhielt ich die Flat-Field-Box PegasusAstro FlatMaster 120 mm.

Wie mache ich Flat Frames?

Teleskop und Kamera genauso wie bei der Aufnahme der Light Frames – also auch ggf. mit der Taukappe…

Die ISO-Einstellung bzw. die Gain-Einstellung sollte bei den Flats identisch sein zu den Lights. Wenn man die Flats mit anderen ISO-/Gain-Einstellungen machen sollte, benötigt man zusätzlich DarkFlats mit dieser anderen ISO/Gain-Einstellung.

Belichtungszeit (und Gain bzw. ISO) so dass nichts soll “ausgebrannt” ist und die kleinen Helligkeitsunterschiede im Bild gut sichtbar sind.

Vom “Ausbrennen” spricht man, wenn bei einem Pixel die sog. “Full Well Capacity” (in Anzahl Elektronen) erreicht ist; d.h. zusätzliche Photonen können keine zusätzlichen Elektronen in diesem Pixel erzeugen und damit auch kein zusätzliches Signal (also ADUs) bewirken.

Experten empfehlen, so zu belichten, dass im Bild die hellsten Bereiche nur die Hälfte des maximal möglichen Wertes erreichen. Also die Hälfte der “Full Well Capacity”. Einfach messen können wir aber nur den ADU-Wert. Der Zusammenhang zwischen ADU-Wert und Elektronen-Anzahl ist die sog. Quanten-Effizienz, die in Prozent angibt, aus wieviel ankommenden Licht-Quanten (Photonen) beim Auslesen ein Elektron wird.

Wichtig ist, dass jeder Farbkanal für sich genommen (R-G-B) im Histogramm weder links und rechts angeschnitten wird.

Der Helligkeitswert eines Pixels im Bild wird ja in sog. ADU (Analog Digital Units) gemessen. Je nach der Bit-Tiefe des  ADC (Analog-Digital-Converter) hätten wir unterschiedliche Maximalwerte:

Bit-Tiefe Maximaler ADU-Wert Halbes Maximum
16 65536 32768
14 16384 8192
12 4096 2048
8 256 128

Flat Frames: Mono oder One Shot Color (“OSC”)?

Wenn man mit einer Mono-Kamera und Rot-Grün-Blau-Filtern arbeitet, muss man für jede Farbe extra ein Flat machen – sagen die Experten.

Ich habe “nur” OSC (= One Shot Colour), da sieht das anders aus. Ich habe ich ja immer diese Bayer-Matrix vor dem Sensor und kann aus jeder Aufnahme durch de-bayern ein Farbfoto gewinnen.

Die ganze Kalibierung soll aber immer mit den noch nicht de-bayerten Original-Fotos geschehen – sagen einige Experten…

T-Shirt-Methode

Am nächsten Tage das T-Shirt doppelt oder vierfach über das Objektiv bzw. die Taukappe.

Das wird meistens zu hell

Flat-Field-Box (EL-Leuchtfolie)

EL-Leuchtfolie von Gerd Neumann vor dem Objektiv. (T-Shirt wird meist zu hell.)

Dafür benötigt man eine gute Spannungsversorgung (bei mir 12V) und die Hellikeit der Folie sollte dimmbar sein…

Flat-Field-Boxen gibt es von mehreren Herstellern; z.B. unterstützt N.I.N.A. folgende Modelle:

  • All-Pro Sike-a Flat Flied: 12-Zoll im Quadrat. USD 250 + 140 für USB-Dimmer – ASCOM?
  • Almitak Flip-Flat: EUR 800,–    190mm – 206 mm
  • Artesky USB Flat Box: EUR 369,–    250mm   USB   Italy
  • PegasusAstro FlatMaster

z.B. unterstützt APT folgende Modelle:

Meine Zwo ASI294MC Pro

Meine Kamera Zwo ASI294MC Pro hat folgende relevante Daten:

  • Bit-Tiefe: 14 bit
  • Quanteneffizienz: 75% (bei 530 nm)
  • Full Well Capacity: 63700e- (bei Gain = 0)
  • Full Well Catacity ca. 20000e- (bei Gain = 100)

Interessante Ratschläge finde ich auch bei:

Ein Experte (bei: http://www.telescopesupportsystems.com/thrushobservatory.org/Tips/Digital%20Imaging/flatfieldcalc.htm) rät: Exposure levels – each flat should have an avg e-count of about 60-70% full-well capacity

Demnach hätten wir bei Gain=100: 65% von 20000e- = 13000e-
und bei einer Quanteneffizienz von 75% wären das so 9750 ADU

Flats und Software

Meine Astro-Aufnahme-Software unterstützt das Aufnehmen von Flats in unterschiedlicher Weise:

Flats mit SharpCap

In SharpCap muss man eine Kamera connecten und dann in der Menüleiste auf “Capture” und “Capture Flats…” klicken.

Dann stellen wir rechts in SharpCap Exposure und Gain so ein, dass im Bild ein wenig zu sehen ist.

Mit Menüleiste “Tools” und “Histogram” schalten wir noch das Histogramm dazu…

SharpCap-Flats-02

Da bin ich also mit dem Mittelwert bei 31805.6 ADU, was so ungefähr den Empfehlungen entspricht. Manche Experten halten das schon zu hell und meinen 28000 oder 25000 ADU wären besser. Die Software SharpCap meckert aber, wenn auch nur ein kleines bisschen unter 20% sinkt.

Flats mit APT

Die Software APT hat die Möglichkeit mit Hilfe der “CCD Flats Aid” eine gute Belichtungszeit für die Flats zu ermitteln und damit einen Flats-Plan zu erzeugen.

Bildbeschreibung: APT Reiter “Tools” dort Schaltfläche “Extra Devices”

PegasusFatMaster-01

Die APT “CCD Flats Aid” geht aus von einer ADU-Zahl, die man erreichen möchte und ermittelt dazu die erforderliche Belichtungszeit. Ich muss mich also fragen, welche ADU-Zahl ich für meine Flats ereichen will.

Computer: Astrofotografie (aus Wiki)

Astrofotografie (aus Wiki)

Gehört zu: Astronomie
Siehe auch: DSLR

Übersicht zur Astrofotografie

Wenn man Interesse für Astronomie hat, kommt ganz schnell der Moment, wo man Beobachtungen auch fotografisch festhalten möchte

Was benötigt man, um Fotografien des Sternenhimmels zu machen?

  • Eine geeignete Kamera
  • Einen Himmelsatlas, um interessante Objekte und deren zeitliche Sichtbarkeit heraus zu finden
  • Ein Stativ
  • Software zum bearbeiten der Bilder (addieren von Einzelbildern = Stacking) z.B. Deep Skky Stacker

Meine Kameras

Ich habe zur Zeit (April 2021) folgende Kameras, die ich für astronomische Zwecke benutze:

  • DSLR Canon EOS 600D (meine erste “Astro-Kamera”)
  • Altair GPCAM (war als elektronischer Sucher gedacht, wird jetzt zum Autoguiding eingesetzt)
  • ZWO ASI294MC Pro  (Neuerwerbung in 2020 als dedizierte Astrokamera mit geregelter Kühlung, aber nicht monochrom sondern Farbe)

Dateiformate

Beim Fotografieren (egal ob per Hand oder mit Hilfe einer Software) entstehen die Fotos als Dateien auf einer Speicherkarte oder gleich in einem Ordner auf der Festplatte meines Computers.

Dabei werden in diesen Dateien nicht nur die eigentlichen Bilder gespeichert, sondern auch sog. Metadaten, z.B. Datum und Uhrzeit der Aufnahme, verwendete Belichtungszeit etc.

Bei der Astrofotografie unterscheiden wir bewegte Bilder (Filmchen, Videos) und “normale” Einzelfotos (Still Images). Datei-Formate für “normale” Fotos sind:

  • JPG
  • FITS
  • RAW (Kamera-spezifisch, z.B. CR2 bei Canon)

Das bekannte FITS wird sehr häufig in der Astrofotografie verwendet. Dabei steht FITS für “Flexible Image Transport System” und wurde offiziel von der IAU FITS Working Group verabschiedet. Das FITS-Format ist z.B. in der Wikipedia https://en.wikipedia.org/wiki/FITS beschrieben.

Das Auslesen der Metadaten bei JPG-Dateien funktioniert gut mit dem Exif-Tool.

Zum Auslesen der Metadatein bei FITS-Dateien versuche ich es mit Python.

Belichtungszeiten

Erste Ideen:

  • Weitwinkel (dann ist die Lichtstärke maximal und die Brennweite minimal und man kann länger belichten, ohne dass die Sterne zu Strichen werden)
  • Belichtungszeit: ca. 10 sec (ausrechnen wann die Erdrotation von einem Pixel zum nächsten springt)

Software

Ein Baumstativ

— Dkracht 23:10, 19 July 2009 (CEST)

Astrofotografie: Die Software SiriL

Gehört zu: Astrofotografie, Stacking
Siehe auch: Deep Sky Stacker, PixInsight

Astrofotografie mit der kostenlosen Software SiriL

SiriL ist eine kostenlose Software mit dem Schwerpunkt Stacking, kann aber noch einiges anderes mehr…

Aufmerksam geworden bin ich auf SiriL durch das unten angegebene YouTube-Video von Frank Sackenheim im März 2020. Dann hat Cuiv “The Lazy Geek” aus Tokio im August 2020 auch das Thema SiriL aufgegriffen. Deswegen mache ich jetzt einen zweiten Versuch, SiriL zu verstehen…

Als Alternative zum traditionellen Deep Sky Stacker ist das modernere SiriL vielleicht ganz interessant. Auch als kostenlose Alternative zu PixInsight kann SiriL mit Fotometrischer Farbkalibrierung und Background Extraction punkten.

Ein Youtube-Tutorial von Frank Sackenheim: https://www.youtube.com/watch?v=qMD2QQUtxYs
Das Youtube-Video von Cuiv “The Lazy Geek”: https://youtu.be/dEX9KbbzALc

Vorteile von SiriL

  • kostenlos
  • Für Windows und Linux
  • Stacking mit vielen manuellen Einflussmöglichkeiten, aber auch “vollautomatisch” per Skript
  • Nach dem Stacken:
    • 1: Bildnachbearbeitung: Zuschneiden
    • 2: Bildnachbearbeitung: Background Extraction
    • 3: Bildnachbearbeitung: Green Noise Reduction
    • 4: Bildnachbearbeitung: Color Calibration (auch photometrisch)
    • 5: Bildnachbearbeitung: Color Saturation
    • 6: Bildnachbearbeitung: Histogram Transformation

Installation und Konfiguration

Software Download: https://www.siril.org/download/#Windows

Aktuelle Version:  Beta-Version: 0.99.8.1 (13. Februar 2021). Diese Beta-Version für die geplante Version 1.0 hat ein komplett verändertes GUI – deshaab helfen ältere Tutorials im Moment kaum noch.

Die Konfigurationsdatei ist: c:\users\<name>\AppData\Local\siril\siril.config

In dieser Config-Datei speichert SiriL auch den Namen des letzten Working Directory, was man hier oder später auf der SiriL-Komandozeile mit dem Befehl “cd” ändern kann.

Einstellen des “Themes“:  Edit -> Einstellungen (Preferences) -> Verschiedenes (User Interface) -> Aussehen (Look and Feel): Dort können wir z.B. das “Dark Theme” auswählen.

Auch die Sprache können wir hier einstellen. Deutsch mögen viele da gern, aber dann muss man mit zum Teil komischen Übersetzungen leben und Tipps und Tricks aus der SiriL-Community sind mit “Englisch” meist besser zu verstehen…

Erste Schritte mit SiriL

Generell geschieht das Bearbeiten unserer Bilder päckchenweise. Diese “Päckchen” heißen bei SiriL “Sequences” und müssen einen Sequence-Namen bekommen. Als erstes müssen in SiriL unsere Bild-Dateien in das FITS-Format umgewandelt werden.

Beispiel Nummer 1:  Farb-Kamera (OSC) mit Lights und Darks – ohne Flats und ohne Biases

Damit ich selber mal lerne, wie das mit dieser für mich neuen Software funktioniert, wende ich das was Frank in seinem Tutorial zeigt, parallel auf einen eigenen Fall an. Ich habe gerade kürzlich eine Aufnahme mit 60 Lights und 30 Darks (keine Flats und keine Biases) gemacht.

Arbeitsverzeichnis einstellen

Einstellen des Arbeits-Ordners (Arbeitsverzeichnis, Working Directory).  Wenn man später mit Scripts arbeiten will, müssen dort die Unter-Ordner: Biases, Lights, Darks, Flats angelegt sein
In der Beta-Version (0.99.6)  von SiriL mache ich das unten in der sog. Kommandozeite mit dem Befehl “cd”.

Dark-Frames in eine Sequenz umwandeln

Zuerst müssen die Dark-Frames geladen und umgewandelt werden und einen Sequenz-Namen bekommen. Als Sequenz-Namen nehmen wir “Pacman_Darks”.
Auch wenn die Dateien schon im richtigen Format (FITS) vorhanden sind (weil meine ASI294MC Pro sie als FITs erstellt hat), muss diese “Umwandlung” in SiriL erfolgen, weil SiriL dann eine SEQ-Datei benötigt. Da die Dateien schon im (für SiriL) richtigen Format sind, werden sie lediglich kopiert.

Man kann beim “Umwandeln” auch “Symbolic Link” anhaken, dann werden die Dateien nicht echt kopiert, sondern es werden SymLinks erstellt. SymLinks funktionieren aber nur, wenn in Windows der “Developer Mode” eingestellt ist…

  • Input: Meine original Dark Frames
  • Reiter: “Umrechnen”   (Convert)
  • Auf das Symbol “+” klicken und dann die gewünschten Dateien an ihrem Platz aussuchen (bei mir: P:\Alben\Album_Astronomie\20200920_Bundesstrasse_Pacman\Darks) –> Schaltfläche “Hinzufügen”
  • Namen für die Sequenz angeben: “Pacman_Darks”
  • Schaltfläche “Umwandeln” klicken  (Kästchen Symbolischer Link, Debayern nicht anhaken)
  • Output: Sequence Pacman_Darks.seq

Die Ergebnisse einer solchen “Umwandlung” (auch “Konvertieren” genannt) werden oben im Arbeitsordner abgelegt. Zum Beispiel werden meine Darks in Arbeitsordner unter den Dateinamen  Pacman_Darks_00001.fit, Pacman_Darks_00002.fit etc.  kopiert (wobei “Pacman_Darks” der Sequenzname war) und es wird eine SEQ-Datei namens “Pacman_Darks.seq” im Arbeitsordner angelegt.

Die neu erstellte Sequenz wird von SiriL automatisch als “aktuelle Arbeits-Sequenz” geladen.

Master Dark erstellen

Ich mache dann aus diesen Darks ein sog. Master-Dark.
Das geht über den Reiter “Stacking” mit folgenden Einstellungen (wobei vom vorigen Schritt schon die richtige Sequenz ausgewählt bleibt):

  • Input: Sequence Sequence Pacman_Darks.seq     (sollte schon die aktuelle Arbeits-Sequenz sein)
  • Reiter “Stacking”
  • Stacking-Methode: Median-Stacking
  • Normalisierung: Keine Normalisierung
  • Schaltfläche: “Starte Stacking”
  • Output: Das Ergebnis ist die Datei Pacman_Darks_stacked.fit im Arbeitsordner

Light Frames in eine Sequenz umwandeln

Dann müssen die Light-Frames geladen und umgewandelt werden und einen Sequenz-Namen bekommen. Als Sequenz-Namen nehmen wir “Pacman_Lights”

  • Input: Meine original Light Frames
  • Reiter: “Umwandeln” (Convert)
  • Auf das Symbol “+” klicken und dann die gewünschten Dateien an ihrem Platz aussuchen (bei mir: P:\Alben\Album_Astronomie\20200920_Bundesstrasse_Pacman\Lights) –> Schaltfläche “Hinzufügen”
  • Namen für die Sequenz angeben: “Pacman_Lights”
  • Schaltfläche “Umwandeln” klicken  (Kästchen Symbolischer Link, Debayern nicht anhaken)
  • Output: Sequence Pacman_Lights.seq

Die “umgewandeten” Lights stehen nun im Arbeitsordner unter den Dateinamen Pacman_Lights_00001.fit, Pacman_Lights_00002.fit,…

Die Ergebnisse einer solchen “Umwandlung” (auch “Konvertieren” genannt) werden oben im Arbeitsordner abgelegt. Zum Beispiel werden meine Lights in Arbeitsordner unter den Dateinamen  Pacman_Lights_00001.fit, Pacman_Lights_00002.fit etc.  kopiert (wobei “Pacman_Lights” der Sequenzname war) und es wird eine SEQ-Datei namens “Pacman_Lights.seq” im Arbeitsordner angelegt.

Die neu erstellte Sequenz wird von SiriL automatisch als “aktuelle Arbeits-Sequenz” geladen.

Master Dark von den Light Frames abziehen

Nun folgt das “Pre Processing” der Lights: Es wird das Master Dark abgezogen, wir haben keine Flats und auch keine Offsets/Biases…

  • Input: Sequence Pacman_Lights.seq
  • Reiter “Pre Processing”:
  • Hier auswählen: Offset benutzen: Nein
  • und hier auswählen: Dark-Frame benutzen: Ja   und den Namen eintippen: Pacman_Darks_stacked.fit  (sonst erscheint eine Meldung: “master.dark.fit.[Datei-Erweiterung]” nicht gefunden. / KEINE Dark-Frame-Benutzung: kann Datei nicht öffnen)
  • dann hier auswählen: Flat-Fame benutzen: Nein
  • Ausgabe-Präfix: pp_
  • Schaltfläche: “Starte Pre-Processing”
  • Output: Sequence pp_Pacman_Lights.seq

Die pre-prozessierten Lights stehen nun im Arbeitsordner unter den Dateinamen: pp_Pacman_Lights_00001.fit, pp_Pacman_Lights_00002.fit,…  (wobei pp_ ja der Präfix der Ausgabe-Sequenz ist).

Es wird eine SEQ-Datei namens “pp_Pacman_Lights.seq” im Arbeitsordner angelegt. Die neue Sequenz pp_Pacman_Lights.seq wird geladen.

De-Bayering der Light Frames

Das Debayering darf nicht zu früh im Workflow erfolgen. Unmittelbar vor dem Registrieren ist gut.

Vorher sollten wir noch einen Blick auf die Einstellungen für das De-Bayering werfen, welche man unter dem “Hamburger Menü” bei “Einstellungen” (Preferences) findet. Dort klicke ich “FIT/SER debayer” an…

Das De-Bayering wird manchmal auch “De-Mosacing” genannt, weil das Bayer-Pattern z.B. RGGB auch gerne Mosaik genannt wird.

Also  erfolgt das “Debayering” der Lights jetzt. In Siril steht die Funktion “Debayering” leider nur beim Reiter “Umwandeln (Convert)” zur Verfügung. Deshalb geht das so:

  • Input: Die Light-Frames von denen das Master-Dark bereits abgezogen wurde
  • Reiter: Umwandeln
  • Laden der Dateien: pp_Pacman_Lights_00001.fit, pp_Pacman_Lights_00002.fit,…,  –> Schaltfläche “Hinzufügen”
  • Sequenz-Namen vergeben: “db_pp_Pacman_Lights”
  • Schaltfläche “Umwandeln” klicken – Dabei das Häckchen bei Debayering setzen
  • Output: Sequence db_pp_Pacman_Light

Die “be-bayerten” Lights stehen nun als RGB-Dateien im Arbeitsordner unter den Dateinamen db_pp_Pacman_Lights_00001.fit, db_pp_Pacman_Lights_00002.fit,…

Es wird eine SEQ-Datei namens “db_pp_Pacman_Lights.seq” im Arbeitsordner angelegt. Die neue Sequenz db_pp_Pacman_Lights.seq wird geladen.

Registrieren der Light Frames

Das Registrieren legt alle Einzelbilder passgenau übereinander. Dazu wird eines der Bilder als “Referenzbild” genommen und aus allen Bildern die Sterne extrahiert, welche dann mit denen im Referenzbild verglichen werden.

Als Referenzbild wird standardmäßig das erste Bild der Sequenz genommen, es sei denn, man bestimmt in der “Frame List” der Sequenz ein anderes als Referenzbild.

Das Registriren erfolgt im Einzelnen so:

  • Input: Sequence db_pp_Pacman_Lights.seq
  • Reiter “Registrieren”
  • Registrieren alle Bilder der Sequenz
  • Registrierungsmethode: “Allgemeine Sternausrichtung (Deep Sky)”
  • Registrierungs-Layer: Grün
  • Praefix: r_
  • Algorithmus: bikubisch
  • Schaltfläche:  “Führe Registrierung aus”
  • Output: Sequence r_db_pp_Pacman_Lights.seq

Die registrierten Bilder stehen nun im Arbeitsordner unter den Dateinamen: r_db_pp_Pacman_Lights_00001.fit, r_db_pp_Pacman_Lights_00002.fit,…

Es wird eine SEQ-Datei namens “r_db_pp_Pacman_Lights.seq” im Arbeitsordner angelegt. Die neue Sequenz r_db_pp_Pacman_Lights.seq wird geladen.

Stacken der Light Frames

Die registrierten Light Frames werden nun “gestapelt” englisch: stacked mit folgenden Einstellungen:

  • Input: Sequence r_db_pp_Pacman_Lights.seq
  • Reiter: Stacking
  • Stacking-Methode: Durchschnittswert-Stacking mit Ausschleusung
  • Normalisierung: Additiv mit Skalierung
  • Ausschleusung: Wisorized Sigma Clipping
  • Save in:  r_db_pp_Pacman_Lights_stacked.fit
  • Schaltfläche: “Starte Stacking”
  • Output: Ergebnisdatei r_db_pp_Pacman_Lights_stacked.fit im Arbeitsordner (diese wird im SiriL-Fenster gleich angezeigt)

So sieht das in SiriL dann aus:

Siril-Stacking-Ergebnis

 

Bildnachbearbeitung: Zuschneiden

Durch das Stacken (speziell wenn man beim Fotografieren Dithering eingestellt hat) gibt es meist schmale dunkle Ränder, die wir jetzt abschneiden wollen.

  • Input: Die aktive Bilddatei  r_db_pp_Pacman_Lights_stacked.fit
  • MIt der Maus auf einem Graubild (Red, Green, Blue) ein Rechteck ziehen (wie Markieren),
  • Klick mit der rechten Maustaste und auf “Zuschneiden” (“Crop”) klicken
  • das zugeschnittene Bild wird von Siril automatisch gespeichert und im Fenster neu angezeigt
  • Output: Dieselbe Bilddatei r_db_pp_Pacman_Lights_stacked.fit  (Achtung: destruktiv!!!)

Bildnachbearbeitung: Hintergrund-Extraktion

Ähnlich wie in PixInsight kann auch SiriL den Bildhintergrund ermitteln und dann abziehen. Das macht man gerne um z.B. Gradienten zu entfernen.

  • Input: Die aktive Bilddatei  r_db_pp_Pacman_Lights_stacked.fit
  • Menüleiste -> Bildbearbeitung (Image Processing) -> Hintergrund-Extraktion
  • Samples für den Hintergrund manuell setzen  (dahin wo kein Nutzsignal ist)
  • Korrektur: Subtraktion
  • Schaltfläche: Anwenden (Apply)
  • Schaltfläche: Schließen (Close)
  • Output: Dieselbe Bilddatei    (Achtung: destruktiv!!!)

Bildnachbearbeitung: Farb-Kalibrierung

Um schöne Sternfarben zu bekommen sollte man unbedingt eine Farb-Kalibrierung machen. SiriL bietet dafür zwei Möglichkeiten an: “Farbkalibrierung” und “Photometrische Farbkalibrierung”.

Bei der Photometrischen Farbkalibrierung wird das Bild von SiriL “ge-platesolved” (astrometrische Lösung) und dann werden anhand eines Sternkatalogs die sog. B-V-Indices der Sterne benutzt.

  • Input: Die aktive Bilddatei
  • Menüleiste -> Bildbearbeitung (Image Processing) -> Farb-Kalibrierung -(Color Calibration) > Photometrische Farb-Kalibrierung (Photometric Color Calibration)
  • Image Parameters: Eingabe NGC281 gefundene Koordinaten aus einem Katalog übernehmen
  • Brennweite (Focal distance): 510 mm
  • Pixel Größe (Pixel Size): 4,6 µ
  • Photometrischer Sternkatalog: NOMAD oder APASS
  • Sternerkennung: Automatisch
  • Hintergrund-Referenz: automatic detection
  • Normalisierung ja Kanal: On Lowest
  • Schaltfläche: OK
  • Schaltfläche: Close
  • Output: Dieselbe Bilddatei    (Achtung: destruktiv!!!)

Bildnachbearbeitung: Grünrauschen entfernen

Bei DSLRs und auch bei Astrokameras mit Farb-Sensor (“OSC”) haben wir oft eine Überbetonung der grünen Farbe.

  • Input: Die aktive Bilddatei
  • Menüleiste -> Bildbearbeitung (Image Processing) -> Grün-Rauschen entfernen (Remove Green Noise)
  • Protection Method: Average Neutral
  • Amount:  1.00
  • Schaltfläche: Apply
  • Schaltfläche: Close
  • Output: Dieselbe Bilddatei    (Achtung: destruktiv!!!)

Bildnachbearbeitung: Farbsättigung anheben

Vor dem “Stretchen” soll man die Farbsättigung anheben.

  • Input: Die aktive Bilddatei
  • Menüleiste -> Bildbearbeitung (Image Processing) -> Farbsättigung (Color Saturation)…
  • Hue: Global
  • Amount: + 0.66
  • Schaltfläche: Apply
  • Output: Dieselbe Bilddatei    (Achtung: destruktiv!!!)

Bildnachbearbeitung: Histogramm-Transformation

Menüleiste -> Bildbearbeitung -> Histogramm Transformation

Bildnachbearbeitung: Speichern

Menüleiste -> Datei -> Speichern als…