Physik: Kernfusion – Nukleosynthese

Gehört zu: Physik
Siehe auch: Sonne, Atomphysik, Weisser Zwerg, Kosmologie, Hertzsprung-Russel-Diagramm
Benutzt: WordPress-Plugin Latex, Bilder von Wikimedia, Bilder von Flickr

Stand: 13.04.2022 (Hertzsprung-Russel-Diagramm)

Kernfusion – Nukleosynthese

Durch die Verschmelzung (Fusion) leicherer Atomkerne (z.B. Wasserstoff) zu schwereren Atomkernen (z.B. Helium) kann Energie gewonnen werden, da ein kleiner Teil der  Masse in Energie umgewandelt wird; nach der berühmten Formel von Einstein:

\( E = m \cdot c^2 \)

Damit solche Prozesse ablaufen können, sind ziemlich hohe Temperaturen bzw. Drücke erforderlich. Solche Bedingungen herrschen regelmäßg in Inneren von Sternen (Stellare Nukleosynthese) und bei Supernova-Explosionen, sollen aber auch kurz nach dem Urknall und noch vor der Bildung von Sternen geherrscht haben. Letzteres nennt man die Primordiale Nukleosynthese.

Durch Fusion wird Energie gewonnen, solange die Bindungsenegie pro Nukleon mit zunehmender Nukleonenzahl im Atomkern größer wird; also bis zum Eisen (Fe), wie die Grafik zeigt. Mit schwereren Atomkernen kann man dann Energie nur durch Spaltung gewinnen.

Im Inneren von Sternen finden solche Kernfusionsprozesse statt. Man spricht gerne auch vom “Brennen”; damit ist aber immer eine Kernfusion gemeint.

Abbildung 1: Bindungsenegie pro Nukleon (Wikimedia: Binding_energy_curve_-_common_isotopes-de.svg)

https://upload.wikimedia.org/wikipedia/commons/b/bc/Binding_energy_curve_-_common_isotopes-de.svg

Mittlere Bindungsenergie pro Nukleon in Abhänggkeit von der Größe des Atomkerns (Copyright Wikimedia)

Primordiale Nukleosynthese

Nach dem sog. Standardmodell der Kosmologie haben sich kurz nach dem Urknall aus einem Quark-Gluon-Plasma zuerst Protonen und Neutronen in gleicher Anzahl gebildet.

Freie Neutronen zerfallen im sog. Beta-Zerfall in ein Proton und ein Elektron mit einer Halbwertszeit von ca. 10 Minuten:

\( n \to p + e^- + \bar{\nu_e} \)

Das Universum dehnt sich ja aus und kühlt dabei immer weiter ab (adiabatisch). Anfangs reicht die Temperatur für den Ablauf der Reaktionsketten, die aus Wasserstoffkernen (Protonen) Heliumkerne (4He) bilden. Diese Reaktionsketten laufen so lange, bis das Plasma genügend abgekühlt ist.

Nach dem Standardmodell der Kosmologie dauerte diese Phase ca. von 100 bis 1000 Sekunden nach dem Urknall. Beim Endzustand der Primordialen Nukleosynthese errechnet man die Anteile von Wasserstoffkernen bzw. Heliumkernen von 75% bzw. 25% (Massenanteile).

Kernfusion im Inneren von Sternen (Stellare Nukleosynthese)

Damit es zur Verschmelzung von Atomkernen kommt, muss die Abstoßungskraft der elektrisch ja gleichartig (positiv) geladenen Kerne überwunden werden. Dazu benötigt das Plasma eine hohe Temperatur und einen hohen Druck. Die Fusion von Wasserstoff zu Helium “zündet”, wenn im Inneren des Sterns die notwendige Temperatur von ca. 10 Millionen Kelvin erreicht sind.

Bei entsprechend höheren Temperaturen “zünden” auch Fusionsprozesse mit anderen Elementen wie die nachfolgende Tabelle zeigt. Dort ist ein Stern mit 40-facher Sonnenmasse zugrunde gelegt.

Tabelle 1: Kernfusionsprozesse in Sternen

Ausgangsmaterial Prozesse Endprodukte “Asche” Temperatur
Mio Kelvin
Min. Masse Dauer bei 40 Sonnenmassen
Wasserstoff p-p-Prozess Helium 10-40 0,08 10 Mio Jahre
Helium 3 Alpha Kohlenstoff 100-190 0,25 1 Mio Jahre
Kohlenstoff Sauerstoff, Neon, Magnesium 500-740 4,0 10.000 Jahre
Neon Sauerstoff, Magnesium 1.600 10 Jahre
Sauerstoff Silizium 2.100 5 Jahre
Silizium Eisen 3.400 1 Woche

Wenn der Wasserstoff vollständig zu Helium fusioniert wurde, fällt diese Energiequelle weg. Der Stern kontrahiert etwas und die Temperatur im Inneren steigt an. Wenn die Temperatur im Inneren ausreicht, kann die nächste Fusionstufe (hier: Helium) “zünden”. Durch die Helium-Fusion steigt der innere Strahlungsdruck wieder stark an und der Stern dehnt sich aus zum sog. “Riesen”.

Wenn die Temperatur nicht ausreicht, um weitere Kernfusionen zu “zünden”, kann der Stern keine Energie mehr erzeugen und kollabiert zum Weissen Zwerg, der nur noch langsam seine vorhandene Wärmeenegie abgibt…

Bei unserer Sonne endet diese Serie mit dem sog. Heliumbrennen im Kern. Der Kohlenstoffkern kann nicht mehr weiter “zünden”, da die erforderliche Temperatur nicht erreicht wird.

Bei massereichen Sternen wird durch die Kontraktion die Temperatur soweit erhöht, das dann das Helium ein einer Schale um den Kern “züdet”, also dort Helium zu Kohlenstoff fusioniert, wo es heiss genug ist. Wir haben dann ein typisches Helium-Schalenbrennen.

Abbildung 2: Schalenbrennen in einem AGB-Stern (Flickr: agb-schematic.jpg)

agb-schematic.jpg

Copyright: Falk Herwig, University of Victoria http://www.astro.uvic.ca/~fherwig/sevol.html

http://www.astro.uvic.ca/~fherwig/sevol.html

Temperatur und kinetische Energie

Gemäß SI-System ist die thermodynamische Temperatur (T) durch die mittlere thermische Enegie (E) eines freien Teilchens definiert:

\( E_{therm} = k_B \cdot T \\\)

Wobei die Bolzmankonstante festgelegt wird zu:

kB = 1,38064852 10-23 J/K

bzw. in eV:

kB = 8,61733262 10-5 eV/K

Bei einem punkförmigen Teilchen verteilt sich die mittlere kinetische Engergie zu gleichen Antelen auf seine 3 Freiheitsgrade:

\( \langle E_{kin} \rangle = \frac{3}{2} \cdot E_{therm} = \frac{3}{2} \cdot k_B \cdot T \\\)

Für die Entwicklungs des Universums vom Urknall bis zur Kosmischen Hintergrundstrahlung bedeutet dies:

(Quelle: https://de.wikipedia.org/wiki/Primordiale_Nukleosynthese)

Tabelle 2: Abkühlung des frühen Universums

Zeit nach Urknall Temperatur Kinetische Energie Bemerkung
1/100 Sekunde 10 Milliarden K 1,3 MeV Quarks kondensieren zu Protonen und Neutronen 1:1
1 Sekunde 600 Millionen K 80 keV erstmals können sich (instabile) Deuteronen bilden
60 Sekunden 60 Millionen K 8 keV stabile Bildung von Deuteronen
105215 K 13,6 eV Waserstoffatome vollständig ionisiert (Grundzustand)
380000 Jahre 3000 K 0,4 eV Rekombination: kosmische Hintergrundstrahlung entsteht