Physik: Wellenfunktion – Schrödinger-Gleichung

Gehört zu: Quantenphysik
Siehe auch: Relativitätstheorie, Materiewellen, Lineare Algebra, Bra-Ket-Notation, Komplexe Zahlen

Stand: 19.02.2023  (Observable, Zeitabhängigkeit, klassische Welle, Materiewellen)

Die “klassische” Welle

Seit alters her beschreiben wir eine Welle durch eine Sinus- bzw. Cosinus-Funktion.

\( y = A \cdot \cos( \omega t + \Phi)  \)

Dabei ist A die Amplitude und Φ die Phasenverschiebung. Wobei wir ω zunächst nicht weiter betrachten.

Das Paar aus Amplitude und Phasenverschiebung kann man sich als eine komplexe Zahl in Polarkoordinaten vorstellen:

\( z = A \cdot e^{i \Phi} \)

Ganz allgemein kann man eine Wellenfunktion auch so schreiben:

\( \Large y(x,t) = A \cos{(kx – \omega t)} \)

 

Wobei  \( k = \frac{2 \pi}{\lambda} \) und \( \omega = 2 \pi f \)

Link: https://youtu.be/MzRCDLre1b4

Materiewellen

De Broglie und Einstein haben ja gezeigt, dass Teilchen (Photonen, Elektronen) auch Wellencharakter haben.

\( \lambda = \frac{h}{p} \) und \( f = \frac{E}{h} \)

Aber: Keine Wellenfunktion ohne Wellengleichung.

Die Wellenfunktion in der Quantenphysik

In der klassischen Mechanik (Newton etc.), wird ein Teilchen durch Ort und Implus beschrieben mit seinem sog. “Zustand”.
In der Quantenphysik macht das die Wellenfunktion Ψ. Sehr allgemein gesagt: Eine Wellenfunktion beschreibt das Zustand eines quantenmechanischen Teilchens. Was genau mit “Zustand” und “Wellenfunktion” gemeint ist, bleibt zunächst offen.

Wir werden später sehen, dass man damit die Aufenthaltswahrscheinlichkeit (und auch andere Größen, sog. Observable) von Teilchen berechnen (vorhersagen) und schließlich auch messen kann. Daher auch der Spruch “Shut up and calculate”, angeblich auf Richard Feynman (1918-1988) zurückgehen soll…

Der Wertebereich einer Wellenfunktion sind die Komplexen Zahlen. Der Definitionsbereich sind Ort und Zeit Ψ(r,t).
Der Wert ist also eine Komplexe Zahl, veranschaulicht in Polar-Koordinaten durch einen Vektor mit einer Länge auch “Amplitude” genannt, und einem Winkel, auch Phase genannt.

Für Komplexe Zahlen benutzt die Quantenmechanik gerne die sog. Exponential-Darstellung:

\(\displaystyle z ={r} \cdot e^{i \cdot \phi} \)

Damit kann man sich die Komplexe Zahl gut als Vektor einer bestimmten Länge (r auch genannt Amplitude) mit einem Drehwinkel (Φ auch genannt Phase) vorstellen.

Da der Wert der Wellenfunktion eine Komplexe Zahl ist, kann man sie nicht “direkt” beobachten; der Betrag der Wellenfunktion zum Quadrat ist aber eine nicht negative reelle Zahl und ist so der Beobachtung zugänglich…

Nach der sog. Kopenhagener Deutung (1927 Niels Bohr und Werner Heisenberg) ergibt sich aus der Wellenfunktion eines Teilchens eine Wahrscheinlichkeitsdichte ρ(x,t) für den Aufenthaltsort und zwar wird dabei der Betrag der Wellenfunktion zum Quadrat genommen:.

\( \rho(x,t) = | \Psi(x,t) |^2 \\\)

Aus dieser Wahrscheinlichkeitsdichte ρ ergibt sich der Erwartungswert für den Ort des Teilchens:

\(\Large \langle x \rangle = \int\limits_{-\infty}^{+\infty} x \, \rho(x) \, dx \\\)

Die Wahrscheinlichkeit dafür, dass das der Ort des Teilchens (x) im Intervall a <= x <= b liegt, wäre dann:

\( \Large \int_a^b | \Psi(x,t) |^2 \, dx \\\)

Da der Betrag einer komplexen Zahl z definiert ist über: \( | z |^2 = z \cdot z^* \) folgt daraus…

\(\Large \langle x \rangle = \int\limits_{-\infty}^{+\infty} \Psi^*(x,t) \, x \, \Psi(x,t)  \, dx \\\)

In dieser Form sehen wir schon einen ersten Operator (s.u.), der auf die Wellenfunktion wirkt und uns ein Observable (den Ort) als Erwartungswert bringt.

Operatoren und Observables

Bisher hatten wir den Zustand eines quantenphysikalischen System durch die Wellenfunktion Ψ beschrieben. Um zu beobachtbaren Größen zu kommen, benötigen wir sog. Operatoren, die auf die Wellenfunktion angewendet werden und dann beobachtbare Werte (“observables”) liefern; aber auch nur als Wahrscheinlichtkeitsverteilung (woraus ich Erwartungswerte etc. berechnen kann). Man schreibt solche Operatoren gerne als Buchstabensymbol mit einem Dach “^”. Observable sind z.B.:

  • Ort
  • Impuls
  • Kinetische Engergie
  • etc.

Solche Observables können natürlich auch “nur” Wahrscheinlichkeitsverteilungen mit Erwartungswert und Varianz sein.

Ein bestimmter Operator liefert dann zusammen mit der Wellenfunktion des quantenphysikalischen Systems die Wahrscheinlichkeitsverteilung dieser Observablen (in reelen Zahlen). Daraus ergibt sich beispielsweise der Erwartungswert einer Observablen:

\(\Large \langle \hat{Q} \rangle= \int\limits_{-\infty}^{+\infty} \Psi^* \hat{Q} \Psi dx \)

Beispiel 1: Die Observable “Ort”:

Operator:   \( \Large\hat{x} \Psi(x,t) = x \cdot \Psi(x,t) \)

Beispiel 2: Die Observable “Impuls”:

Operator: \( \Large\hat{p} \Psi(x,t) = -i \hbar \frac{\partial \Psi(x,t)}{\partial x} \)

Die Wellen-Gleichung (Schrödinger-Gleichung)

Youtube-Video: https://www.youtube.com/watch?v=hY2AdjYcTro&t=905s

Von Ernst Schroedinger (1887-1961) stammt die grundlegende Gleichung der Quantenmechanik. Sie beschreibt in Form einer partiellen Differentialgleichung die zeitliche und räumliche Veränderung des quantenmechanischen Zustands eines nichtrelativistischen Systems unter Einfluss eines Potentials. Wobei man sich so ein Potential als Einfluss eines Kraftfeldes vorstellen kann: \( F(r,t) = \frac{\partial \Psi(r,t)}{\partial t}\).

Die Lösungen dieser Wellengleichung heissen Wellenfunktionen.
Gegeben ist dabei eine Potentialfunktion V(r,t) und gesucht wird als Lösung die dazu passende Wellenfunktion \(\Psi(r,t)\):

\( \Large i \cdot \hbar \cdot \frac{\partial}{\partial t}\Psi(r,t) = – \frac{\hbar}{2m} \Delta \Psi(r,t)+ V(r,t) \Psi(r,t)= (- \frac{\hbar}{2m} \Delta + V(r,t)) \Psi(r,t) \\\)

Mit dem Laplace-Operator: \( \Delta f = div(grad f)) \) der so etwas wie die “zweite Ableitung” darstellt.
Benannt nach Pierre-Simon Laplace (1749-1827).

Gegeben ist dabei ein Potential V(r,t) und eine Masse m, gesucht wird eine Wellenfunktion \(\Psi(r,t) \).

Wenn es sich um ein “freies” Teilchen handelt, ist das Potential Null, d.h. es fällt in der Gleichung weg.
Wenn die Wellenfunktion nicht von der Zeit abhängt, sprechen wir von einer “stationären” Lösung. Die Wellenfunktion ist dann nicht mehr komplexwertig, sondern nimmt nur noch Werte aus den reelen Zahlen an.

Kompakt kann man die allgemeine Schrödiner-Gleichung schreiben als:

\( \Large i \cdot \hbar \cdot \dot{\Psi}(r,t) = \hat{H} \Psi(r,t) \\ \)

Mit dem geheimnisvollen Hamilton-Operator:

\(\hat{H} \Psi(t)= i \cdot \hbar \cdot \frac{\partial}{\partial t} \Psi(t) \).

Der nach William Rown Hamilton (1805-1865) benannte Hamilton-Operator.

Hintergrund dieser Schödinger-Gleichung ist der Satz von der Erhaltung der Energie.

Eine Wellenfunktion ist also die Lösung der oben stehenden Schrödinger-Gleichung (mit einer bestimmten Potentialfunktion V). Da die Schrödinger-Gleichung linear ist, sind auch beliebige Linearkombinationen von Lösungen wiederum Lösungen. So eine Linearkombination würde man Superposition nennen. Wenn beispielsweise die Wellenfunktionen ψ1 und ψ2 Lösungen einer Schrödinger-Gleichung sind, ist auch \( \Psi = a \cdot \Psi_1 + b \cdot \Psi_2 \\\) Lösung dieser Schrödinger-Gleichung.
Das heisst, dass alle Wellenfunktionen \( \Psi: \mathbb{R}^4 \to \mathbb{C} \), die Lösung einer Schrödinger-Gleichung sind, einen Vektorraum bilden. Wenn wir noch ein Skalarprodukt (inneres Produkt) von zwei Wellenfunktionen definieren, wir dieser Vertorraum zum Prä-Hilbertraum und möglicherweise zu einem echten Hilbertraum:

\( \Large \langle \Psi_1 | \Psi_2 \rangle = \int\limits_{-\infty}^{+\infty} \Psi_1^\ast(x) \Psi_2(x) dx \\ \)

Quantenphysiker verwenden auch gerne eine Bra-Ket-Notation (s.u. Diriac) und schreiben:

\( |\Psi\rangle = a \cdot |\Psi_1\rangle + b \cdot |\Psi_2\rangle \\ \)

Zunächst ist das eine formale mathematische Aussage.

Eine für Physiker interessante Eigenschaft von Wellenfunktionen ist, dass ein Zustand aus mehreren einfachen Zuständen zusammensetzen werden kann. Sind die Zustände mit “exklusiv oder” verbunden (z.B. alternative Wege), werden die Wellenfunktionen addiert (sog. Überlagerung, auch Superposition genannt), Sind die Zustände mit “und” verbunden (z.B. eine Sequenz), werden die Wellenfunktionen multipliziert.

Ein ganz einfaches Beispiel für Wellenfunktionen und Superposition ist die Teil-Reflektion. Die beiden Wellenfunktionen werden addiert, normiert und danach wird das Quadrat des Betrags genommen.

Abbildung 1: Eine schöne Einführung gibt das Youtube-Video von Alexander FufaeV (Youtube: https://youtu.be/SqQbsBOsaA8)

 

Vereinfachung: Eindimensionale Schrödinger-Gleichung

Wenn wir bestimmte Vereinfachungen vornehmen, wird die Schrödinger-Gleichung auch einfacher:

  • Die Wellenfunktion möge in einfachen Fällen nicht von der Zeit, sondern nur vom Ort abhängen ==> zeitunabhängige Schrödinger-Gleichung
  • Der Ort wird in einfachen Fällen nicht durch drei Raumkoordinaten (Ortsvektor r), sondern nur durch eine Dimension (x-Achse) beschrieben. ==> Eindimensionale Schrödinger-Gleichung

Als (vereinfachte) eindimensionale, zeitunabhängige Schödinger-Gleichung haben wir:

\( W \Psi = -\frac{\hbar^2}{2 m} \frac{d^2 \Psi}{dx^2} + W_{pot} \Psi\)

Die dreidimensionale Schrödinger-Gleichung

Mit dreidimesionalen Ortskoordinaten ergibt sich:

\( W \Psi = -\frac{\hbar^2}{2 m} \left( \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} \right) + W_{pot} \Psi\)

Zur kompakteren Schreibweise wird der Nabla-Operator (\( \nabla^2 \) wird auch Laplace-Operator genannt) eingeführt:

\( W \Psi = -\frac{\hbar^2}{2 m} \nabla^2 \Psi + W_{pot} \Psi\)

Noch kompakter kann man es mit dem sog. Hamilton-Operator schreiben:

\( W \Psi = -\frac{\hbar^2}{2 m} \left( \nabla^2 + W_{pot} \right) \Psi = \hat{H} \Psi \)

mit dem Hamilton-Operator:

\( \hat{H} = \nabla^2 + W_{pot} \)

Die Dirac-Notation und Hilbertraum

In der Quantenphysik arbeiten wir mit Vektorräumen V über den komplexen Zahlen \(\mathbb{C}\) die unendliche Dimension haben. So einen Vektor

\( \vec{v} \in V \)

scheibt man in der Quantenphysik gern als sog. Ket-Vektor:

\( |v\rangle \)

Dies ist Betandteil der sog. Bra-Ket-Notation von  Jean Paul Dirac (1902-1984), bei der man sogenannte Bra-Vektoren und Ket-Vektoren hat; zusammen gibt das das Wort “Braket”.

Um ein Skalarprodukt (inneres Produkt) zu definieren brauchen wir noch zu jedem Ket-Vektor einen sog. Bra-Vektor.

\( \langle v | := \left[ | v \rangle \right]^\dagger = {\left[ | v \rangle \right]^\ast}^T \)

Wobei v* der komplex konjugierte und vT der transponierte Vektor ist. Man nennt das Ganze “hermitisch konjugiert” und schreibt das mit dem hochgestellten Dagger-Symbol.

Bei einem reelen Vektorraum wäre der Bra-Vektor einfach nur der Zeilen-Vektor und der Ket-Vektor der normale Spalten-Vektor.

Damit können wir das Skalarprodukt der Vektoren v und w schreiben als
\( \langle v | w \rangle \)

Aber wie wird dieses Skalarprodukt berechnet (definiert)?

Dazu wählen wir eine Basis des Vektorraums: \( \{ |b_1\rangle, |b_2\rangle, |b_3\rangle,…\} \). Das geht immer, da jeder Vektorraum eine Basis hat und definieren das Skalarprodukt zunächt für diese Basisvektoren (damit wir eine orthonormale Basis bekommen):

\( \langle b_i | b_j \rangle := \delta_{ij} \)

Mit diesem Skalarprodukt ist die Basis per Konstruktion “orthonormal”.

Wenn wir nun unsere Vektoren v und w als Linearkombination dieser Basisvektoren schreiben:

\( | v \rangle  = \sum{v_i |  b_i \rangle} \)
und
\( | w\rangle = \sum{w_i | b_i \rangle} \)

definieren wir als Skalarprodukt der Vektoren v und w einfach:
\( \langle v | w \rangle := \sum{{v_i}^\ast \cdot w_i}  \)

Nun müssen wir der guten Ordnung halber noch zeigen, dass dieses allgemeine Skalarprodukt tatsächlich eine Erweiterung des für unsere Basisvektoren definierten Skalarprodukts ist. Wir bilden nehmen also zwei Basisvektoren |bi> und |bj> und bilden das Skalarprodukt nach der erweiterten Regel:

Die Komponenten von |bi> sind δij und die Komponenten von |bj> sind δji .
Und damit ist das Skalarprodukt nach erweiterter Definition:

\( \langle b_i |  b_j \rangle = \sum{{\delta_{ij}}^\ast  \delta_{ji} } = \delta_{ij} \)

Was übereinstimmt mit der ursprünglichen Definition des Skalarprodunkts zweier Basisvektoren.

===========================

Ein Hilbertraum ist ein Vektorraum von unendlicher Dimension, der ein Skalarprodukt hat (Prä-Hilbertraum) und vollständig ist.

In der Quantenphysik verwendet man ja immer Hilberträume über den komplexen Zahlen. Die Elemente eines solchen Hilbertraums sind also Vektoren, die wir als Zustände des betrachteten quantenphysikalischen System verstehen. Statt der Wellenfunktion, die den Zustand beschreibt haben wir jetzt einfach einen Vektor \(\vec{v}\), der den Zustand beschreibt.

Um mit dieser Wellenfunktion etwas “netter” umzugehen, hat Jean Paul Dirac (1902-1984) die nach ihm benannte Dirac-Notation erfunden, bei der man sogenannte Bra-Vektoren und Ket-Vektoren hat; zusammen gibt das das Wort “Braket”.

Zunächst schreibt man also ganz normale Vektoren als Ket-Vektoren. Also statt: \( \vec{w} \) schreibt man: \( |w\rangle \). Generell sind Ket-Vektoren “normale” Vektoren aus einem Vektorraum V über \(\mathbb{C}\). Man kann sie sich als “normale” Spaltenvektoren vorstellen.

Ein Bra-Vektor geschrieben \( \langle v|\) ist eine lineare Form \( v: V \to \mathbb{C}\). Bra-Vektoren kann man sich als Zeilenvektoren vorstellen.

So ein Bra \( \langle v|\) kann dann auf einen Ket \( | w \rangle\) angewendet werden, was man schreibt als: \( \langle v|w \rangle \in \mathbb{C} \).

Wenn man so eine lineare Form \( v: V \to \mathbb{C}\) als Zeilenvektor auffasst, dann ist <v | w> das Skalarprodukt (innere Produkt) der beiden Vektoren.

In einer Bra-Ket-Notation verwendet man innerhalb der Notation häufig Kurz-Symbole für den Vektor oder die Linearform. Beispielsweise statt:

\( a  |\Psi_1\rangle + b  |\Psi_2\rangle \\ \)

schreibt man einfach:

\( a  |1\rangle + b  |2\rangle \\ \)

Quanten-Verschränkung – Entanglement

Zwei Teilchen (Quanten-Teilchen) können “verschränkt” sein.

Zwei verschränkte Teilchen können entstehen, wenn ein ursprüngliches Teilchen in zwei Teilchen zerfällt. Wenn das ursprüngliche Teilchen eine Erhaltungseigenschaft hatte, muss diese in den entstandenen zwei Teilchen in Summe unverändert auftauchen.

Man sagt auch, dass die zwei Teilchen eine gemeinsame Wellenfunktion haben.

Manchmal hört man auch, dass ein Quanten-System aus zwei Teilchen als Wellenfunktion das Produkt der beiden einzelnen Wellenfunktionen hat.

 

Physik: Symmetrie

Gehört zu: Physik
Siehe auch: Lineare Algebra, Langrange-Formalismus

Der Begriff der Symmetrie in der Physik

Die Wikipedia sagt:

Unter einer Symmetrie versteht man in der Physik die Eigenschaft eines Systems, nach einer bestimmten Änderung (z.B. Koordinatentransformation) in einem unveränderten Zustand (also unverändert) zu bleiben. Eine solche Transformation (die den Zustand nicht ändert) wird Symmetrietransformation genannt.

Der Zustand eines mechanischen Systems mit den Koordinaten q1, q2,…,qn wird dabei beschrieben durch die Lagrangefunktion:

\( \mathcal{L}(q_1, q_2,..q_n, \dot{q_1}, \dot{q_2},…, \dot{q_n}, t) \\\)

Unterschieden werden:

  • diskrete Symmetrien (z. B. Spiegelsymmetrie), die nur eine endliche Anzahl an Symmetrieoperationen besitzen
  • kontinuierliche Symmetrien (z. B. Rotationssymmetrie), die eine unendliche Anzahl an Symmetrieoperationen besitzen.

Die mathematische Beschreibung von Symmetrien erfolgt durch die Gruppentheorie.

 

 

Physik: Quantenfeldtheorie QFT

Gehört zu: Physik
Siehe auch: Quantenmechanik, Elementarteilchenphysik, Heisenberg, Kommutator

Stand: 23.2.2022

Links zur QFT

Youtube Gaßner (41): https://www.youtube.com/watch?v=uJXBRlXyH44

Youtube Gaßner (42): https://www.youtube.com/watch?v=3faDjAYWDP4

Grundlagen der Quantenfeldtheorie

In der Quantenfeldtheorie soll die Spezielle Relativitätstheorie voll berücksichtigt werden (also die Lorentz-Invarianz), was ja in der Quantenmechnik (z.B. Schrödinger) noch nicht gegeben war.
Deswegen spricht man auch von der relativistischen Quantenfeldtheorie. Diese relativistische QFT ist damit die Vereinigung von Spezieller Relativitätstheorie und Quantenmechanik.

In der Quantenfeldtheorie haben wir lauter Felder. Für jedes Elementarteilchen haben wir ein im ganzen Universum omnipräsentes skalares Feld. Die Feldstärke ist dabei eine komplexe Zahl.
Beispielsweise haben wir ein Elektronenfeld:

\( \Psi_e (x,t) \\ \)

ein Photonenfeld etc. etc. pp.

Ein einzelnes Elementarteilchen ist dann eine elementare Anregung des zugeordneten Feldes. Was meint man hier mit “Anregung”?

Teilchen sind Anregungen von Feldern.

“Observables” sind beobachtbare physikalische Größen, wobei die von Parametern unterschieden werden.

Klassischerweise ist die Zeit ein Parameter: aber in der relativistischen QFT müssen auch die Raumkoordinaten zu Parametern werden, denn die Raumkoordinaten können ja auch nur indirekt “gemessen” werden. Ausserdem sollten Zeit und Raum gleichartig behandelt werden. Der Definitionsbereich solcher skalaren Felder ist also (x1,x2,x3,t) d.h. ein Vierervektor. (Mit einem Skalarprodukt hätten wir dann bald einen Hilbertraum.)

Das Messen (beobachten) einer “Observablen” geschieht durch Anwenden eines entsprechenden “Operators” auf das Skalarfeld. So ein Operator, soll immer “hermitsch” sein…

To be detailled …

Physik: Die Heisenbergsche Unschärferelation

Gehört zu: Physik
Siehe auch: Quantenphysik, Wellenfunktion

Die Heisenbergsche Unschärferelation

Werner Heisenberg (1901-1976) gilt als Begründer der mathematischen Quantenmechanik.

Berühmt geworden ist seine sog. Unschärferelation (uncertainty principle).  Das ist die Aussage der Quantenphysik, dass zwei komplementäre Eigenschaften eines Teilchens nicht gleichzeitig beliebig genau bestimmbar sind. Das bekannteste Beispiel für ein Paar solcher Eigenschaften sind Ort und Impuls.

\( \Delta x \cdot \Delta p \geq \frac{h}{4 \pi} \\ \)

Die heisenbergsche Unschärferelation hat nichts mit der Messgenauigkeit oder Beeinflussungen einer Messung durch Messvorrichtungen zu tun, sie ergibt sich aus dem Welle-Teilchen-Dualismus: Ein Teilchen hat danach sowohl Teilchen-Eigenschaften als auch Wellen-Eigenschaften. Die Wellennatur der Materie selbst führt zur Unbestimmtheit ihrer Teilcheneigenschaften.

Louis de Boglie (1892-1987) beschreibt den Welle-Teilchen-Dualismus ja durch sein berühmte Formel:

\( p = \frac{h}{\lambda} \\ \)

Die Messung des Impulses ist also gleichzusetzen mit der Messung der Wellenlänge. Wenn ich aber die Wellenlänge genau messe, ist der Ort der Welle sehr unbestimmt.

Komplementäre Eigenschaften im Sinne Heisenbergs sind z.B.

  • Ort und Impuls (Geschwindigkeit)
  • Energie und Zeit
  • xxx

Physik: Quantenmechanik – Materiewellen

Gehört zu: Physik
Siehe auch: Wellenfunktion, Quantenphysik , Quantenfeldtheorie, Potential
Benutzt: Videos von Youtube

Stand: 19.05.2022

Quantenmechanik: Materiewellen

In einem sog. “konservativen” Kraftfeld \( \vec{F}(r) \) können wir eine Potentielle Energie (bzw. ein Potential) definieren.  Der Begriff konservativ bedeutet dabei, dass der Energieerhaltungssatz gilt. Die entlang eines Weges im Kaftfeld geleistete Arbeit ist unabhängig von Weg und nur vom Anfangs- und Endpunkt des Weges abhängig. So kann eine skalares Feld, das Potential, definiert werden.

Ist das betrachtete Kraftfeld das Gravitationsfeld einer ruhenden Masse M, so ist das “Gravitationspotential” einfach:

\(  \Large V(r) = \space – G  \frac{M}{r}  \\ \)

Ist das betrachtete Kraftfeld das Elektrische Feld einer ruhenden elektrischen Ladung Q, so ist das “Coulomb-Potential” einfach:

\(  \Large V(r) = \space – \frac{1}{4\pi\epsilon_0}\frac{Q}{r}  \\ \)

Und umgekehrt ist das Kraftfeld \( \vec{F}(r) \) einfach der Gradient des Potentials. Also:

\( \vec{F}(r) = \enspace – k \enspace \nabla V(r) \)   (wobei k die Ladung bzw. Masse ist)

Materiewellen

Die Idee von Materiewellen entstand aus dem berühmten Doppelspalt-Experiment und dem von Louis de Boglie (1892-1987) postulierten Welle-Teilchen-Dualismus.

Die Ergebnisse des Doppelspalt-Experiments konnten dadurch erklärt werden, dass die Lichtteilchen (die Photonen) auch einen Wellencharakter haben. De Boglie hatte dann die kühne Idee, dass jedes Materieteilchen auch einen Wellencharakter haben muss;  z.B. auch Elektronen.

Aus der Planck-Formel:

\( E = h \nu \)

und der Einsteinschen Energie-Masse-Äquivalenz:

\( E = m c^2 \)

ergibt sich rein rechnerisch die berühmte De-Broglie-Wellenlänge eines Teilchens der Masse m bzw. einem Impuls von p bei einer Geschwindigkeit von c.:

\( \lambda = \frac{h}{p} \)

Einstein: Energie-Masse-Äquivalenz

Genaugenommen ist die aus der speziellen Relativitätstheorie bekannte Formel:

\( E = m c^2 \)

nur eine Näherung. Richtg müsste es heissen:

\( E^2 = m^2 c^4 + c^2 p^2 \)

So erfordert es die Einstein’sche Spezielle Relativitätstheorie.

Die Lösungen sind periodische ebene Wellen.

In der Quantenfeldtheorie (QFT). muss dann jedes Elementarteilchen diese Gleichung erfüllen; denn in der QFT berückrichtigen wir ja erstmals die Spezielle Reletivitätstheorie (was wir in der Quantenmechanik ja nicht taten.).

De Broglie Wellenlänge

Gemäß des Welle-Teilchen-Dualismus kann ein Teilchen mit dem Impuls p auch als Welle (Materiewelle) der De-Broglie-Wellenlänge

\( \lambda = \frac{h}{p} \)

aufgefasst werden.

Der Quantenmechaniker verwendet statt der Wellenlänge gern die sog. Wellenzahl:

\( k = \frac{2 \pi}{\lambda} \)

und statt des originären Planck’schen Wirkungsquantums h, gerne das sog. reduzierte Wirkungsquantum:

\( \hbar = \frac{h}{2 \pi} \)

Damit können wir den Impuls also schreiben als:

\( p = \hbar k \)

Die Wellenfunktion

Wenn demnach Materieteilchen auch Wellencharakter haben können, fragt man sich natürlich nach einer “klassischen” Wellenfunktion als Lösung einer Wellengleichung. Ernst Schroedinger fand später seine berühmte Schroedinger-Gleichung.

Physik: Quantenmechanik

Gehört zu: Physik
Siehe auch: Kosmologie, Teilchenphysik, Von Pythagoras bis Einstein, Lineare Algebra, Bra-Ket-Notation
Benötigt: WordPress Latex-Plugin, Fotos von Wikipedia

Stand: 08.04.2022   (h quer, Strahlungsspektrum Grafik)

Prinzipien der Quantenmechanik

Im Jahr 1900 formulierte Max Planck (1858-1947) sein Strahlungsgesetz und seine Quantenhypothese. Erst um 1925 entwickelte sich daraus eine Quantentheorie/Quantenmechanik, die die physikalische Systeme im Kleinen (z.B. Elementarteilchen, Atome,…). gut beschreibt. Wesentliche Punkte sind:

Verständnis der Quantenmechanik

Die Formalismen der Quantenmechanik dienen lediglich als Mittel zur Vorhersage der relativen Häufigkeit von Messergebnissen; diese werden als die einzigen Elemente der Realität angesehen.

Eine wirkliches “inneres” Verständnis der Quantenmechanik ist heute noch nicht vorhanden. Man kann zwar damit “rechnen”, weiss aber eigentlich nicht, was da “im Inneren” passiert. Link: https://en.wikipedia.org/wiki/Interpretations_of_quantum_mechanics

Zitat Richard Feynman (1918-1988): “I think I can safely say that nobody understands quantum mechanics.”
Link: https://www.researchgate.net/post/I_think_I_can_safely_say_that_nobody_understands_quantum_mechanics_R_Feynman_If_that_statement_is_true_how_can_we_know_if_QM_is_true

Abbildung 1: Flammarion Holzschnitt (Wikipedia: FlammarionWoodcut.jpg)

Flammarion Holzschnitt (Wikipedia)

Das Plancksche Strahlungsgesetz

Bestimmte phsikalische Größen kommen nur in ganzzahligen Vielfachen eines “kleinsten” Wertes vor. Das nennt man Quantelung. Der Ursprung dieser Idee “Quantenhypothese” soll das Plancksche Strahlungsgesetz sein.

Max Planck (1858-1947) beschäftigte sich mit die Strahlung eines sog. “Schwarzen Strahlers”. Speziell ging es ihm darum, wie sich in Abhängigkeit von der Temperatur die abgestrahlte Energie über die Wellenlängen hin verteilt. Man kannte damals schon die abgestrahlte Gesamt-Energie (Stefan-Boltzmann-Gesetz) und auch die Wellenlänge bei der das Maximum an Energie abgestrahlt wird (Wiensches Verschiebungsgesetz). Die früheren Formeln zur Verteilung über die Wellenlängen z.B. von Rayleigh-Jeans waren nur Teilerfolge, da sie in der sog. “Ultraviolettkatastrophe” endeten.

Max Planck konnte im Jahre 1900 ein Strahlungsgesetz entwickeln, das zeigt welche Strahlungsenergie ein “Schwarzer Strahler” einer bestimmten Temperatur (T) in Anhängigkeit von der Wellenlänge (oder Frequenz “ν”) der Strahlung aussendet. Plancks Strahlungsgesetz ist eigentlich nur eine Formel wie viele andere in der Physik auch, die endlich die Verteilung der Strahlungsenergie in Abhängigkeit von der Wellenlänge/Frequenz der Strahlung “richtig” darstellt.

\( \Large \frac{8 \cdot \pi  \cdot h \cdot \nu^3}{c^3} \cdot \frac{1}{e^\frac{h \nu}{k T} – 1}\)

Abbildung 2: Verteilung der Stahlungsenergie

Planksches Strahlungsspektrum (Wikipedia)

Wir sehen, dass je nach Temperatur, das Maxium der Strahlung bei einer anderen Wellenlänge (einer anderen Farbe) liegt.

Das nach Wilhelm Wien (1864-1928) benannte Wiensche Verschiebungsgesetz besagt, dass  ein Schwarzer Körper der absoluten Temperatur T die intensivste Strahlung bei einer Wellenlänge λmax abgibt, die umgekehrt proportional zu seiner Temperatur ist; als Formel:

\( \lambda_{max} = 2897,8 \mu m \cdot \frac{1}{T}\)   (T in Kelvin)

Aus der Farbe eines thermischen Strahlers kann so auf seine Temperatur zurückgeschlossen werden. Zum Beispiel teilt man die Sterne gemäß ihrer Farbe in Spektralklassen ein, denen eine Temperaturskala entspricht.

In Plancks Formel kommt eine vom ihm so genannte “Hilfskonstante” h vor, die später als das legendäre Plancksche Wirkungsquantum interpretiert wurde. Die physikalische Größe “Wirkung” bezeichnet eine Energie (Joule), die in einer bestimmten Zeit  (Sekunden) etwas “bewirkt”. Die Planck’sch Hilfskonstante ist:

h = 6,626069 ⋅ 10-34 J ⋅ s

h = 6,626 069 10 34 J s

Dieses Youtube-Video von Rene Matzdorf  an der Uni Kassel versucht, die Herleitung der Planck’schen Formel (Strahlungsgesetz) über die Strahlung den schwarzen Körpern, sog. Hohlraumstrahlung und darin existierenden stehenden Wellen (Hohlraum-Resonator) herzuleiten: https://www.youtube.com/watch?v=mC9QJ4YFIwc
Der Zusammenhang ist für mich nicht so leicht nachvollziehbar. Aber man muss das Placksche Schrahlungsgesetz ja überhaupt nicht “herleiten” – hat Newton ja auch nicht gemacht.

In physikalischen Formeln wird auch häufig ein sog. “Reduziertes Plancksches Wirkungsquantum” mit dem Symbol “h quer” verwendet. Es ist definiert als: \( \hbar = \frac{h}{2\pi} \)

Quelle: http://www.quantenwelt.de/quantenmechanik/historisch/schwarze_korper.html

Plancks Quantenhypothese

Häufig hört man, dass aus Plancks Formel angeblich die Aussendung der Energie in sog. Quanten (ganzzahlige Vielfache  von h mal ν) folgt. Das kann man aber aus der Formel selbst überhaupt nicht ableiten. Vielmehr ist es so, dass Planck (angeblich) auf diese Formel kam indem er elektromagnetische Strahlung (das Licht) als Teilchen modellierte, die sich wie ein Gas verhalten sollten. Die unterschiedlichen Geschwindigkeiten solcher Teilchen modelliert Planck als unterschiedliche Wellenlängen der Strahlung…

Ein solches Teilchen sollte eine von der Frequenz seiner Strahlung abhängige Energie haben. Das ist die zentrale Formel (Quantenhypothese) von Planck:   \(E = h \cdot \nu \)

Die Formeln für das Strahlungsgesetz hat Planck zunächst durch Probieren herausgefunden und dann später eine Herleitung auf Basis seiner Quantenhypothese gefunden. Planck glaubte jedoch damals noch nicht an eine allgemeine Quantelung, diese war nur eine Annahme, um die Theorie in Einklang mit den Messungen bringen zu können.

Später versuchte Planck sein Strahlungsgesetz nicht durch eine “Hohlraumstrahlung” sonden durch Atome als Oszillator zu interpretieen.

Der Photoelektrische Effekt

Einfacher für mich ist die Erklärung mit dem photoelektrischen Effekt. Einstein (1879-1955) benutzte gequantelte Photonen mit der Energie \(E = h \cdot \nu \), um den photoelektrischen Effekt zu erklären.

Nach Einstein nimmt die Intensität von Licht dadurch zu, dass mehr Photonen mit der gleichen Energie pro Zeiteinheit abgestrahlt werden. Der photoelektrische Effekt wirkt aber erst dann, wenn das einzelne Photon die erforderliche Energie hat, um Elektronen aus dem Basismaterial herauszulösen. Es ist also nicht eine bestimmte hohe Intensität des Lichts erforderlich, sondern eine bestimmte hohe Frequenz, um die Auslösearbeit zu leisten…

Das Bohrsche Atommodell

Der Erfolg dieser Theorien brachte Niels Bohr (1885-1962) dazu, so eine Quantelung auch für die Enegieniveaus der Elektronen-Orbitale in seinem Atommodell anzunehmen.

Man stellt sich dabei so ein Orbital als eine stehende Welle (s. Schrödinger-Gleichung) vor.

Quantelung

Welche physikalischen Größen sollen den nun “gequantelt” sein; d.h. nur in ganzzahligen Vielfachen einer (kleinen) Elementargröße (=Quanten) vorkommen? Kommt jede physikalische Größe in “Quanten” oder nur bestimmte?

Ich habe in Heidelberg gehört, dass die Quantelung nur für physikalische Größen zutrifft, die konjugiert zu einer periodischen Größe sind. Was immer das heissen mag…

Das Plancksche Wirkungsquantum

Das Plancksche Wirkungsquantum als Naturkonstante wird heute zur Definition der SI-Einheit Kilogramm benutzt.

Im Zusammenhang mit dem Wirkungsquantum spricht man auch von einer einer “Planck-Länge”, einer “Planck-Zeit” etc., denn Planck hatte herausgefunden, dass man aus den Naturkonstanten G, c, h eine ganze Schaar von Einheiten ableiten kann (durch Probieren und Beachten der Dimensionen):

Planck-Länge:

\(  \Large l_p = \sqrt{\frac{\hbar \cdot G}{c^3}} = 6.616 10^{-35}m\\ \)

Was diese Planck-Länge bedeutet, ist zunächst völlig offen. Es ist “nur” eine ausprobierte Formel, die als Dimension eine Länge hat.

Im Zusammenhang mit der Heisenbergschen Unschärferelation versucht man, diesen Planck-Größen eine physikalische Bedeutung beizumessen.