Physik: Kernfusion

Gehört zu: Physik
Siehe auch: Sonne, Atomphysik

Durch die Verschmelzung (Fusion) leicherer Atomkerne (z.B. Wasserstoff) zu schwereren Atomkernen (z.B. Helium) kann Energie gewonnen werden, da ein kleiner Teil der  Masse in Energie umgewandelt wird; nach der berühmten Formel von Einstein:

\( E = m \cdot c^2 \)

Durch Fusion wird Energie gewonnen, solange die Bindungsenegie pro Nukleon mit zunehmender Nukleonenzahl im Atomkern größer wird; also bis zum Eisen (Fe), wie die Grafik zeigt. Mit schwereren Atomkernen kann man dann Energie nur durch Spaltung gewinnen.

Im Inneren von Sternen finden solche Kernfusionsprozesse statt. Man spricht gerne auch vom “Brennen”; damit ist aber immer eine Kernfusion gemeint.

https://upload.wikimedia.org/wikipedia/commons/b/bc/Binding_energy_curve_-_common_isotopes-de.svg

Mittlere Bindungsenergie pro Nukleon in Abhänggkeit von der Größe des Atomkerns (Copyright Wikimedia)

Damit es zur Verschmelzung von Atomkernen kommt, muss die Abstoßungskraft der elektrisch ja gleichartig (positiv) geladenen Kerne überwunden werden. Dazu benötigt das Plasma eine hohe Temperatur und einen hohen Druck. Die Fusion von Wasserstoff zu Helium “zündet”, wenn im Inneren des Sterns die notwendige Temperatur von ca. 10 Millionen Kelvin erreicht sind.

Bei entsprechend höheren Temperaturen “zünden” auch Fusionsprozesse mit anderen Elementen wie die nachfolgende Tabelle zeigt. Dort ist ein Stern mit 40-facher Sonnenmasse zugrunde gelegt.

Ausgangsmaterial Prozesse Endprodukte “Asche” Temperatur
Mio Kelvin
Min. Masse Dauer bei 40 Sonnenmassen
Wasserstoff p-p-Prozess Helium 10-40 0,08 10 Mio Jahre
Helium 3 Alpha Kohlenstoff 100-190 0,25 1 Mio Jahre
Kohlenstoff Sauerstoff, Neon, Magnesium 500-740 4,0 10.000 Jahre
Neon Sauerstoff, Magnesium 1.600 10 Jahre
Sauerstoff Silizium 2.100 5 Jahre
Silizium Eisen 3.400 1 Woche

Wenn der Wasserstoff vollständig zu Helium fusioniert wurde, fällt diese Energiequelle weg. Der Stern kontrahiert etwas und die Temperatur im Inneren steigt an. Wenn die Temperatur im Inneren ausreicht, kann die nächste Fusionstufe (hier: Helium) “zünden”. Durch die Helium-Fusion steigt der innere Strahlungsdruck wieder stark an und der Stern dehnt sich aus zum sog. “Riesen”.

Wenn die Temperatur nicht ausreicht, um weitere Kernfusionen zu “zünden”, kann der Stern keine Energie mehr erzeugen und kollabiert zum Weissen Zwerg, der nur noch langsam seine vorhandene Wärmeenegie abgibt…

Bei unserer Sonne endet diese Serie mit dem sog. Heliumbrennen. Der Kohlenstoffkern kann nicht mehr weiter “zünden”, da die erforderliche Temperatur nicht erreicht wird.