Physik: Einstein ART Allgemeine Relativitätstheorie

Gehört zu: Physik
Siehe auch: Relativitätstheorie, Kosmologie, Expansion des Universums, Metrik-Tensor
Benutzt: Latex-Plugin

Stand: 03.01.2023

Einsteins Allgemeine Relativitätstheorie (ART)

In Einsteins Allgemeiner Relativitätstheorie (ART) geht es um die Gravitation, die ja schon von Newton beschrieben wurde.

Ein Ausgangspunkt für die ART ist das sog. Äquivalenzprinzip. Es besagt, dass ein gleichmäßig beschleunigtes Bezugssystem nicht von einem Bezugssystem mit einem homogenen Gravitatiosfeld unterschieden werden kann. Formelmäßig ist dann die sog. “träge Masse” identisch mit der “schweren Masse”….

Quelle: Youtube Video https://youtu.be/hU0Mcd2-XH4

Bekannt sind seine berühmten sog. Feldgleichungen:

\( \Large R_{\mu \nu} – \frac{1}{2} R g_{\mu \nu} + \Lambda g_{\mu \nu} = \frac{8 \pi G}{c^4} T_{\mu \nu} \\\)

Die obige Gleichung kann so kompakt hingeschrieben werden, weil sog. Tensoren verwendet werden.

Bei gegebenem Energie-Impuls-Tensor (auf der rechten Seite) beschreibt die linke Seite der Gleichung die dadurch verursachte Geometrie der Raumzeit (d.h. die Krümmung der Raumzeit).

Der Metrik-Tensor ist \( g_{\mu \nu} \). Gemäß Konvention laufen die Indices μ und ν = 0,1, 2, 3 wobei 0 die Zeit-Koordinate bedeutet.

Den Metrik-Tensor habe ich wohl verstanden und im Einzelnen in einem separaten Blog-Post beschrieben.

\( T_{\mu \nu} \\\) ist der sog. Energie-Impuls-Tensor, den man im Vakuum einfach auf Null setzt (sog. Vakuumlösungen).

Energie und Impuls werden gemäß der speziellen Relativitätstheorie zu einem Vierertensor zusammengefasst, dem Energie-Impuls-Tensor,

Der Engergie-Impuls-Tensor soll Massendichte, Energiedichte, Druck und ähnliches beschreiben. Dieser Tensor ist für die Entwicklung des Universums wichtig; siehe: Expansion des Universums.

Λ (großes Lambda) ist die sog. kosmologische Konstante, die ursprünglich (1915) nicht in der Gleichung stand, sondern später von Einstein eingeführt wurde, um dem gravitativen Kollaps des Universums entgegen zu wirken.

\( R_{\mu \nu} \) ist der sog. Ricci-Tensor – keine Ahnung, was das sein soll.

Manchmal sieht mit die Einsteinschen Feldgleichungen auch in einer etwas anderen Form:

\( \Large G_{\mu \nu}  = \frac{8 \pi G}{c^4} T_{\mu \nu} \\\)

Mit dem sog. Einstein-Tensor:

\( \Large G_ {\mu \nu}  = R_{\mu \nu} – \frac{1}{2} R g_{\mu \nu} + \Lambda g_{\mu \nu}  \\\)

Was man immer wieder hört, ist dass nach Einstein große Massen die Raumzeit krümmen. Wobei die Krümmung der vierdimensionalen Raumzeit nicht in eine weitere Dimension (die fünfte) geht, sondern die Raumzeit “in sich” gekrümmt wird, soll wohl heissen, dass nicht mehr die Euklidische Metrik gilt, sondern eine andere Metrik, eine “Nichteuklidische Metrik“.

Siehe hierzu: Krümmung der Raumzeit

 

Physik: Quantenmechanik – Materiewellen

Gehört zu: Physik
Siehe auch: Wellenfunktion, Quantenphysik , Quantenfeldtheorie, Potential
Benutzt: Videos von Youtube

Stand: 19.05.2022

Quantenmechanik: Materiewellen

In einem sog. “konservativen” Kraftfeld \( \vec{F}(r) \) können wir eine Potentielle Energie (bzw. ein Potential) definieren.  Der Begriff konservativ bedeutet dabei, dass der Energieerhaltungssatz gilt. Die entlang eines Weges im Kaftfeld geleistete Arbeit ist unabhängig von Weg und nur vom Anfangs- und Endpunkt des Weges abhängig. So kann eine skalares Feld, das Potential, definiert werden.

Ist das betrachtete Kraftfeld das Gravitationsfeld einer ruhenden Masse M, so ist das “Gravitationspotential” einfach:

\(  \Large V(r) = \space – G  \frac{M}{r}  \\ \)

Ist das betrachtete Kraftfeld das Elektrische Feld einer ruhenden elektrischen Ladung Q, so ist das “Coulomb-Potential” einfach:

\(  \Large V(r) = \space – \frac{1}{4\pi\epsilon_0}\frac{Q}{r}  \\ \)

Und umgekehrt ist das Kraftfeld \( \vec{F}(r) \) einfach der Gradient des Potentials. Also:

\( \vec{F}(r) = \enspace – k \enspace \nabla V(r) \)   (wobei k die Ladung bzw. Masse ist)

Materiewellen

Die Idee von Materiewellen entstand aus dem berühmten Doppelspalt-Experiment und dem von Louis de Broglie (1892-1987) postulierten Welle-Teilchen-Dualismus.

Die Ergebnisse des Doppelspalt-Experiments konnten dadurch erklärt werden, dass die Lichtteilchen (die Photonen) auch einen Wellencharakter haben. De Boglie hatte dann die kühne Idee, dass jedes Materieteilchen auch einen Wellencharakter haben muss;  z.B. auch Elektronen.

Aus der Planck-Formel:

\( E = h \nu \)

und der Einsteinschen Energie-Masse-Äquivalenz:

\( E = m c^2 \)

ergibt sich rein rechnerisch die berühmte De-Broglie-Wellenlänge eines Teilchens der Masse m bzw. einem Impuls von p bei einer Geschwindigkeit von c.:

\( \lambda = \frac{h}{p} \)

Einstein: Energie-Masse-Äquivalenz

Genaugenommen ist die aus der speziellen Relativitätstheorie bekannte Formel:

\( E = m c^2 \)

nur eine Näherung. Richtg müsste es heissen:

\( E^2 = m^2 c^4 + c^2 p^2 \)

So erfordert es die Einstein’sche Spezielle Relativitätstheorie.

Die Lösungen sind periodische ebene Wellen.

In der Quantenfeldtheorie (QFT). muss dann jedes Elementarteilchen diese Gleichung erfüllen; denn in der QFT berückrichtigen wir ja erstmals die Spezielle Reletivitätstheorie (was wir in der Quantenmechanik ja nicht taten.).

De Broglie Wellenlänge

Gemäß des Welle-Teilchen-Dualismus kann ein Teilchen mit dem Impuls p auch als Welle (Materiewelle) der De-Broglie-Wellenlänge

\( \lambda = \frac{h}{p} \)

aufgefasst werden.

Der Quantenmechaniker verwendet statt der Wellenlänge gern die sog. Wellenzahl:

\( k = \frac{2 \pi}{\lambda} \)

und statt des originären Planck’schen Wirkungsquantums h, gerne das sog. reduzierte Wirkungsquantum:

\( \hbar = \frac{h}{2 \pi} \)

Damit können wir den Impuls also schreiben als:

\( p = \hbar k \)

Die Wellenfunktion

Wenn demnach Materieteilchen auch Wellencharakter haben können, fragt man sich natürlich nach einer “klassischen” Wellenfunktion als Lösung einer Wellengleichung. Ernst Schroedinger fand später seine berühmte Schroedinger-Gleichung.