Astronomie: Checkliste für auswärtige Beobachtungen

Gehört zu: Astronomie
Siehe auch: Geräteliste, Mein Workflow

20012 Unique Visitors,  28221 Page-views

Was muss ich ins Auto packen, wenn ich nach auswärts zur Sternwarte fahre?

Stand: 31.10.2019

Generell

  • Schlüssel zur Sternwarte
  • Astro-Kladde und Bleistift
  • Rotlicht-Taschenlampe
  • Rotlicht-Stirnlampe
  • Camping-Stuhl
  • Camping-Tisch
  • Regenhaube für das Teleskop
  • Warme Kleidung (Handschuhe, Mütze, Stiefel,…)
  • Kabeltrommel
  • Mehrfach-Steckdose
  • Gummiband

Computer

  • Windows-Laptop
  • Netzteil für Laptop
  • Maus für Laptop
  • Maus-Pad für Laptop
  • USB-Winkelstecker
  • Rotlicht-Scheibe für Laptop-Display
  • Laptop-Zelt
  • Software: PoleMaster, DualMotorFocus, ASCOM-Platform, EQMOD, All Sky Plate Solver, APT, Cartes du Ciel, PHD2 Guiding
  • Mobil-Telefon

Montierung

  • Dreibein-Stativ
  • Spreitz-Scheibe mit Gewindestange und zwei Muttern
  • Wasserwaage
  • Polkopf HEQ5 Pro
  • Gegengewicht
  • 12 Volt Kabel für Polkopf
  • 12 Volt Steckernetzteil
  • Synscan-Handbox
  • Serielles Kabel mit USB-Adapter zur Verbindung der Handbox mit dem Laptop-Computer
  • PoleMaster mit USB-Kabel

Teleskop

  • Das OTA Orion ED80/600
  • Guiding-Rohr
  • Guiding-Kamera mit ST4-Kabel und USB-Kabel zum USB-Hub
  • Flattener/Reducer
  • Barlow-Linse und Verlängerungshülse
  • Taukappe
  • Motor-Fokusser
  • optional: Sonnenfilter

DSLR

  • Den Kamera-Body: Canon EOS 600DA
  • T-Ring
  • Dummy-Akku zur Spannungsversorgung
  • Spezial-Netzteil zur Spannungsversorgung
  • USB-Kabel zum Anschluss an Hub bzw. Laptop-Computer
  • Speicherkarte mit viel Platz
  • Sucherfernrohr auf Blitzschuh
  • optional: Intervallometer

 

Astrofotografie: Platesolving mit ASTAP

Gehört zu: Plate Solving, Astronomie: Software-Liste
Siehe auch: Welche Sterne sind auf meinem Foto?

Die Software “ASTAP”

Die zweite Software, die ich zum Plate Solving benutze, ist “ASTAP” (Bestandteil von N.I.N.A.). ASTAP kann auch “stand alone”, verwendet werden. Die Bildquellen können ganz einfach JPG-Bilder oder FITS-Bilder sein, die irgendwo auf dem Notebook liegen (also keine Kamera, kein ASCOM, kein garnichts, einfach “Stand Alone”).

Das Plate Solving mit ASTAP leistet “near solving”, was die Angabe eines “ungefähren” Ausgangspunkts (R.A. und Dekl.) sowie die Angabe der  Bildgröße (Bildhöhe) in Grad  ( verlangt. Ebenfalls ist ein “blind solving” mit ASTAP möglich. Dafür ist die Angabe von Pixelsize und Focal Length erforderlich.

Als Ergebnis des Solven werden die Koordinaten des Bildmittelpunkts, der Drehwinkel und der Abbildungsmaßstab bzw. das Gesichtsfeld (FoV) ermittelt.

Bezugsquelle

https://www.hnsky.org/astap.htm

Copyright (C) 2018, 2019 by Han Kleijn, www.hnsky.org.

  • ASTAP Version 0.9.275 (stand alone version)
  • Index Files

Kompatibilität mit PlateSolve2

Wenn man das EXE-File umbenennt in “Platesolve2.exe” kann man ASTAP identisch verwenden. Also:

  • PlateSolve2 mit APT
  • PlateSolve2 mit SGP
  • PlateSolve2 mt XYZ

Installation von ASTAP

ASTAP installiert man, indem man das Setup-Programm astap_setup.exe ausführt. Das ausführbare Programm ist dann “D:\bin\astap\astap.exe”.

Automatisch werden bei der Installation auch das Utility DCRAW.exe und die Index-Files in den Ordner “D:\bin\astap” kopiert.

Bildbeschreibung: ASTAP Setup

ASTAP_Setup_01.jpg

ASTAP Setup

Andere Stern-Kataloge?

Gibt es noch andere Stern-Kataloge als die mit gelieferten???

Erste Schritte zum Plate Solving mit ASTAP

Dann kann’s losgehen: Ich nehme (Menü -> File -> Load FITS or other format) ein vorhandenes Astrofoto: DK_20170708_01380.jpg, das ich am 8. Juli 2017 mit der Sony NEX-5R und einem 135mm Objektiv aufgenommen habe.

Dieses Foto wird zunächst in den sog. “Viewer” geladen – das kann einen Moment dauern.

ASTAP_Load_01

Um die Parameter für das Plate Solving einmal einzustellen, klicken wir auf die Schaltfläche mit dem Symbol “Großes Sigma”. Dadurch öffnet sich ein neues Dialogfeld wo wir auf den Reiter “Alignment” gehen:

ASTAP_Alignment_01

Hier gibt es jetzt vier Möglichkeiten (Radio Buttons), das “Alignment” durchzuführen:

  • Star Alignment
  • Astrometric Alignment
  • Use local Astrometry.net
  • Manual, one star

Wir probieren mal das “Astrometric Alignment” aus.

Dazu müssen wir angeben:

  • die “Field height image in Grad” angeben. also im Beispiel 6,6 Grad
  • die ungefähre Rektaszension (alpha) und Deklination (delta) – da wir hier ein “Near Solving” haben. Also: Alpha = 20h 51m, Delta = 46° 13′

Danach klicken wir ganz rechts auf die Schaltfläche “Solve current image”

ASTAP_Alignment_02

Und nach ganz kurzer Zeit erhält man das Ergebnis:

ASTAP_Alignment_03

Weitere Funktionen von ASTAP

  • Die Stand Alone Version selbst hat keine ASCOM Funktionen (z.B. Steuerung von Kameras und Montierungen).
  • Integration in Host-Software wie APT, SGP etc.
  • Nur in den eingebauten Versionen (z.B. Host-Software APT oder N.I.N.A.) werden Plate-Solving-Ergebnisse an die Host-Software zurückgegeben und können dort zeitnah weiterverwendet werden; z.B. zum genaueren Positionieren des Bildausschnitts (sog. “Framing”).

==========================================

=============================================

==========================================

Dies stammt aus dem Artikel über Platesolve2:

  • Gesichtsfeld ca. 9,9° x 6,6°
  • Bildmitte ca. 20h 51m, +46° 13′
PlateSolve2-01.jpg

Platesolve2-01: Plate Match Found

Bei den “Starting Parameters” muss das Gesichtsfeld (hier: 9×6 degrees) eingetragen werden.
Meine Astrofotos werden meist nach 5 bis 10 Sekunden “gesolved” d.h. Rektaszension und Deklination des Bildmittelpunkts sowie der Drehwinkel gegen die Nordrichtung werden angzeigt.

Edit Parameters

Hier gebe ich an, ob als Katalog der APM oder der UCAC3 benutzt werden soll und das dazu geltende Äquinoktikum (J2000).

Da bei Digitalkameras Sterne oft etwas gößere “Bobbels” werden, stelle ich die “Max Star Size” von 6 auf 12 hoch. Wenn dann andere Objekte als Sterne erkannt werden, war der Wert zu groß.

Die “Detection Threshold” sorgt dafür, das Rausch-Artefakte nicht als ganz schwache Sterne missverstanden werden. Da meine Digitalkamera deutlich rauscht, stelle ich den Wert von 6 auf 8 hoch. Dadurch werden weniger Sterne erkannt. Wenn es zu wenig werden, hat man den Wert zu groß eingestellt.

Wenn ich einen Haken bei “Highest Accuracy Plate Solution” setze, stürzt der PlateSolve2 ab.

Auch die Default Location (geografische Breite und Länge) des Beobachtungsorts können hier angegeben werden.

PlateSolve2-02.jpg

Platesolve2-02: Parameters

Was kann ich damit anfangen?

  1. Als unmittelbares Ergebnis des Plate Solving bekomme ich angezeigt:
    1. Koordinaten des Bildmittelpunkts (R.A. und Dekl.)
    2. Pixel Size
    3. Drehwinkel
    4. Gesichtsfeld 9,97° x 6,62°
    5. Anzahl der gefundenen Sterne: 12 (die haben auf dem Bild einen kleinen Kreis)
    6. Wurzel aus der Summe der quadratischen Abweichungen (RMS): 2.022″
  2. Wenn ich auf die Schaltfläche “Show Image” drücke, kann das Bild mit gewissen Zusatzinformationen betrachtet werden.
    1. Ich kann mit der Maus über das Bild fahren und sehe unten die Koordinaten
    2. Ich kann mir die im Bild erkannten Sterne als Kreuze (waagerecht/senkrecht) anzeigen lassen
    3. Ich kann die benutzen Katalog-Sterne als Kreuze (45°) anzeigen lassen
    4. Ich kann mir die “gematchten” Sterne mit kleinen Kreisen anzeigen lassen
PlateSolve2-03.jpg

Platesolve2-03: Show Image

Astronomie: The Astro Zone System

Gehört zu: Astrofotografie
Siehe auch: Bildbearbeitung, Schärfen, Entrauschen

Quelle: Youtube-Video von Frank Sackenheim

Das Prinzip der vier Zonen

Ein typisches Astrofoto eines Deep-Sky-Objekts hat Bereiche verschiedener Qualität, die wir möglicherweise unterschiedlich bearbeiten wollen.

Sichtbar machen kann man diese “Zonen” z.B. mit Adobe Photoshop auf folgende Weise:

  • Wir öffnen ein geeignetes Astrofoto
  • Wir wandeln das Photo in Graustufen um ( Bild -> Modus -> Graustufen)
  • Wir machen eine sog. Tontrennung in vier Stufen (Bild -> Korrekturen -> Tontrennung)

Andere Photoshop-Versionen:

  • Die Funktion “Tontrennung” heist in der englischen Version “Posterize”
  • In Photoshop CS2 findet man das unter Bild -> Anpassen -> Tontrennung

Dann haben wir vier Bereiche “Zonen” in unserem Bild. Dieser Ansatz stammt von Ron Wodaski, der dies “Vier-Zonen-System” nennt. Die vier Zonen sind:

  1. Der Hintergrund “Zone 1 (Dunkelbereich)” soll – ohne Rauschen – sehr dunkel sein
  2. Gebiete mit schwachen Nebeln “Zone 2 (Dunkelgrau)” haben ein schlechtes Signal-Rausch-Verhältnis (SNR) und können nicht geschäft, sondern nur entrauscht werden.
  3. Gebiete mit stärkeren Nebeln “Zone 3 (Hellgrau)” haben ein gutes Signal-Rausch-Verhältnis (SNR) und sollten geschärft werden.
  4. Die ganz hellen Bereiche “Zone 4 (Hell)” das sind überwiegend die Sterne, die haben ein super-gutes SNR und sollten ebenfalls nicht entrauscht werden…

Die Bildbearbeitung

Nachdem wir uns das Prinzip der vier Zonen so klargemacht haben, geht es an die (ggf. unterschiedliche) Bearbeitung der vier Zonen. Dazu laden wir das ursprüngliche Astrofoto (in Farbe) in Photoshop.

Die vorbereitende Bildbearbeitung

Bevor wir die vorgestellten Zonen selektiv betrachten, beginnen wir die Bildbearbeitung ganz “konventionell”:

  • Die Einzelaufnahmen sollten im RAW-Format (d.h. 16 Bit Tiefe) vorliegen
  • Stacken der einzelnen Frames (mit Darks, Flats und Bias Frames)
  • Rand abschneiden (sonst haben wir möglicherweise einen komischen Effekt links im Histogramm)
  • Stretchen – dabei einen “weisen” Schwarzpunkt setzen (weise = nach rechts ans Gebirge heranfahren, aber etwas Abstand halten)

Die Bearbeitung der vier Zonen

Die Zonen 1 und 2 müssen im Wesentlichen entrauscht werden; Zone 2 vorsichtiger als Zone 1.
Die Zonen 3 und 4 müssen im Wesentlichen geschärft werden: Zone 3 klaro, Zone 4 wie ???

Um eine getrennte Bearbeitung von Zone 1 und 2 einerseits von Zone 3 und 4 andererseits zu erreichen, verwenden wie eine Luminanzmaske.

Als Luminanzmaske nehmen wir einfach das Bild selbst als Maske. Das machen wir so:

  • Das ganze Bild auswählen (Strg-A)
  • Das ausgewählte Bild in die Zwischenablage übertragen (Strg-C)
  • Eine leere Maske hinzufügen:  Unten das Symbol “Ebenenmaske hinzufügen”
  • In die leere Maske zum Bearbeiten hineingehen (Alt-Klick)
  • Die Zwischenablage in die leere Maske einfügen (Strg-V)

Bearbeiten von Zone 1 und Zone 2

Ebenenenmaske

Zum Entrauschen (für Zone 1 und 2) müssen wir die Lumanzmaske invertieren (Strg-I).
Die Luminanzmaske sollten wir durch manipulieren am Histogramm (Schwarzpunkt bzw. Weisspunkt verschieben) und durch Weichzeichnung (Gaußscher Weichzeichner) noch etwas verbessern, bevor wir sie zur Bildbearbeitung benutzen.

Entrauschen

Welchen Rauschfilter nehmen wir dazu? Es gibt viele Rauschfilter; alle arbeiten im Prinzip so, das sie die Auflösung verringern; d.h. also etwas “glätten”. Die Unterschiede bei den verschiedenen Rauschfiltern liegen im Wesentlichen bei den Argorithmen nach denen sie die Bildteile auswählen auf die sie wirken sollen. Da wir dafür extra eine schöne Ebenenmaske erstellt haben, genügt zunächt ein ganz einfacher Rauschfilter z.B,:

Photoshop Menüleiste -> Filter -> Rauschfilter -> Rauschen entfernen

Bearbeiten von Zone 3 und Zone 4

Ebenenmaske

Um Zone 3 und 4 isoliert zu bearbeiten, nehmen wie wiederum die Luminanzmaske; diesmal aber ohne sie zu invertieren. Ggf. wollen wir die Luminanzmaske noch leicht modifizieren indem wir im Histogramm die Schwarz- und Weisspunkte verschieben und schließlich einen Gaußschen Weichzeicher einsetzen.

Schärfen

Welchen Schärfungsfilter nehmen wir dazu?

Photoshop Menüleiste -> Filter -> Scharfzeichnungsfilter -> Unscharf maskieren…

Die abschließende Bildbearbeitung

Die entrauschten Zonen 1 und 2 müssen mit den geschärften Zonen 3 und 4 nun zusammengesetzt werden.

Astrofotografie: Mein Workflow mit Plate Solving und APT Schritt für Schritt

Gehört zu: Astrofotografie
Siehe auch: Plate Solving, APT, Checkliste: Ins Auto packen

20012 Unique Visitors,  28221 Page-views

Meine Arbeitsweise für Astrofotografie: Schritt für Schritt

Am Anfang: Die Planung

Am Anfang steht die Planung. Ich suche mir also ein Objekt als “Beobachtungsobjekt” (z.B. NGC 7000) aus, entscheide mich für dafür geeignete Geräte (speziell die Optik) und einen geeigneten Standort.

Für das One-Star-Alignment der Montierung, sollte ein heller Stern in der Nähe des geplanten Beobachtungsobjekt ausgesucht werden (hier: Deneb). Damit beim späteren Plate Solven die schnelle Methode “Near Solving” einfach funktioniert, sollte dieser auch in der APT-Objektliste stehen.

Damit das geplante Beobachtungsobjekt (hier: NGC 7000) später einfach angefahren werden kann, sollte es in der APT-Objektliste stehen. Dann können wir beim Plate Solving die schnelle Methode “Near Solving” verwenden und evtl. auch ein schönes “Goto++” zum automatischen zentrieren auf das Objekt machen.

Alle Teile ins Auto packen

Leicht kann man ein Teil vergessen, was vor Ort dann doch dringend benötigt wird. Deshalb habe ich mal eine Checkliste erstellt – vielleicht hilft das ja.

Meine Hardware für den Standardfall ist:

Meine Software für den Standardfall ist:

  • Windows 10 Pro
  • Windows-Treiber für Seriell-USB-Adapter von LogiLink (Chipsatz PL2303TA)
  • ASCOM Plattform
  • ASCOM-Treiber (EQASCOM) für die Montierung HEQ5 Pro   (enthält auch die EQMOD Toolbox)
  • Cartes du Ciel  für visuelle Gotos
  • APT  für die Steuerung der Kamera (Serienaufnahmen), das Platesolving mit SYNC und das Fokussieren
  • ASCOM-Treiber für den Motor-Fokusser (optional)
  • Software für den QHY PoleMaster (optional)

Der Aufbau bei Tageslicht

Am Standort angekommen, baue ich meine Gerätschaften auf (noch bei Tageslicht).

1) Die Montierung HEQ5 Pro wird mit HIlfe einer Wasserwaage waagerecht aufgestellt und grob eingenordet.

2) Stromversorgung herstellen

12V an die HEQ5 Pro Montierung und Motor-Fokusser, 7,6 Volt an die Cannon EOS, 19 V an den Laptop

3) SynScan-Handbox anschliessen und testen

  • Handbox per Kabel mit der Montierung verbinden
  • An der Handbox einstellen: Datum (MM/DD/YYYY), Uhrzeit, Zeitzone, geografische Breite, geografische Länge
  • An der Handbox die vier Pfeiltasten ausprobieren. Die Montierung muss sich dadurch in beiden Achsen bewegen

4) Kabelverbindung zwischen Montierung und Laptop herstellen und testen

  • Handbox: Modus “PC Direct Mode
  • Handbox per Kabel mit dem Laptop verbinden: Serielles Kabel (von Synscan) unten in die mittlere Buchse der Handbox; die andere Seite des Kabels mit Seriell-USB-Adapter (Chip-Satz PL2303TA) an Laptop anschließen
  • Im Geräte Manager nachschauen, welchen COM-Port der Seriell-USB-Adapter benutzt
  • EQMOD-Toolbox aufrufen
    • Dort diesen COM-Port im ASCOM-Treiber-Setup einstellen (Schaltfläche “Driver Setup“)
    • Dann die Schaltfläche “ASCOM Connect” klicken -> das EQMOD-ASCOM-Fenster muss dann aufgehen
    • Im EQMOD-ASCOM-Fenster die vier Pfeiltasten ausprobieren. Die Montierung muss sich dadurch in beiden Achsen bewegen (“Slew Controls”)
    • Schaltfläche “Disconnect” klicken
    • EQMOD Toolbox beenden

5) ASCOM-Verbindung zwischen Montierung und Cartes du Ciel errichten und testen

  • Menüleiste: Telekop -> Verbinden, Schaltfläche “Verbinden”, Schaltfläche “Ausblenden”
  • Einzelheiten dazu in meinem Artikel Cartes du Ciel

6) Kamera Canon EOS 600Da in Betrieb nehmen

  • Stromversorgung testen
  • Modus auf “Manuell” einstellen
  • Speicherkarte auf genügend freien Platz prüfen
  • Datum und Uhrzeit überprüfen
  • Kabelverbindung zwischen Kamera Canon EOS 600Da und Laptop herstellen (USB-Kabel)

7) Software APT testen

  • Cartes du Ciel starten; dann APT starten
  • Connect APT zu Cartes du Ciel   (bei mir automatisch)
  • Connect APT zur Montierung “Gear”; Test: Pfeiltasten
  • Connect APT zur Kamera; Test: Live View

8) Grobe Fokussierung des Teleskops auf ein Horizont-Objekt

Der Aufbau im Dunklen

1) Wenn es dunkel genug ist, mache ich die genaue Einnordung mit QHY PoleMaster.

2) Das Teleskop manuell auf die Home-Position stellen (einigermassen genau)

3) Nun das One-Star-Alignment

Zum One-Star-Alignment suchen wir uns einen hellen Stern in der Nähe unseres Beobachtungsobjekts, das wir planen zu fotografieren. Der Stern sollte als Objekt in der APT-Objektliste stehen, damit wir die Koordinaten später einfach für ein Near Solving verwenden können.

  • Auf dem Windows-Computer mit der Software Cartes du Ciel ein Goto auf (z.B.) Deneb (alpha Cyg) – das Telskop wird nicht genau auf Deneb zeigen, das macht aber nichts
  • mit APT ein Foto machen
  • Objekt für Near Solving aussuchen: Im Reiter “Gear” mit der Schaltfläche “Objekts” den Stern Deneb aussuchen
  • Nun dieses Foto in APT Platesolven, Schaltfläche “Point Craft”, dabei als Objekt
  • Nach erfolgreichem Platesolve  Objekt SYNC und SHOW
  • Im Cartes du Ciel erneut ein Goto auf Deneb (müsste ganz nahe sein)
  • mit APT ein Foto machen, dieses Foto in APT Platesolven, SYNC und SHOW
  • im Cartes du Ciel und im Live View von APT  müsste Deneb jetzt genau mittig im Gesichtsfeld stehen (wenn nicht, den vorletzten und den letzen Schritt wiederholen)

4) Nun haben wir einen hellen Stern (im Beispiel: Deneb) im Teleskop bzw. Live View von APT

  • das Sucherfernrohr darauf einjustieren
  • die Fein-Fokussierung des Teleskops in APT: Reiter “Tools”, dort Schaltfläche “Focus Aid” für FWHM (Full Width Half Maximum) oder HFD (Half Flux Diameter)

Schlussendlich: Das geplante Objekt fotografieren

1) Das geplante Beobachtungsobjekt ansteuern

  • Das geplante Beobachtungsobjekt in der Nähe von Deneb z.B. NGC 7000 mit Cartes du Ciel mit Goto ansteuern
  • Zur Sicherheit wieder ein Foto mit APT machen, dieses Foto Platesolven, SYNC und SHOW
  • Im Cartes du Ciel müsste das Beobachtungsobjekt (hier: NGC 7000) jetzt mittig im Gesichtsfeld stehen (wenn nicht: APT Goto++)

2) Belichtungszeit und ISO ausprobieren

  • Reicht die Nachführung?
  • Ist das Histogramm weder rechts noch links abgeschnitten?

3) Nun eine Serienaufnahme als APT “Plan” programmieren (ggf. Autoguiding aktivieren, ggf. Dithering aktivieren)

4) Den APT-Plan ausführen mit der Schaltfläche “Start”

Last but not Least

  • Beobachtungsbuch
  • Abbau
  • Heimreise

 

 

Astronomie – Computer: ASIair

Gehört zu: Astrofotografie

In letzter Zeit (heute ist Juli 2019) hört man immer öfter von einem Gerät namens “ASIair” von der Firma ZWO.

Ähnliche Produkte sind u.a.

  • Celestron StarSense
  • Prima Luce Eagle (mit Windows 10 Pro)

Es soll ein kleiner Computer sein, mit dem man ohne traditionelle Computer Astrofotografie betreiben können soll – das Ding wird als “Astrofotografie-Computer” bezeichnet.

Der ASIair-Computer soll auf einem Rasberry Pi basieren; also mit LINUX und INDI

Stromversorgung des ASIair:  5 V

Falls man basismäßg 12V benutzt, kann man den mitgelieferten Konverter 12V -> 5V benutzen (3 A)

Der ASIair hat 4 USB 2.0 Anschlüsse und fungiert so also als USB-Hub

ASIair unterstützt ASI-Kameras und viele gängige Montierungen.

Der ASIair wird mit der Montierung mit Hilfe eines mitgelieferten seriellen Kabels (Montierung) mit USB an der ASIair verbunden und dann kann man über die Funktion “Sky Safari Bridge” die Montierung per Sky Sapari Plus steuern

Als Guiding-Kamera dient z.B. ASI 120 Mini

Autoguiding  (nur über ST4 ? – also Ersatz für PHD2 Guiding)

Steuerung der primären Kamera (am Teleskop)  z.B. XYZ

Speicherung der Fotos auf SD-Karte max. 32 GB

WiFi/WLAN: Der ASIair spannt einen WLAN Access Point auf, über den sich ein Tablet mit dem ASIair verbinden kann. Auf dem Tablet läuft daan eine ASIair-App.

Plate Solving und SYNC zur Montierung  (wird “Analysis” genannt)

 

 

 

 

 

 

 

 

Astronomie: Aufnahmeverfahren (Image Capturing)

Gehört zu: Astrofotografie
Siehe auch: Bildbearbeitung

Historie

Früher als man noch keine digtalen Kameras (Sensoren) hatte und nur den chemischen Film, war klar: man muss lange belichten.
Link: http://www.astrotreff.de/topic.asp?TOPIC_ID=237847

Die ersten Digitalkameras hatten als Sensor CCD-Chips – heute findert man immer mehr CMOS-Chips.

Quellen und Links

Ich bin durch Videos von Nico Carver auf Youtube darauf gekommen, mal etwas ausführlicher die Vorgehensweise (Workflow) bei meiner Astro-Fotografie zu beschreiben.

Welche Geräte setze ich ein?

Hier behandele ich zuerst den Fall, dass eine Digitalkamera (One Shot Colour) fokal an einem Teleskop angebracht wurde und Fotos (keine Videos) geschossen werden sollen.

Einstellungen für die Digitalkamera

Wenn man die Geräte und den Plan zusammen hat und das Wetter mitspielt, geht es an das Fotografieren ansich, also das Aufnehmen eines Bildes (Image Capturing).

Dazu muss man das Beobachtungsobjekt richig ins Gesichtsfeld einstellen (Suchen, Framing), das Bild schön scharf stellen (Fokussieren) und dann belichten – aber mit welchen Einstellungen?

  • Welche Empfindlichkeit?    (ISO bzw. Gain)
  • Welche Blende?
  • Welche Belichtungszeit?
  • Wieviele Einzelbilder?

ISO Empfindlichkeit

Als ISO-Zahl für die Empfindlichkeit verwende ich bei meiner Digitalkamera Canon EOS 600Da meist 800 ISO oder 1600 ISO.
Höheres ISO (Gain) rauscht mehr, also vielleicht mal ISO 400 probieren…

Kamerasensoren können “ISO-invariant” sein oder auch nicht.
Link: https://www.stephanwiesner.de/blog/iso-invarianz-iso-loser-sensor/

Blende

Die Blende heisst in der Astrofotografie “Öffnungsverhältnis” und ist durch das Gerät praktisch vorgegeben. Mein kleiner Refraktor Orion ED 80/600 hat immer 600/80 = 7,5 oder mit dem Flattener/Reducer 510/80 = 6,375 – sprich also f/7,5 bzw. f/6,375.

Belichtungszeit

Prinzipiell gilt: Mit steigender Belichtungszeit sammelt man mehr Licht und das Nutzsignal hebt sich besser vom Hintergrund ab: sog. Signal-Noise-Ratio = SNR. Aber da kommen noch weitere Aspekte hinzu.

Mit steigender Belichtungszeit (ceteris paribus):

  • verbessert sich der Signal-Rausch-Abstand (SNR)
  • nimmt auch das Dunkelrauschen (des Sensors) zu; dieses kann man aber durch den Abzug von Dunkelbildern (s.o.) komplett eliminieren.
  • wird der Himmelshintergrund immer heller.  Das sieht man im Histogramm: dort wandert der “Berg” immer weiter nach rechts.
  • macht sich die (scheinbare) Bewegung der Himmelsobjekte durch die Erdrotation immer stärker bemerkbar; diesen Effekt können wir durch Nachführung eliminieren

Maximale Belichtungszeit limitiert durch Himmelshelligkeit

Um die maximale Belichtungszeit zu finden, mache ich bei konstantem ISO eine kleine Serie von Aufnahmen mit zunehmender Belichtungszeit und schaue dann die Histogramme an. Je länger ich belichte, um so mehr rückt das Histogramm an den rechten Rand d.h. das Bild wird heller und heller. Ich muss eine Belichtungszeit finden, bei das das Histogramm nicht ganz am linken und auch nicht ganz am rechten Rand steht. Das hängt näturlich von der Himmelshelligkeit ab, also von der Lichtverschmutzung am Standort (natürlich fotografiere ich erst nach Ende der astronomischen Dämmerung und wenn der Mond nicht da ist).

  • In Handeloh (Bortle 4) finde ich so: xyz
  • In Hamburg-Eimsbüttel (Bortle 7) habe ich: xyz

Diese Ergebnise können je nach ISO-Einstellung der Digitalkamera leicht unterschiedlich sein oder auch nicht s.o. ” ISO-Invarianz”.

Maximale Belichtungszeit limitiert durch Nachführung

Ab welcher Belichtungszeit werden die Sterne nicht mehr punktförmig, sondern Striche?

Als Fausregel gilt: Max. Beliechtungszeit in Sekunden = 500 / Brennweite in Millimetern

Siehe dazu: Nachführung

Rauschen bei der Digitalkamera

Ein elektronischer Sensor erzeugt auch immer einen “Dunkelstrom” der sich als leichtes Rauschen im gesamten Hintergrund zeigt. Dieser ist abhängig von der Dauer der Belichtung und von der eingestellten Empfindlichkeit (ISO bzw. Gain).
Dieses Dunkelrauschen können wir komplett eliminieren, indem wir Dunkelbilder mit gleicher Belichtungszeit und gleicher Empfindlichkeit bei gleicher Temperatur aufnehmen und so ein Dunkelbild vom Nutzbild subtrahieren. Das funktioniert, weil dieses Dunkelrauschen komplett zufällig verteilt ist.

Die Aufnahmesequenz für mein Beobachtungsobjekt

Ist das Beobachtungsobjekt scharfgestellt (Fokussieren) und schö in den gewünschten Ausschnitt eingestellt (Framing) wird man die eingentliche Fotoaufnahmen automatisiert durchfürhren wollen. Das geht beispielsweise so:

  • Ohne Computer im Felde: Intervallometer
  • Mit Computer im Felde: Software wie z.B. APT, BackyardEOS, Sequence generator Pro, MaximDL,…

Planung einer Aufnahmesequenz

Gesetzt den Fall, ich wollte für ein Beobachtungsobjekt eine Gesamtbelichtungszeit von 60 Minuten bei ISO 800 erreichen, so kann ich das durch Stacking ja auf verschiedenem Weg erreichem. beispielsweise:

  • 1 Aufnahme mit 60 Minuten (=3600 Sekunden)
  • 10 Aufnahmen mit je 6 Minuten (=360 Sekunden)
  • 100 Aufnahmen mit je 36 Sekunden
  • 720 Aufnahmen mit je 5 Sekunden
  • etc.

Was ist dann die richtige Wahl? Sicher muß ich berücksichtigen, was meine (oben ermittelte) maximale Belichtungszeit wegen Himmelshelligkeit ist.

  • Das ist in Hamburg-Eimsbüttel dann die 30 Sekunden bei ISO 800. Damit bräuchte ich also 3600:30=120 Einzelaufnahmen.
  • Das wäre in Handeloh dann 300 Sekunden bei ISO 800. Was 3600:300=12 Einzelaufnahmen bedeutet.

Nun gibt es noch zwei Dinge zu berücksichtigen:

  • Nachführung
  • Ausleserauschen

Das Ausleserauchen entseht bei jedem Einzelbild und soll proportional der Wurzel aus n, der Anzahl der Einzelbilder sein.
Link: http://www.astrotreff.de/topic.asp?TOPIC_ID=237847&whichpage=1#829591

Durchführung einer Aufnahmesequenz

Ist das Beobachtungsobjekt scharfgestellt (Fokussieren), schön in den gewünschten Ausschnitt eingestellt (Framing) und entschieden welche Aufnahmesequenz man machen möchte, dann wird man die eingentliche Fotoaufnahmen automatisiert durchführren wollen. Das geht beispielsweise so:

Nachbearbeitung der Bilder (Post Processing)

Sind die Aufnahmen im Kasten, beginnt die Bearbeitung im Computer:

 

Computer: Paintshop (aus Wiki)

Gehört zu: Bildbearbeitung

Bildbearbeitungs-Software: Paintshop (aus Wiki)

Das klassische Bildbearbeitungs-Programm für JPEG, GIF und Co. (vergl. auch: [[VektorGrafik]]).

Genutzte Funktionen:

  • * Konvertieren von Formaten, z.B. BMP -> JPG etc.
  • * Verkleinerungen
  • * Ausschnitte
  • * Drehungen
  • * Bearbeiten von [[ScreenShot]]s
  • * …

Andere Bildbearbeitungs-Software

  • Adobe Photoshop der grosse Bruder für die Profis…
  • “Imaging for Windows” (Bestandteil von [[Windows2000]]) der TIFF-Spezialist (vergl. auch: [[DokumentenManagement]])

== Installation ==
* Definitive Software Library ID: ”’PaintShop”’
* Name: Paint Shop Pro
* Version: 8.01
* Hersteller/Bezugsquelle: [http://www.jasc.com Jasc Software, Inc.] geschluckt von [[Corel]]
* Installations-Ordner: d:\Programme\Paintshop
* Systemvoraussetzungen: Windows

== Besonderheiten ==
* Kann EXIF-Tags ([[Metadaten]]) anzeigen und bearbeiten (Menü: Image > Image Information… > EXIF Information).

— Main.DietrichKracht – 17 Aug 2005
[[Category:DefinitiveSoftwareLibrary]]

Astrofotografie: Fernbedienung für die Canon EOS 600Da

Gehört zu: Astrofotografie
Gehört zu: Remote Control
Siehe auch: Canon EOS 600D

Astrofotografie mit der Canon EOS 600Da: Remote Shutter URS-7000

Um Astrofotografie mit meiner Digitalkamera Canon EOS 600Da machen zu können, benötige ich ja eine Lösung für:

  • Erschütterungsfreies Auslösen der Bilder
  • Langkeitbelichtung ( mehr als 30 Sekunden)

wie ich im Artikel Astrofotografie mit der Sony NEX-5R beschrieben habe.

Auch für meine neue Digitalkamera Canon EOS 600Da habe ich mir eine Remote Control-Lösung geleistet…..

Die Lösung: Fernauslöser Qumox Time lapse intervalometer URS-7000

Da mir das Canon-Original-Gerät zu teuer war, habe ich mir im August 2018 den “Qumox Time lapse intervalometer remote timer shutter” “Remote Shutter URS-7000” besorgt:

Contine reading

Astrofotografie: Software StarStaX

Gehört zu:  Astro-Software

Anwendungsbereich der Software StarStaX

Mit der kostenlosen Software StarStaX kann man Astrofotos übereinanderlegen (stacken), die eine Bewegung veranschaulichen sollen. Dabei können optional auch kleinere Lücken in der Bewegung gefüllt werden.

z.B. Strichspuren um den Himmelspol (Norden oder Süden)

z.B. Bewegung von Kleinplaneten o.ä.

Alternativen:  z.B. Deep Sky Stacker mit Maximum-Funktion

Bezugsquelle / Hersteller / Download

https://www.markus-enzweiler.de/software/software.html

Versionen / Betriebsystem:

Version 0.71 für Windows 7, Windows 10, Mac OS X und Linux   (Dezember 2018)

Anwendungsbeispiel

Schritt 1: Einzelaufnahmen laden

StarStaX-01.jpg

StarStaX: Einzel-Bilder oeffnen…

Schritt 2: Einstellungen: Blending Modus: Lücken füllen

StarStaX-02.jpg

StarStaX: Blending Modus

Schritt 3: “Berechnung starten”

StarStaX-03.jpg

StarStaX: Berechnung starten

Schritt 4: Das Ergebnis: “Speichern unter…”

StarStaX-04.jpg

StarStaX: Speichern unter…