Astrofotografie für Einsteiger: Auffinden von Beobachtungsobjekten – Pointing – Suchen – Goto

Das Problem: Wie stelle ich das Beobachtungsobjekt in das Gesichtsfeld ein?

Das ist manchmal garnicht so einfach. Als ich das erste Mal die Große Magelansche Wolke fotografieren wollte, hatte ich das Problem, das ich das Biest mit bloßem Auge nur sehr schwach sehen konnte und die Ausrichtung der Kamera (Sony NEX-5R auf Kugelkopf) war mühsam.

Bei der Astrofotografie bedarf es zweier Fähigkeiten für einen Regelkreis zur Positionierung:

  • Erkennen wie mittig das (evtl. kaum sichtbare) Beobachtungsojekt im Gesichtsfeld “sitzt”?   (Feststellen Differenz Soll-Ist)
  • Verstellen der Ausrichtung der Kamera / des Teleskops  (Verändern Ist in Richtung Soll)

Die Ausrichtung auf ein Beobachtungsobjekt wird auch engl. gern “Pointing” genannt. Neben dem manuellen ggf. durch Technik unterstützem Pointing gibt es das vollautomatische computergestützte Pointing, was auch gerne “Goto” genannt wird.

Wo genau steht das Beobachtungsobjekt?

Aus der lokalen Sternzeit kann man leicht die Position eines Objekts am Himmel berechnen als Deklination und Stundenwinkel und dann mit einer richtig aufgestellten parallaktischen Montierung auf das Objekt fahren. Wenn man es ganz genau machen will, muss man allerdings ein paar “Kleinigkeiten” zusätzlich berücksichtigen:

  • Präzesion (50″ / Jahr)  –> J2000 vs. JNow
  • Nutation
  • Jährliche Abberation
  • Eigenbewegung des Objekts
  • Geografische Position des Beobachters
  • Atmosphäre

Genauigkeit des Pointing

Die Genauigkeit einer Pointing-Methode wird als “mittlere” Abweichung der Teleskop-Position von der Objekt-Position angegeben, wobei “mittlere” gern als “RMS” (Root Mean Square, Wurzel aus dem Mittelwert der Abweichungsquadrate) bezeichnet wird; d.h. 60% der Messungen leigen unterhalb von RMS.  Im Amateurbereich wird eine RMS von 30″ als hervorragend angesehen.

Erforderliche Genauigkeit – Gesichtsfeld

Praktisch hängt die Genauigkeit mit der auf das Beobachtungsobjekt positioniert werden soll wesentlich von der Größe des Gesichtsfelds des verwendeten Objektivs  ab. Eine Genauigkeit von 20% des Gesichtsfeldes würde ich für gut halten, 10% wären ein sehr guter Wert.

  • LidlScope 700mm mit APS-C-Sensor: 1,9 x 1,3 Grad   –> sehr gute Ausrichtung: 11′
  • Russentonne 500mm mit APS-C-Sensor:   2,7 x 1,8 Grad  –> sehr gute Ausrichtung: 16′
  • Beroflex 300mm mit APS-C Sensor: 4,5 x 3,0 Grad –> sehr gute Ausrichtung: 27′
  • Takumar 135mm mit APS-C-Sensor:  9,9 x 6,6 Grad –> sehr gute Ausrichtung: 59′
  • Olympus G.ZUIKO 50mm mit APS-C-Sensor: 26,6 x 17,7 Grad  –> Objekt LMC  –> sehr gute Ausrichtung:  2,7°
  • Vivitar 24mm mit APS-C-Sensor:  52,2 x 36,0 Grad   –> Objekte Polarlichter, Milchstraße  –>sehr gute Ausrichtung: 5,2°

 

Techniken zur Positionierung auf das Beobachtungsobjekt

Technik #1: Live-View mit höherer ISO-Einstellung

Beispiel “Großen Magellanschen Wolke” in Trafalgar

Mit einer höheren ISO-Einstellung wird das etwas schwache Objekt dann im Live View gut sichtbar.

Es bleibt das Problem des feinen Verstellens der Kamera-Richtung. Auf einem gewöhnlichen Kugelkopf ist das fummelig, weil man nicht in einer Richtung hin und her stellen kann – und damit leider nicht Fehler leicht korrigieren kann.
Besser wäre ein Kopf mit dem ich in zwei festen Achten fein hin und her stellen kann.

Technik #2: Leuchtpunktsucher

Ein Leuchtpunktsucher hat keine Vergrößerung, sondern zeigt beim Durchblicken 1:1 den Himmel, lediglich in der Mitte des Gesichtsfeldes ist ein Leuchtpunkjt oder ein leuchtendes Kreus eingeblendet. Das hilft ganz gut  bei der Positionierung auf ein Beobachtungsobjekt, das man gut sehen kann. Wenn man das Beobachtungsobjekt nicht sehen kann, aber sich die Position in Bezug auf die sichtbaren Sterne eingeprägt, hat ist es auch eine gewisse Hilfe.

Technik #3: Elektronischer Sucher / Digitaler Sucher

Als elektronischen Sucher habe ich mir eine USB-Kamera “Altair GP-CAM” gekauft und dazu ein Objektiv mit f=12mm. Das ergibt ein Sucher-Gesichtsfeld von 23° x 17°. das ich im Live View per Software (z.B. SharpCap) auf meinem Window-Computer betrachten kann. Bei ShapCap kann ich auch ein Fadenkreuz einblenden. Zu perfekten Glück fehlen dann noch:

  • Der Montagekopf muss eine feinfühlige Richtungsverstellung in zwei festen Achsen ermöglichen
  • Die Aufnahmeoptik muss parallel zum elektronischen Sucher ausgerichtet sein

Technik #4: SmartEQ Pro Goto-Funktion

Eine gut funktionierende Goto-Montierung ersetzt den Sucher. Man benötigt keinen Sucher mehr und kann ihn verkaufen :-). Deshalb habe ich mir die iOptron SmartEQ Pro gekauft. Allerdings ist jedesmal ein 1-2-3-Star Alignment erforderlich, wo man auch Sterne in das Zentrum des Gesichtsfelds stellen muss. Dafür benötigt man ggf. doch einen Sucher.

Beispiele zur Positionierung auf Beobachtungsobjekte

Olympus G.ZUIKO f=50mm mit Sony NEX-5R z.B. LMC

xxxxxx

Objekte finden mit Russentonne f=500mm und Sony NEX-5R

Das Gesichtsfeld der Russentonne ist klein (1,8 x 2,7 Grad). Es wird schwierig werden, damit gut auf ein Beobachtungobjekt zu positionieren. Ich habe ja meinen Rotpunkt-Sucher, der auf dem Blitzschuhschlitten der Kamera sitzt. Das passt auch mit der Russentonne.

Mit dem Rotpunktsucher sollte eine grobe Positionierung auf ein Objekt möglich sein. Eine Feinpositionierung müsste mit dem Smart Remote Contol und dem Live View auf dem iPad möglich sein, wenn man vielleicht das ISO für diesen Zweck etwas aufdreht. Bei mit sitzt die Russentonne allerdings auf einem Kugelkopf, der auf der Nachführung SkyTracker sitzt. Mit dem Kugelkopf ist eine solche “Feinpositionierung” nur ganz schwer möglich.

Objekte finden mit Takumar f=135mm und Sony NEX-5R

Wir gehen von folgendem Szenario aus:

  • Aufnahmekamera: Sony NEX-5R mit Objektiv Takumar 135mm  (=> Gesichtsfeld 9,9° x 6,6°) und Smart Remote Control per iPad
  • Sucherkamera: GP-CAM mit Objektiv f=12mm angeschlossen per USB an Notebook (=> Gesichtsfeld 22° x 17°)
  • Montierung: iOptron SmartEQ pro – parallaktisch – mit zwei Servomotoren (Stellmotoren)
  • PC (Notebook) mit Windows 10 & SharpCap

Dieser Aufbau sieht wie folgt aus:

Setup SmatEQ Pro, Sony NEX 5R mit 135mm Takumar und GP-CAM als elektronischer Sucher

Setup SmartEQ Pro, Sony NEX 5R mit 135mm Takumar und GP-CAM als elektronischer Sucher

Schritt 1: Vorbereitung am Tage:

  • Batterie der Kamera: Aufladen und Ersatzbatterie bereitlegen
  • Kamera: Sensor reinigen
  • Batterie des iPads: Aufladen und ggf. Mobil-Akku bereitstellen
  • 12V-Akku für Montierung: Aufladen und Kabel bereitlegen
  • Notebook-Computer: Batterie aufladen

Schritt 2: Justieren so dass Sucher und Aufnahmekamera parallel:

  • Gleich nach dem Einnorden kann der Polarstern benutzt werden, um die Parallelität der beiden Geräte zu justieren
  • Beide Geräte werden fokussiert, sodass die Sterne scharf zu sehen sind
  • Fadenkreuz wird auf beiden Geräten angeschaltet..
    • Sony PlayMemories Mobile: Einstellungen => Gitterlinie => 4×4 Raster + Diagonale
    • SharpCap:  Tool-Leiste: Switch between different styles of retucule overlay

SharpCap with reticule overlay:

SharpCap_Reticule

Sony PlayMemories Mobile: Einstellungen Gitter:

iPad_PlayMemoriesGitter

Im Prinzip funktioniert nun mein elektronischer Sucher: ich kann ein  Objekt ins Gesichtsfeld des Suchers einstellen und bei der Kamera sollte es dann auch im Gesichtsfeld sein.

Ich muss mein SharpCap nur noch so einstellen, dass schön viele Sterne auf dem Notebook-Bildschirm sichtbar werden.

Schritt 3: SharpCap Einstellungen für optimalen Sucher

Das Minimum-Ziel ist es, Sterne bis 4. Größenklasse im Sucher (Notebook) gut sichtbar zu machen.

Dazu stelle ich folgendes ein:

  • Einzelbild (“still”)
  • Belichtungszeit: 5 sec
  • Gain:  ????
  • XYZ:    ?????

yyyyyy