Astronomie: Stellarium Horizontbild/Landschaft mit Panoramafoto – spherical

Gehört zu: Astro-Software
Siehe auch: Stellarium, Aufnahmeverfahren, Cartes du Ciel

Der Horizont in Stellarium

Wie man in Stellarium eine Horizontlinie als Polygonzug einrichtet, habe ich in meinem Hauptartikel über Stellarium bereits beschrieben. Eine Polygon-Linie ist eigentlich völlig ausreichend für die realistische Planung von astronomischen Beobachtungen. “Schicker” und eindrucksvoller ist es natürlich mit echten Fotos von der Horizontgegend. Das will ich hier mal im einzelnen beschreiben.

Einen solchen Horizont möchte man meist auch in anderen Planetariums-Prgrammen, z.B. Cartes du Ciel einrichten.

Basis der Beschreibungen ist die im Web vorhandene Dokumentation:

Schritt 1: Das Panoramabild erstellen

Ich mache eine Fotoserie mit meiner Digitalkamera wobei ich ein leichtes Weitwinkelobjektiv (f=24mm bei APS-C Sensor) verwende. Ich suche mir eine passenden Standort aus, wo ich den kompletten Horizont in 360 Grad mit Stativ als Panorama fotografieren kann. Die höchsten Objekte am Horizont, die ich noch haben will, müssen ins Gesichtsfeld (36° x 52°) passen.

Es ist gut, wenn man sich die genaue Ostrichtung am Horizont merkt, weil Stellarium das Horizontbild auf den Ost-Punkt ausrichtet. Man kann das aber später in der Datei “landscape.ini” noch genau austarieren.

Das Panoramafoto erstelle ich aus den Einzelfotos mit der Software “Microsoft ICE”.
Geronimo beschreibt diesen Vorgang mit der Software Hugin Panorama-Photo Stitcher.

Beispiel 1: So sieht mein 360°-Panoramabild vom Schlump aus:

Horizont_20171004_0006_stitch50a.jpg

Horizont Panorama Hamburg Schlump

 

Beispiel 2: 360°-Panoramabild von Handeloh:

Horizont_20181005_121706_stitchA.jpg

Handeloh Horizont Panorama

Schritt 2: Bildbearbeitung in GIMP

Zur Bildbearbeitung nehme ich das kostenfreie Software-Tool GIMP (ich habe Version 2.10.6).

Die Bildbearbeitung erfolgt in mehreren Teilschritten, wobei die enorme Größe meines Panoramabildes für GIMP wohl eine Herausforderung darstellt: einzelne Bearbeitungen dauern machmal sehr lange und manchmal stürzt GIMP auch ab. Deshalb bin ich dazu übergegangen, nach jedem Teilschritt das Zwischenergebnis in GIMP abzuspeichern.

Das mit ICE erstellte Panoramabild ist 16,6 MB groß. Wenn ich das in GIMP lade wird das erste GIMP-Zwischenbild 545,9 MB groß.

Vielleicht wäre es sinnvoller, als allererstes die Größe des Panoramabildes zu reduzieren: 2048 x 1024

Die ganze Bearbeitung in GIMP soll folgendes erreichen:

  • Der Himmel soll “entfernt” werden; d.h. transparent werden und die eigentliche Landschaft am Horizont soll bleiben.
  • Das Bild soll auf die von Stellarium erwartete Größe von 2048 x 1024 skaliert werden.
  • Oberhalb muss alles transparent sein
  • Unterhalb der schönen Horizontlandschaft muss das Bild mit horizontähnlichen Farben ausgefüllt werden

Die Verarbeitungsschritte in GIMP folgen der Anleitung von Geronimo, wobei ich teilweise eigene Tips und Anmerkungen dazu habe.

Schritt 2.1: Landschaft mit Ebenenmaske freistellen

1. Panoramabild in GIMP öffnen und Ebene erstellen

Rechtsklicken auf das Bild und im Kontextmenü <Ebene> – <Neu aus Sichtbarem> –
Im Folgenden bearbeiten wir nur diese neue Ebene und machen daraus eine Maske, die nur noch die eigentliche Landschaft durchlässt. Der Himmel darüber wird am Ende transparent gemacht; der Boden darunter wird am Ende “neutral” ausgemalt.

2. Zuerst wandeln wir die Farben in RGB-Graustufen um:

  • Rechtsklicken auf das Bild und im Kontextmenü <Farben> – <Entsättigen> – <Entsättigen> – <Helligkeit>
  • Achtung: Nach dem Klicken auf “OK” dauert es eine ganze Weile, bis die Entsättigung durch ist.

3. Himmel weiss & Landschaft schwarz:

  • Schwellwerte schwarz/weiss: Rechtsklicken auf das Bild und im Kontextmenü <Farben> – <Schwellwerte>. Dort den Schieberegler so einstellen, dass der Himmel durchgehend weiss wird und die Landschaft schwarz.
    Achtung: Jede Änderung des Schiebereglers bedeutet ein minutenlanges Neuberechnen des Bildes.
  • Damit wir eine saubere Maske bekommen nun noch im oberen Teil den Himmel mit dem Pinsel-Werkzeug in “weiss” korrigieren, da wo “Schwellwerte” es nicht ganz geschafft hat und im unteren Teil die Landschaft ggf. mit dem Pinselwerkzeug in “schwarz” korrigieren.

4. Nun die Landschaft (den schwarzen Bereich) transparent machen:

  • Rechtsklick auf das Bild und im Kontextmenü <Farben> – <Farbe nach Alpha> – Farbe (schwarz sollte schon ausgewählt sein) – <OK>.
    Nun wird langsam das Fotopanorama der Landschaft sichtbar – wie immer, dauert das ein Weilchen.
  • Nun alle Ebenen “nach unten” vereinen. Dazu Rechtsklick auf das Bild und im Kontextmenü <Ebene> – <nach unten vereinen> (oder: Menüleiste: Ebene -> nach unten vereinen)

Schritt 2.2 Himmel transparent machen

Im Werkzeugkasten das Werkzeug <Nach Farbe auswählen> wählen und auf den Himmel klicken. Alles was weiss ist, wird nun selektiert. Dann das Selektierte löschen mit Ctrl+X (dieses “Löschen” macht den Himmel transparent). Das Löschen eines großen Bereichs kann in GIMP eine ganze Weile dauern, man muss das geduldig abwarten…

Wenn bei <Nach Farbe auswählen> dummerweise noch Teile in der Landschaft selektiert wurden, weil sie auch weiss sind, muss man das korrigieren: Umschalten auf “Schnellmaske” (unten links im Bildfenster) und diese Auswahlen aufheben (d.h. schwarz malen).

Alternativ zu <Nach Farbe auswählen> kann man ggf. auch mit dem Werkzeug <Zauberstab> arbeiten. Damit bleibt man sicherer im Bereich des Himmels, muss es aber evtl. mehrfach machen.

Schritt 2.3 Bild für Stellarium skalieren

Stellarium erwartet ein Landscape-Bild in der Größe 2048 x 1024 mit 72 dpi. Deshalb:

  • das Bild jetzt entsprechend skalieren mit: <Bild> – <Bild scalieren> auf horizontal 2048 skalieren.
  • Dann ein Leerbild der richtigen Größe (2048 x 1024) erstellen
    • Leerbild: <Datei> – <Neu> – <Breite> = 2018, <Höhe> = 1024. Erweiterte Einstellungen: 72 dpi & Füllung = Transparenz, Schaltfläche “OK”
  • und “unser” Bild dahinein kopieren:
    • Hineinkopieren: <Fenster> – 1  – <Ctrl-C> – <Fenster> -2 – <Ctrl-V>

Achtung: Beim “Hineinkopieren” muss das Bild sehr feinfühlig vertikal geschoben werden, sodass der gedachte Horizont genau auf der Bildmitte (Pixel = 1024 / 2 = 512) sitzt.

Wahrscheinlich haben wir jetzt zwei Ebenen. Eine ist die “schwebende Auswahl”. Das muss mit dem Befehl “Ebene verankern” behoben werden. Erst danach kann die “normale” Bildbearbeitung weiter erfolgen.

Der untere Teil unseres Bildes soll nicht transparent sein (da sollen ja keine Sterne erscheinen). Dieser untere Teil des Bildes muss also mit Farbe ausgefüllt werden. Dabei sollten angrenzende Farben des Horizontpanoramas verwendet werden, denn diese werden in Stellarium möglicherweise sichtbar. Auch sollten die Farben eher dunkel sein, denn es ist ja der “unsichtbare” Teil des Grundes.

Zum Schluss das Bild als PNG exportieren (Menü -> Datei -> Exportieren…) und dabei einen “schönen” Namen vergeben, denn der Name wird in den Stellarium-INI-Dateien benutzt.

Schritt 3: Konfiguration für Stellarium

Zur Zeit (2018) benutze ich die Stellarium-Version  0.18.0. Um unser Horizontpanorama in Stellarium einzubinden, muss jetzt eine Datei mit dem Namen “landscape.ini” erstellt werden.

Inhalt der Datei landscape.ini

[landscape]
name = Name meiner Landschaft
author = Name des Erstellers
description = eine Beschreibung dieser Landschaft
type = spherical
maptex = Name der erstellten PNG-Datei  (s.o.)
angle_rotatez = -55
[location]
name = Hamburg-Schlump
planet = Earth
country = Germany
lattitude =
longitude =
alititude =

Die Südrichtung des Bildes kann über den Parameter “angle_rotatez=….” eingestellt werden.

Speicherort der Datei landscape.ini

Im Installationsordner von Stellarium befindet sich ein Unterordner names “landscapes”. Dort müssen wir einen Unterordner mit dem Namen unseres neuen Landscapes anlegen. In unserem Fall ist das: D:\bin\Stellarium\landscapes\eimsbuettel.

In diesen Ordner kopieren wir die erstellte Datei “landscape.ini” und die PNG-Datei.

Schritt 4: Aktivieren der Landschaft in Stellarium

Wir starten Stellarium und klicken in der linken Seitenleiste auf “Himmel- und Anzeigeoptionsfenster [F4]”.

Dort dann auf den Reiter “Landschaft” klicken und in der Liste links den Namen der gewünschten Landschaft auswählen.

Im unteren Bereich unter “Einstellungen” anhaken “Minimalhelligkeit” 0,20 – dann wird die Landschaft in der Nacht nicht auf vollkommen schwarz abgedunkelt, sondern bleibt ein wenig sichtbar.

Beispiel

Stellarium_Schlump.jpg

Stellarium Landschaft: Schlump

Astronomie Software: Canon EOS Software

Gehört zu: Astro-Software
Gehört zu: Canon EOS DSLRs

Software für Canon EOS

Nachdem ich eine Canon EOS 600D in 2017 frisch erworben hatte, stand die Namibia-Reise ins Haus. Also nahm ich gleich die “neue” Canon mit.
Bei meinem Aufenthalt auf Kiripotib hat mich Bernd Müller astronomisch betreut. Er machte mich auf die Canon-Software “EOS Utility” und “DPP” aufmerksam.

Canon liefert mit seinen EOS Kameras folgende (kostenlose) Software mit aus:

  • EOS Utility: Aufnahmen und Steuerung der Kamera über ein USB-Kabel
  • DPP Digital Photo Professional: Zur Bearbeitung und Verwaltung der Fotos (RAW = CR2 und JPEG)

Weiterhin gibt es Aufnahme-Software  für Canon-Kameras, die aber nicht von Canon stammt, aber doch sehr von Astrofreunden empfohlen wird:

Canon Software

Wenn man mal mit der von Canon zur Kamera direkt gehöriger Software starten will, muss man primär das EOS Utility installieren und konfigurieren.

Download: Zum Gratis-Download der Vollversionen muss man normalerweise die Seriennummer seiner Canon-Kamera eingeben.

Für meine 600D habe ich installiert

  • EOS Utility Version 2.10.2.0  -> 2.14.20.0
  • Digital Photo Professional Version 4.7.1.0

Sehr häufig möchte man die mit EOS Utility aufgenommenen Fotos auf dem Notebook-Computer speichern und mit DPP (Digital Photo Professional) bearbeiten. Dann sind im EOS Utility folgende Einstellungen erforderlich:

  • Voreinstellungen -> Zielordner -> hier einen sinnvollen Ordner einstellen, der auch in DPP eingestellt ist
  • Voreinstellungen -> Verknüpfte Software -> hier Dpp4.exe einstellen
  • Voreinstellungen -> Grundeinstellungen -> nicht anhaken “Schnellvorschau-Fenster automatisch anzeigen” (denn wir wollen ja statt dessen DPP automatisch aufrufen)

EOS Utility: Voreinstellungen

Bildbeschreibung: Software “EOS Utility” –>  Bedienung der Kamera –> Schaltfläche “Voreinstellungen”

EOS_Utility_1.jpg

EOS Utility Bedienung der Kamera

EOS Utility: Zielordner

Bildbeschreibung: Software “EOS Utility” –> Voreinstellungen –>Reiter “Zielordner”

EOS_Utility_2.jpg

EOS Utility: Zielordner

EOS Utility: Verknüpfte Software DPP

Bildbeschreibung: Software “EOS Utility” –> Voreinstellungen –>Reiter “Verknüpfte Software”

EOS_Utility_3.jpg

EOS Utility: Verknüpfte Software

EOS Utility: Schnellvorschau ausschalten

Bildbeschreibung: Software “EOS Utility” –> Voreinstellungen –>Reiter “Grundeinstellungen”

EOS_Utility_4.jpg

EOS Utility: Schnellvorschau ausschalten

Astronomie: Drei-Wege-Neiger MH-4

Gehört zu: Astrofotografie

Der Drei-Wege-Neiger Rollei MH-4

Für ein Fotostativ benötigt man Stativköpfe als Zubehör. In meiner Geräteliste befinden sich Kugelköpfe und Neiger. Für bestimmte Aufgaben ist ein Neiger besser geeignet als ein Kugelkopf.

Der MH-4 von Rollei ist schön leicht und aus Plastik, was meine Magnet-Sensoren nicht ablenkt.

Der MH-4 war als Unterbau für den NanoTracker gedacht, wurde von mir aber bald durch eine Skywatcher Equatorial Wedge ersetzt, mit der man Polhöhe und Azmut viel feinfühliger einstellen kann.

Neiger_20170902_1961.jpg

Dreiwegeneiger MH-4

Astronomie: Drei-Wege-Neiger Manfrotto 460MG

Gehört zu: Astrofotografie
Siehe auch: Geräteliste

Der Drei-Wege-Neiger Manfrotto 460MG

Für ein Fotostativ benötigt man Stativköpfe als Zubehör. In meiner Geräteliste befinden sich Kugelköpfe und Neiger. Für bestimmte Aufgaben ist ein Neiger besser geeignet als ein Kugelkopf.

Im August 2017 habe ich einen Manfrotto 460MG bei Foto Erhardt gekauft. Diesen Neiger möchte ich in Namibia einsetzen.

  • Preis: 79,90 Euro
  • Der 460MG ist aus Magnesium und wiegt nur 431g.
  • Der 460MG ist schön klein und kann ohne dass er irgendwo anstösst, einzeln in den Achsen “Rektaszension” und “Deklination” sowie im Kamerawinkel um volle 360° bzw. 180° bewegt werden.
  • Zur Befestigung auf einem Fotostativ hat der 460MG unten ein 3/8-Zoll Innengewinde.
  • Oben drauf befindet sich eine (proprietäre) Schnellwechselplatte mit der Bezeichnung “200pl-14”

Alternativ gibt es natürlich wesentlich teuere Lösungen (sog. Getriebeneiger sind sehr feiner einstellbar) wie:

  • ARCA Cube
  • RRS Ball Head

Ich verwende den 460MG in meinem Anwendungs-Szenario “Astrofotografie mit leichtem Gepäck“.

Neiger_20170902_1959.jpg

Dreiwegeneiger: Manfrotto 460M

 

Astrofotografie mit leichtem Gepäck

Gehört zu: Astrofotografie
Siehe auch: meine Geräteliste

Astrofoto-Ausrüstung für die Flugreise

Als Kamera verwende ich meine gute alte Sony NEX-5R, wo ich über das E-Bajonett diverse gute alte manuelle Objektive (“Altglas”) anschließen kann.

Als Neuerwerbung habe ich in 2017 aus dem Nachlass eines Astro-Kollegen günstig eine astro-modifizierte Canon EOS 600D erstanden. Diese hat den großen Vorteil, dass sie als “Astro Mainstream” anzusehen ist. Sie kann über ein USB-Kabel mit einem Windows-Computer verbunden werden und von so mächtiger und kostenloser Software wie APT gesteuert werden.

Nachführung

Für die Nachführung habe ich mir 2012 einen NanoTracker angeschafft, um auch bei weiten Flugreisen (Südafrika) eine mobile Nachführungsmöglichkeit für meine Astro-Aufnahmen mit dem Fotoapparat (Sony NEX-5R) bzw. meiner neu erstanderen DSLR Canon EOS 600D zu haben.

Alternativen zur Nachführung mit NanoTracker wären:

  • Vixen Polarie  (teuerer)
  • Skywatcher Star Adventurer  (schwerer)
  • Skywatcher Star Adventurer Mini (warum nicht? neu und klein)
  • iOptron Skytracker (alt, schwer)
NanoTracker_20170720_1814.jpg

Nano Tracker

Stromversorgung für den NanoTracker

Den elektrischen Strom bekommt der NanoTracker über ein separates Kästchen mit 3 AA-Akkus.

Die Teile und das Gewicht

Als Flugreisegepäck ist das Gewicht besonders wichtig:

  • Der NanoTracker: Gewicht 384 g, Traglast 2 kg, PreisEuro 289.-
  • Die Akku-Einheit (mit Akkus): 163 g
  • Ein Kugelkopf Sirui E10:  263 g   (Euro 94,-)
  • Fotostativ Sirui ET-1204:  Gewicht 1048g, Traglast 8 kg, Preis 299,- inkl. Kugelkopf
  • Dreiwege-Neiger Rollei MH-4: Gewicht 252 g, Traglast 2,5kg,  Preis Euro 20,–  (alternativ: Star Adventurer Wedge 500g, Euro 71,– )
  • Kamera Sony NEX 5R mit Olympus 135mm: 676 g
  • Kamera Canon EOS 600D mit Olympus 135 mm: 926 g

Aufstellung – Stativ

Die NanoTracker soll auf ein stabiles Fotostativ (Dreibein, Tripod) mit einem Zweiwege-Neiger montiert werden.

Man sagt, dass der Stativkopf exakt waagerecht ausgerichtet sein soll. Das kann ich mit einer kleinen Wasserwaage/Libelle prüfen und ggf. die Stativbeine leicht ‘rauf bzw. ‘runter schieben.

Das Sirui ET-1204 (ET = Easy Traveller) ist aus leichtem und stabilen Carbon (1048g) und lässt sich mit den vierteilig ausziehbaren Beinen auf eine Packlänge von 42 cm  zusammenschieben.

Wenn ich die Mittelsäule unten am Haken noch mit ordentlich Gewicht beschwere, wird das leichte Reisestativ noch standfester.

Dann kann der Neiger (bzw. die Wedge) und der NanoTracker auf den Stativkopf gesetzt werden und bereits am Tage eine grobe Ausrichtung nach Norden und auf die Polhöhe (geografische Breite) vorgenommen werden.

Stativ_20170720_1818.jpg

Stativ: Sirui ET-1204 – Carbon, vier Segmente, Zusatzgewicht

Zweiwege-Neiger

Es ist günstig, auf das Fotostativ einen Neigekopf zu montieren, damit kann eine Pol-Ausrichtung einfacher vorgeommen werden: Eine Achse = Polhöhe, zweite Achse = Azimuth (Himmelsrichtung).

Neiger_20170711_1789.JPG

Neiger MH-4 auf Stativ

Wenn man eine besonders genaue Pol-Ausrichtung vornehmen will (z.B. mit dem QHY PoleMaster s.u.), ist es noch praktischer, statt eines schlichten Neigekopfs (s.o.) eine sog “equatorial wedge” (z.B. SkyWatcher Star Adventurer Wedge)  zu verwenden. Damit lassen sich bequemer und feinfühliger kleine Korrekturen der Polhöhe und des Azimuts erreichen.

Einnorden – Polar Alignment

Einnorden mit iPhone-App

Auch den NanoTracker muss man Einnorden bzw. Einsüden. Der NanoTracker hat kein Polsucher-Fernrohr, sondern hat nur ein kleines Peil-Loch, mit dem man eine grobe polare Ausrichtung hinbekäme.

Ich nehme die polare Ausrichtung immer schon am Tage mit einer iPhone-App vor. Dazu benutze ich eine Virtual Reality Planetariums-Software, die auch das äquatoriale Koordinatennetz anzeigt und in der Mitte ein Fadenkreuz oder Telrad zeigt.

Da NanoTracker und iPhone große plane Flächen haben, kann ich sie so gut bündig ausgerichten und sicher mit einem starken Gummiband verbinden.

NanoTracker_0278.jpg

NanoTracker Polar Alignment

NanoTracker_0277.jpg

NanoTracker: Polar Alignment mit SmartPhone

Einnorden mit QHY PoleMaster

Wenn es dunkel ist und die ersten Sterne erscheinen, kann ich eine sehr genaue Ausrichtung mit meinem QHY PoleMaster vornehmen, für den ich einen Adapter auf 3/8-Zoll Fotogewinde erstanden habe.

In dem Gesichtsfeld des PoleMaster von 11° x 8° ist dann Polaris und ein paar dunklere Sterne in der Nähe bereits zu sehen. Es kann also die Pol-Ausrichtung per Software losgehen.

NanoTracker_20170628_1742.JPG

QHY PoleMaster auf NanoTracker

Nach der parallaktischen Ausrichtung solle der NanoTracker festgeschraubt werden und dann nicht mehr anstossen werden.

Digital-Kamera auf dem NanoTracker mit Kugelkopf

Nach erfolgter Polausrichtung, die mit der Star Adventurer Wedge noch feinfühliger möglich war, wird nun der QHY PoleMaster abgeschraubt und die Digitalkamera Sony NEX-5R bzw. Canon EOS 600D mit einem Kugelkopf aufgeschraubt.

Jetzt brauche ich nur noch sternklares Wetter, um die Probe am echten Sternhimmel zu machen.

NanoTracker_20170809_1901.jpg

DSLR auf NanoTracker und StarAdventurer Mini

Ausrichten des Gesichtsfelds auf das Beobachtungsobjekt (sog. “Framing”)

Der auf den NanoTracker aufgeschraubte Kugelkopf lässt eine ganz flexible Ausrichtung der Kamera auf ein gewünschtes Beobachtungsobjekt zu. Allerdings bedeutet diese Flexibilität, dass beide Achsen (Rektaszension und Deklination) gemeinsam auf das Ziel hinbewegt werden. Einfacherer wäre eine Ausrichtung des Gesichtsfeldes (Framing) mit einem kleinen Zwei-Wege-Neiger, um so die Bewegung in beiden Achsen getrennt vornehmen zu können. Allerdings müsse so ein Zwei-Wege-Neiger ganz flexibel in alle Richtungen um 360° beweglich sein, ohne dass irgendwelche Teile an den NanoTracker stossen. Ausserdem sollte so ein Teil klein (Hebelwirkung) und leicht (Gesamttraglast) sein.

Hier der Manfrotto 3-Wege-Neiger 460MG:

NanoTracker_20170829_1945.jpg

Dreiwege-Neiger Manfrotto 460MG auf NanoTracker und StarAdventurer Wedge

Digital-Kamera auf dem NanoTracker mit Drei-Wege-Neiger

Nach erfolgter Polausrichtung, wird nun der PoleMaster abgeschraubt und die neue Digitalkamera Canon EOS 600D mit dem Manfrotto Drei-Wege-Neiger aufgeschraubt.

Jetzt brauche ich nur noch sternklares Wetter, um die Probe am echten Sternhimmel zu machen.

NanoTracker_20170829_1947.jpg

DSLR auf Manfrottom 460MG und NanoTracker

Framing mit Hilfe von Plate Solving

Im Gegensatz zu meiner Sony NEX-5R kann die Canon EOS 600D mit sehr vielen Funktionen per Windows-Computer gesteuert werden. Mit Hilfe der Software APT kann ich z.B. Einzelaufnahmen schießen und diese sofort d.h. innerhalb von Sekunden “Plate Solven” d.h. die Rektaszension und Deklination des Bildmittelpunkts feststellen.

Aus den Abweichungen der Koordinaten zum Ziel-Objekt kann ich sofort die nötigen Korrektur- Bewegungen ermitteln und diese manuell und feinfühlig mit dem Drei-Wege-Neiger ausführen. Erneut schiesse ich ein Foto und Plate Solve dieses in APT. Dies wiederhole ich solange bis das Ziel-Objekt schön mittig in Gesichtsfeld der Kamera steht.

Genauigkeit der Nachführung mit NanoTracker

Bisher hatte ich mit meiner Sony NEX-5R maximal 30 Sekunden belichtet und dabei Objektive von 16mm (Zenitar – z.B. Perseiden), 24mm (Vivitar – z.B. Nordlicht) und 50mm (Olympus – z.B. Magellansche Wolke) benutzt. Da war die Nachführgenauigkeit des NanoTracker überhaupt kein Problem.

Aber die Anforderungen an die Genauigkeit sind bei mir durch zwei Entwicklungen gestiegen:

  1. Ich habe ein Objektiv mit wesentlich längerer Brennweite bekommen: Takumar 135mm f/3.5 (neu: Olympus E.Zuiko 135mm f/3.5).
  2. Ich habe auch herausgefunden, wie ich mit meiner Sony NEX-5R länger als 30sec belichten kann. 30sec maximal macht die Sony per Programm mit Smart Remote, Langzeitbelichtung geht dann mit Bulb und einem Infrarot-Fernauslöser
  3. Schließlich bin ich von Sony auf eine Canon Kamera gewechselt, mit der ich per Software praktisch alle Funktionen steueren und mit anderen integrieren kann, so dass in der Tat die Grenzen nur noch durch  die Genauigkeit der Nachführung gesetzt werden.

Probefotos am 21.7.2017

mit meiner Sony NEX-5R und dem 135mm Objektiv bei 120sec Belichtung: Das Gesichtsfeld des 135mm-Objektivs mit dem APS-C-Sensor ist ca. 9,9 Grad mal 6,6 Grad. Die Kamera ist ungefähr horizontal ausgerichtet und zeigt auf das Sternbild Schwan. Der helle Stern links ist Alpha Cyg (Deneb), rechts Gamma Cyg.

Mit Nachführung durch NanoTracker sind die Sterne praktisch punktförmig (Deklination 40-45 Grad). Beim Hineinzoomen wird dann die Qualität der Optik sichtbar (Koma etc.).
Ohne Nachführung bekomme ich die Sterne als richtige Striche.

Bild mit Nachführung durch NanoTracker (120 sec, 135mm)    DK_20170721_01769.jpg

DK_20170721_01769.JPG

120 sec, f=135mm mit Nachführung

Das gleiche Bild (120sec, 135mm) ohne Nachführung        DK_20170721_01770.jpg

DK_20170721_01770.JPG

120 sec, f=135mm ohne Nachführung

Astronomie Software: BackyardEOS

Gehört zu: Astronomie Software
Siehe auch: Canon EOS

Meine ersten Schritte mit der Software BackyardEOS

BackyardEOS (abgekürzt BYEOS) ist ein Tool, das Astro-Aufnahmen mit einer Canon EOS Kamera vom Windows-Notebook aus per Fernsteuerung sehr elegant möglich macht.

Link: http://www.jtwastronomy.com/products/guides/backyardguide.pdf

Alternativen zu BYEOS:

  • Die bekanteste Alternative zu BYEOS ist APTAstro Photography Tool“, das neben Kameras auch Montierungen unterstützt und relativ alt ist; wobei das User Interface etwas gewöhungsbedürftig ist, allerdings ist die Integration von Platesolving und Teleskopsteuerung bedenkenswert ist.
  • Vom Hersteller Canon kommt eine ganz gute kostenlose Alternative: EOS Utility und DPP = Digital Photo Professional.
  • Seit 2019 wird auch ganz neu N.I.N.A. sehr empfohlen

Installation von BackyardEOS

Download und Installation

You may download the latest release on our website: http://www.BackyardEOS.com
Version 3.1.11
Man muss einen Account einrichten und kann dann die Software herunterladen und bekommt einen Lizenzschlüssel “30 Tage Trial”.

Vorbereitungen: EOS-Utility

Man sollte die Kamera-Fernsteuerung zuerst mit dem EOS-Utility ausprobieren.
Laut Canon-Website sind dazu keine Treiber erforderlich, die Kamera ist mit Windows 10 kompatibel und sollte automatisch als “Mediengerät erkannt werden, wenn man per USB-Kabel verbindet”.
Dazu muss man die Kamara einschalten und per USB-Kabel mit dem Computer (Windows Notebook) verbinden.
Das EOS-Utility kann nur von der Original CD installiert werden.

Connect mit BackyardEOS

 Die EOS600D hat eine DIGIC4-Prozessor, also sollte man den dritten Kasten “Canon215” anklicken.
BackyardEOS01.jpg

BackyardEOS Kamera Driver

————————————————–

 

Astronomie: Nano Tracker

Gehört zu: Nachführung

Nachführung mit dem NanoTracker

Reise-Nachführungen (Star Tracker)

Für die Nachführung habe ich mir 2012 einen NanoTracker angeschafft, um auch bei weiten Flugreisen (Südafrika) eine mobile Nachführungsmöglichkeit für meine Astro-Aufnahmen mit dem Fotoapparat (Sony NEX-5R) bzw. meiner neu erstanderen DSLR Canon EOS 600D zu haben.

Mein ganzes Anwendungs-Szenario habe ich beschieben in “Astrofotografie mit leichtem Gepäck“.

Alternativen zur Nachführung mit NanoTracker wären:

  • Vixen Polarie  (teuerer 0,64 kg, Periodic Error 35″)
  • Skywatcher Star Adventurer  (schwerer: 1,2 kg) hat ST4
  • Skywatcher Star Adventurer Mini (warum nicht? neu, klein und leichter: 0,65 kg, Periodic Error 50″) kein ST4
  • iOptron Skytracker (alt, schwer 1,2 kg, Periodic Error 100″)
  • Astrotrac (klobig, schwer  1kg)
NanoTracker_20170720_1814.jpg

NanoTracker

NanoTracker Data Sheet

  • Der NanoTracker: Gewicht 384 g, Traglast 2 kg
  • Die Akku-Einheit (mit Akkus): 163 g
  • Hersteller: Sightron Japan Inc.
  • Preis: Euro 289,..
  • Anschlüsse: Stativ 1/4 Zoll, Kamera 1/4 Zoll (ggf. Reduzierstück 1/4 auf 3/8 Zoll verwenden)
  • Stromversorgung: Separates Kästchen mit 3 AA-Akkus
  • Bedienung: Schalter An/Aus, Nord/Süd, Nachführgeschwindigkeit
  • Antrieb:
    • Schrittmotor mit Schnecke
    • Schnecke treibt Zahnrad auf R.A. Achse in Kugellagern
    • Das Zahnrad hat 50 Zähne was eine Schneckenperiode von 28,72 Minuten bedeutet

Die Schneckenperiode von 28,72 Minuten ergibt sich wie folgt:

  • Länge eines Sterntages in Sekunden:   86164,091
  • Länge eines Sterntags in Minuten:       1436,06818
  • Dividiert durch 50 (Anzahl Zähne):     28,7213637 Minuten

Siehe dazu auch die Web-Seite von Lorenzo Comolli: www.astrosurf.com/comolli/strum56.htm

Besonderheiten

Den elektrischen Strom bekommt der NanoTracker über ein separates Kästchen mit 3 AA-Akkus.
Das finde ich sehr praktisch von der Handhabung und ausserdem vermindert das die Traglast auf dem Stativ.

Maximale Belichtungszeit ohne Nachführung

xxxx

 Nachführung mit Getriebspiel und Periodic Error

Das Getriebespiel (Backlash) kann man vermeiden, wenn man den NanoTracker fünf Minuten vor eine Aufnahme “vorlaufen” lässt. Dann sollte der Backlash “vorbei” sein.
Was dann bleibt, ist der Schneckenfehler (Periodic Error).

Der Periodic Error (PE) könnte mit PEMPRO V2.8  gemessen werden.

Beispiel:

  • Meine Canon EOS 600D hat eine Pixel Size von 4,3μ
  • Bei einer Brennweite von 135mm ergibt das eine Pixel Scale von 6,56 arcsec / Pixel   (Formel)
  • Bei einem PE von angenommen 100 arcsec wären das 100 arcsec / 28,7 Minuten = 3,5 arcsec / Minute
  • Man könnte also im Schnitt 2 Minuten belichten ohne dass der PE sichtbar würde

Gestiegene Anforderungen an die Genauigkeit bei der Nachführung

Bisher hatte ich mit meiner Sony NEX-5R maximal 30 Sekunden belichtet und dabei Objektive von 16mm (Zenitar – z.B. Perseiden), 24mm (Vivitar – z.B. Nordlicht) und 50mm (Olympus – z.B. Magellansche Wolke) benutzt. Da war die Nachführgenauigkeit des NanoTracker überhaupt kein Problem.

Aber die Anforderungen an die Genauigkeit sind bei mir durch zwei Entwicklungen gestiegen:

  1. Ich habe ein Objektiv mit wesentlich längerer Brennweite bekommen: Takumar 135mm f/3.5 (neu: Olympus E.Zuiko 135mm f/3.5).
  2. Ich habe auch herausgefunden, wie ich mit meiner Sony NEX-5R länger als 30sec belichten kann. 30sec maximal macht die Sony per Programm mit Smart Remote, Langzeitbelichtung geht dann mit Bulb und einem Infrarot-Fernauslöser

Wie genau ist meine Nachführung?

Für eine sehr geneue Pol-Ausrichtung sorge ich mit meinem QHY PoleMaster. Dann sollten weitere Fehler auf den NanoTracker selbst und da im Wesentlichen auf den PE (Periodic Error) oder auch Schneckenfehler zurückzuführen sein. Aber wie kann ich ganz einfach mal die Genauigkeit der Nachführung (quasi end-to-end) messen?

Meine ganz simple Idee ist, einfach eine Serie von Aufnahmen von ein und demselben Objekt mit eingeschalteter Nachführung zu machen (z.B. 15 sec Belichtung, 15 sec Pause und das 30 Minuten lang – weil die Scheckenperiode 28,72 Minuten sein soll). Diese Aufnahmeserie könnte ich z.B. Plate Solven und die Ergebnisse dann in Excel darstellen….

In CloudyNights  https://www.cloudynights.com/topic/210905-how-to-measure-periodic-error/ finde ich dazu einen ähnlichen Rat:

  • Posts: 678
  • Joined: 07 Feb 2006

Posted 16 March 2009 – 10:27 AM

Hi all,

I used my Atlas EQ-G with the Orion 102ED f/7 scope this weekend to shoot my first set of astro pictures (will post some results here at a later time). However, since I don’t have an Auto-guider setup and I heard a lot of good things about the Atlas I figured I’ll see how long the mount can track accurately and was a little surprised to only get relatively short exposures. At 60s I had to throw out almost half of the exposures due to some star trailing (in RA direction), 30s exposures consistently looked good, except for a few. I also took some 120s exposures and also had to throw out at least half. Not quite what I had in mind. Did I expect too much here?

Anyhow, I drift aligned the mount to the best of my abilities actually using the DSLR since I also don’t have a cross hair eye piece, yet. I used the technique where you expose for 5s to mark the star and then move the mount forward in RA for about 60s at twice the siderial rate and then essentially stop the tracking for another 60 seconds, all while the shutter is open. The result is a V shaped line in the image if there is any misalignment. Worked like a charm and I might actually perform the alignment this way in the future instead of using the eye piece. I adjusted the mount as needed and got no more drift in the image for up to 3 minutes.

So, to make a long story short, the only reason for the star trails that I can think of now is RA tracking errors in the mount. I’d like to actually “see” the periodic error, etc. somehow in an image but can’t quite figure out how I would go about doing that. Do you guys have any suggestions?

Thx in advance,
/ThJ

Posted 16 March 2009 – 11:14 AM

The short answer:
Take a series of short exposure images (may need a brightish star) that totals longer than the period of the worm (typ 10min).
Use a stacking program that measures and records (to a file) the x,y coordinates of the star (the program should find the star’s centroid). AIP4WIN does this.
Import the recorded coordinates into Excel (or another spreadsheet program) and plot the x and y values vs exposure number. The PE will easily be seen in the plot.
Some calculation using the scopes focal length and the pixel sizes will give you PE in Arcsec.
If you align the camera so that RA is along the pixel rows (x-coordinate) then there should be no movement in the y direction if your polar alignment is perfect. Any change in the y is polar misalignment.
I have a spreedsheet at home from my Super Polaris mount. Let me know if you need more help on this part.

Astronomie: Software zur Beobachtungsplanung: AstroPlanner

Gehört zu: Beobachtungsplanung

Wozu AstroPlanner?

Mit der Software “AstroPlanner” von Paul Rodman kann man sehr gut planen, welche Beobachtungsobjekte man wann und wo beobachten kann,  Die haupsächlichen Funktionen von AstroPlanner sind:

  • Beobachtungsplanung
  • Beobachtungs-Logbuch
  • Steuerung der Teleskop-Montierung

AstroPlanner ist in der Grundversion (s.u.) kostenlos.

Installation und Konfiguration von AstroPlanner

AstroPlanner gibt es zur kostenlosen Nutzung für nicht registrierte User mit leichten Beschränkungen ( z.B. nur drei Sternkataloge,…)

Sternkataloge können nach-installiert werden durch: Menü -> File -> Catalogue Manager

Bevor man mit AstroPlanner loslegt, sollte man einige sog. “Resourcen” einstellen:

Als sog. “Ressourcen” können Beobachtungsorte, Teleskope etc. definiert werden (Menü -> Edit -> Resources…)

  • Standorte (Beobachtungsorte): mindestens den Hauptstandort, hier also Handeloh
  • Teleskop: Orion 80/600
  • Imagers (Kameras): Canon EOS 600 D APS-C Sensor
  • Okulare
  • u.v.a.m. (siehe Abb.)
astroplanner-03.jpg

Astroplanner: Resources Sites

Die so definierten “Resources” werden gespeichert in “D:\Users\<username>\AppData\Roaming\AstroPlanner\Resources

Beobachtungsplanung mit der Software AstroPlanner

Astro-Pläne werden in sog. “Plan-Dateien” gespeichert. Nach Start des Programmes wählt man die anzuzeigende bzw. zu bearbeitende Plan-Datei aus (im Beispiel: handeloh.apd).

Zur aktuellen Uhrzeit am aktuellen Standort werden in einem Info-Block oben  u.a. angezeigt: Local Siderial Time, Julian Date, Sonne & Dämmerung, Mond mit Phasen,…

astroplanner-02.jpg

Astroplanner; Info-Block

Erstellen eins neuen Plans

Ein Plan (Beobachtungsplan) besteht im Wesentlichen aus einer Liste von Beobachtungsobjekten; d.h. Deep Sky Objekte und Objekte des Sonnensystems.

Möglicherweise haben andere User bereits Pläne erstellt, die wir per Download nutzen können – dies geht aber nur für registrierte User.

Wir können einen neuen Plan auch mit dem “Plan Creation Wizard” erstellen.

Zum manuellen Erstellen eines neuen Plans gehen wir auf: Menü -> File -> New

Der neue Plan soll aus einer Liste von Beobachungsobjekten bestehen. Mit der Schaltfläche “+” (ganz unten links) können wir ein Objekt zum Plan hinzufügen.

astroplanner-04.jpg

Astroplanner-04: neues Objekt zum Plan hinzufügen

Wenn wir Glück haben, findet AstroPlanner das neue Objekt in einem seiner Kataloge, dann werden alle Felder des Objekts aus dem Katalog gefüllt; wenn nicht, müssen wir die wichtigsten Daten nun per Hand eingeben. Wenn wir Rektaszension und Deklination richtig eingeben, kann AstroPlanner die Sichtbarkeit ermitteln.

Wenn wir alle gewünschten Objekte in den Plan eingefügt haben, können wir den Plan abspeichern (Menü -> File -> Save).

Welche Daten pro Objekt in unserem Plan angezeigt werden, können wir bestimmen mit: Menü -> Edit -> List Columns

Beispielsweise könnten wir einblenden: “Best Time” oder “Observability”

astroplanner-06.jpg

astroplanner-06

Sichtbarkeit von Objekten

Welche Objekte eines Plans zur Zeit am eingestellten Ort sichtbar sind, geht aus der Spalte “Vis” hervor.

Zusätzliche Information zur Sichtbarkeit geben die Spalten “Rise”, “Transit” und “Set”.

Wir können diese Sichtbarkeits-Daten auch für einen anderen Zeitpunkt erhalten, wenn wir oben rechts das Kontrollkästchen “Fix date” ankreuzen und dann Datum und Uhrzeit einstellen (diese Felder sieht man nur, wenn das AstroPlanner-Fenster breit genug ist).

AstroPlanner-05.jpg

Astroplanner-05: Fix date

Spalte “Observability”

Was bedeutet “Gute Beobachtbarkeit”:   http://blog.astroplanner.net/?p=214

Der Wert in der Spalte “Observability” ist eine qualitative Angabe (von 0 bis 100), die von Astroplanner aus mehreren anderen Werten berechnet wird: Höhe des Objekts, Mondphase, Entfernung des Objekts vom Mond etc.

Grafiken zur Beobachtbarkeit

Wenn wir in der Liste ein Objekt auswählen (im Beispiel: M101),  können im oberen Bereich mehrere Grafiken zur Beobachtbarkeit angezeigt werden:

  • Short-term visibility
  • Long-term visibilty
  • Alt/Az Indicator
  • Constellation Indicator
astroplanner-07.jpg

astroplanner-07

Grafik “Short-term visibility”

Zeigt die Sichtbarkeit am gewählten Tage (24h) an.

astroplanner-08.jpg

Astrpplanner-08: Short-term visibility

Die Linie mit den “+”  Symbolen visualisiert die Höhe des ausgewählten Objekts (M101) im Laufe der Nacht.

Die Linie mit den “o” Symbolen visualisiert den Mond.

Die durchgezogene Linie zeigt den berechneten Wert für die “Beobachtbarkeit”.

 

Grafik “Long-term visibility”

Zeigt die Sichtbarkeit über die kommenden 12 Monate an.

astroplanner-09.jpg

Astroplanner-09: Long-term visibility

Die Linie mit den “+”  Symbolen visualisiert die Höhe des ausgewählten Objekts (M101) im Laufe der nächsten 12 Monate, jeweils am Sonnabend um 22 Uhr an (einstellbar mit Rechtsklick).

In diesem Beispiel ist als das Objekt M101 an einem Sonnabend Anfang Juni um 22 Uhr am höchsten.

Beobachtungen dokumentieren

xxxx

Teleskop-Steuerung mit AstroPlanner

Unterstützung von Montierungen

AstroPlanner hat interne (eingebaute) Treiber für eine Reihe von Montierungen u.a. für Takahshi Temma, SkyWatcher SyncScan etc. ansonsten ist ASCOM unterstützt.

Astrofotografie: Polar Aligment – Einsüden – Wie finde ich Sigma Octantis?

Gehört zu: Polar Alignment

Wie finde ich Sigma Octantis?

Bei verschiedenen Methoden zum “Polar Alignment” ist es erforderlich, die Position des Himmelsnordpols bzw. des Himmelssüdpols am Sternenhimmel (SCP = South Celestial Pole) eindeutig auszumachen.

Sowohl beim Polfernrohr als auch beim QHY PoleMaster muss man Gegend des Himmelspols (Nord bzw. Süd) eindeutig im FoV auffinden können. Was beim Südpol nicht so einfach ist, weil es keinen hellen Polarstern am Südpol gibt (Sigma Octantis ist 5,45 mag hell).

Ich habe mehrere Methoden zum Auffinden des SCP gefunden:

  • Wikipedia: Southern Cross
  • Alain Maury: Beta Hydri
  • Hannes Pieterse: Achenar
  • Skywatcher Star Adventurer

Polhöhe vorweg mit elektronischem Neigungsmesser einstellen

Wenn man Schwierigkeiten hat mit dem Verstellen zweier Achsen (Azimuth und Pohlhöhe), das Ziel-Objekt im Polfernrohr zu finden, kann man einfach die Polhöhe schon mal im Vorwege richtig einstellen und braucht dann im Dunklen nur noch ein bisschen im Azimuth zu suchen.

Von dem Astro-Kollegen Frank auf Kiripotib bekam ich den Tipp, doch einen digitalen Neigungsmesser zu verwenden, um die Polhöhe im Vorwege genau richtig einzustellen.

Im Nachgang zu meinem Aufenthalt in Namibia. beschaffte ich mit deshalb am 1.8.2018 den “Neoteck Digitaler LCD Winkelmesser Neigungsmesser Inklinometer Wasserdicht Bevel Box Winkelmessgerät” über Amazon für EUR 25,99.

Neigung_20190512_134700.jpg

Skywatcher Star Adventurer Mini mit Neigungsmesser

Ich konnte den Neigungsmesser in der Vixen-Aufnahme des Star Adventurer mittels eines kleinen Bleistifts fest klemmen. Der Winkelmesser muss bei dieser Befestigung 90 Grad minus geografische Breite anzeigen…

Method #1: Wikipedia Method Southern Cross

In der Wikipedia findet man mehrere Aufsuchmethoden, die erst einmal helfen,  grob die Gegend des SCP zu finden.

Eine Methode geht vom Kreuz des Südens aus:

Pole01-eng.jpg

From the Sothern Cross to the Celestial South Pole

Method #2: Beta Cen und Achenar

Die Methode von Hannes Pieterse sagt nicht, wie man das “Trapez” im Octant findet, sondern beschreibt wie, von diesem Tranpez ausgehend, die genaue Position des SCP gefunden werden kann.
http://assabfn.blogspot.de/2010/08/find-south-celestial-pole-scp.html

Method #3:  Acux – Fliege – Octans

Im user manual des Star Adventurer wird eine Methode zum “coarse alignment” beschrieben, die von dem Stern Acrux (alpha Crucis) ausgeht, dann geht man zu Alpha Muscae und weiter zu Gamma Musca (ist der nächst-hellste Stern). Die gerade Linie von Acrus über Gamma Mus zeigt genau zum SCP. Der Abstand auf dieser geraden Linie zum SCP  ist etwa ein gespreizte Hand breit.

sky-watcher_star_adventurer_mini_manual.jpg

Wie finde ich den Celestial South Pole

Method #4: Starten mit SMC, 47 Tuc und Beta Hydri

Im Internet hat Alain Maury in seinem Blog eine sehr schöne Beschreibung für den Südhmmel abgegeben: http://www.spaceobs.com/en/Alain-Maury-s-Blog/How-to-polar-align-in-the-southern-hemisphere

Da die Gegend um den Himmelssüdpol keinerlei hellere Sterne aufweist, beginnen wir das Aufsuchen mit einigen markanten, helleren Objekten: LMC, SMC, 47 Tuc, Beta Hydri und “hoppen” von Beta Hydri aus über Gamma-1-2-3 Octantis zum Trapez aus Sigma, Tau, Chi, Ypsilon Octantis.

Wir starten mit der Kleinen Magellanschen Wolke (SMC) und sehen ganz in der Nähe 47 Tuc.

Die beiden nehmen wir als Basis für ein gleichschenkliges spitzes Dreieck in Richtung des Himmelssüdpols, wo die Spitze der Stern β Hydri sein soll.

Wenn wir die Linie dieses spitzen Dreiecks weiter gehen, kommen wir zu einer kleinen Gruppe aus drei Sternen: γ1, γ2 und γ3 Octantis. Diese drei Sterne bilden ein stumpfes gleichschenkliges Dreieck. Die stumpfe Spitze zeigt auf das Trapez, was wir suchen.

pole4.jpg

Sigma Octantis Aufsuchkarte – Copyright Alain Maury

Üben an echten Fotos

Zum Üben dieser Auffinde-Methode eignet sich ein schönes Weitwinkel-Foto des Südhimmels, das ich in einem Reisebericht von Stefan Westphal gefunden habe:

http://www.astrofreunde-franken.de/namibia_2014_sw.html

Am Ende des Berichts findet sich ein Link auf seine Fotosammlung, wo dann das Foto “Nächtliche Stimmungsaufnahme” sehr schön zum Auffinden von Sigma Octantis geeignet ist:

pole_landschaft.jpg

Copyright: Stefan Westphal – Nächtliche Stimmungsaufnahme – Kiripotib