Astronomie: Expansion des Universums

Gehört zu: Kosmologie
Siehe auch: Entfernungsbestimmung, Friedmann-Gleichung

Expansion des Universums

Youtube Video Josef Gassner vAzS (69): https://youtu.be/8avR8-2ndOA

Edwin Hubble (1889-1953) hatte 1929 durch Beobachtungen herausgefunden, dass Galaxien eine Rotverschiebung aufweisen – und zwar um so mehr, je weiter sie von uns entfernt sind. Die Rotverschiebung (Symbol z) misst man unmittelbar im Spektrum, die Entfernung (Symbol R) konnte Hubble zunächst durch die Methode der Delta-Cephedien als Standardkerzen vornehmen. Das nach ihm benannte Hubble-Gesetz ist also:

Rotverschiebung = const. * R

Wenn man die Rotverschiebung als verursacht durch eine Art “Fluchtgeschwindigkeit” v  versteht, kann man also schreiben:

v = H * R

Wegen der Grundannahmen von Homogenität und Isotropie, geht man nicht davon aus, das wir im Mittelpunkt dieser Bewegungen stehen, sonden dass eine allgemeine und allseitige Längen-Skalierung stattfindet. Alle Längen (Symbol R) im Universum verändern sich mit der Zeit mit einem Faktor, was man als Skalenfaktor a(t) beschreibt. Eine Länge R0 zum Zeitpunkt t=0 ist also zum Zeitpunkt t:

R(t) = a(t) * R0

oder: R0 = R(t) / a(t)

Dies ist also eine Ausdehnung (oder Kontraktion) des Raumes allein. Die Zeit ist von diesem Skalenfaktor (des Raumes) nicht unmittelbar betroffen. Es wäre also falsch zu sagen, die Raumzeit dehnt sich aus.

Um die Geschwindingkeit zu bekommen, differenziere ich obige Gleichung nach der Zeit (t):

\( v = \dot{R} = \dot{a}(t) \cdot R_0  \)

Nun setzte ich R0 = R(t) / a(t) ein und erhalte:

\( v = \dot{R} = \dot{a}(t) \cdot \frac{R(t)}{a(t)}  \)

und damit:

\( v = \frac{\dot{a}(t)}{a(t)} R(t) \)

Was genau das Hubble-Gesetz ist, mit der Hubble-Konstanten:

\( \displaystyle \frac{\dot{a}(t)}{a(t)}=H(t) \)

Als gegeben gilt für uns also die Expansion des Universums, die durch den Hubble-Parameter H(t) bzw. den Skalenfaktor a(t) beschrieben ist.

Diese Expansion des Universums mit dem Hubble-Gesetz hatte George Lemaître (1894-1966) im Jahre 1927 bereits theoretisch (also ohne praktische Beobachtungen) aus den Einsteinschen Feldgleichungen abgeleitet. Da Lemaître also bereits zwei Jahre vor Hubble den Zusammenhang zwischen Rotverschiebung und Entfernung herausbekommen hatte nennt man das Hubble-Gesetz auch machnmal “Hubble-Lemaître-Gesetz”.

Rotverschiebung

In den Spektren von vielen Galaxien kann man eine Verschiebung der Linien zum Roten hin beobachten.

Als Rotverschiebung z definiert man den Quotienten der Differenz zwischen der Wellenlänge im Beobachtersystem (obs) und derjenigen im Emittersystem (em):

\(\displaystyle z = \frac {\lambda_{obs} – \lambda_{em}}{\lambda_{em}} \)

Edwin Hubble interpretierte die Rotverschiebung z als Dopplereffekt hervorgerufen durch eine Fluchtgeschwindigkeit v der Galaxien.

\(\displaystyle z = \frac{v}{c} \)

Edwin Hubble konnte 1929 nachweisen, dass diese Rotverschiebung mit der Entfernung R der Galaxien zunimmt.  Es waren zwar nur 18 Galaxien, die Hubble untersuchte, doch mit wachsender Zahl hat sich dieses Ergebnis bestätigt. Dieser Zusammenhang ging als Hubble-Effekt in die Kosmologie ein und wird auch zur Entfernungsbestimmung benutzt.

\(\displaystyle v = H_0 \cdot R \)

Wenn man die Rotverschiebung als Effekt der Expasion des Universums mit dem Skalenfaktor a(t)  interpretiert ist also:

\(\displaystyle z = \frac{\lambda_{obs} – \lambda_{em}}{\lambda_{em}} = \frac{\lambda_{obs}}{\lambda_{em}} – 1 = \frac{1}{a} – 1\)

Das Hubble-Gesetz zeigt einen linearen Zusammenhang zwischen Fluchtgeschwindigkeit v (bzw. der Rotverschiebung z) und der Distanz R mit einer Proportionalitätskonstante, der Hubble-Konstanten H0. Die Linearität hat jedoch nur im nahen Universum ihre Gültigkeit, nämlich bis zu einem maximalen Abstand von gut 400 Mpc oder z  kleiner als 0,1. Für weiter entfernte Objekte bricht die Linearität zusammen.

Bei größeren Geschwindigkeiten (d.h. relativ zur Lichtgeschwindigkeit) müssen zusätzlich die relativistischen Effekte berücksichtigt werden. Dazu schreibe ich etwas in den separaten Blog-Posts   “Robertson-Walker-Metrik” und “Friedmann-Gleichung“.

Messung der Hubble-Konstante

Die nach Edwin Hubble benannte Hubble-Konstante, beschreibt die gegenwärtige Expansionsgeschwindigkeit des Universums.

Messungen zu Beginn des 21. Jahrhunderts ergaben Werte zwischen \(68 \frac{km}{s \cdot Mpc}\) und \(74 \frac{km}{s \cdot Mpc}\) .

Aus der Wikipedia https://de.wikipedia.org/wiki/Hubble-Konstante können wir entnehmen:

Unter Verwendung von Daten des Spitzer-Weltraumteleskops, basierend auf Beobachtungen im 3,6-μm-Bereich (mittleres Infrarot) zur Neukalibrierung der Cepheiden-Distanzskala, erhielten die Wissenschaftler des Carnegie Hubble Programs neue, hochgenaue Werte für die Hubble-Konstante. Dadurch konnte dieser nun um einen Faktor 3 genauer bestimmt werden. Er beträgt (74,3 ± 2,1) km/(s·Mpc). Damit hat die Hubble-Konstante nur noch eine Unsicherheit von drei Prozent (Stand 16. August 2012).

\({\displaystyle H_{0}\approx (74{,}3\pm 2{,}1)\ {\frac {\mathrm {km} }{\mathrm {s\cdot Mpc} }}} \)

Die Hubble-Sphäre ist der um den Beobachter gedachte kugelfömige Teil des Universums ausserhalb dessen sich Objekte aufgrund der Expansion des Universums mit Überlichtgeschwindigkeit entfernen. Diese Hubble-Sphäre ist also das beobachtbare Universum.

Der “proper” Radius einer Hubble-Sphäre (genannt Hubble-Radius oder Hubble-Länge) beträgt: \(  \Large \frac{c}{H_0} \)

Wie würde sich eine Expansion des Raumes gemäß dieser Hubble-Konstante auf bekannte Objekte im Universum auswirken?

Dazu dieses Google Sheet

Astronomie: Friedmann-Gleichung

Gehört zu: Kosmologie
Siehe auch: Expansion des Universums, Gravitation, Relativitätstheorie
Benutzt: Latex-Plugin für WordPress

Die Friedmann-Gleichung

In der Kosmologie wollen wir das Universum als Ganzes beschreiben inklusive der Entwicklung vom Urknall bis heute und weiter…
Am Ende kommen wir zum vielgenannten “Standardmodell der Kosmologie“…

Der Ausgangspunkt ist dabei das sog. Kosmologische Prinzip d.h. die Grundannahmen von Isotropie (das Universum sieht in alle Richtungen gleich aus) und Homogenität (das Universum sieht an jedem Punkt gleich aus). Wobei das alles nur bei der Betrachtung sehr großer Skalen der Fall ist (hunderte von Mega Parsec).

Die Expansion des Universums

Zur Expansion des Universums hatte ich einen eigenen Blog-Post geschrieben.

Unter der Grundannahme von Homogenität und Isotropie können wir die Expansion des Universums durch den sog. Skalenfaktor a(t) beschreiben.

Die Friedmann-Gleichung mit Newtonscher Mechanik

Youtube-Video: Josef Gassner: Von Aristoteles zur Stringtheorie

Wenn man zunächst ohne Relativitätstheorie (also nur mit der Klassischen Newtonschen Mechanik) rechnet, ergibt sich allein aus unseren Grundprämissen (Isotropie und Homogenität) und der Erhaltung der Energie (kinetische + potentielle) schon die klassische Friedmann-Gleichung. Später werden wir sehen, wie sich das relativistisch rechnet und dann für große Massen und große Abstände gilt…

Wegen der Homogenität können wir irgend einen ganz beliebigen Punkt im Universum herannehmen.
An jedem solchen Punkt im Universum haben wir eine gleiche Dichte ρ deren Wirkung ein Gravitationsfeld ist.
Im Newtonschen Ansatz ist diese Dichte allein die Massendichte, im relativistischen Fall käme noch die Energiedichte hinzu, die ebenfalls gravitativ wirken würde.
Wir betrachten dann einen Testkörper der Masse m im Abstand R von diesem Punkt.

Aufgrund der Expansion des Universums verändert sich dieser Abstand R mit der Zeit t gemäß dem Skalenfaktor:

\( R(t) = a(t) \cdot R_0 \)  Wobei R0 der heutige Abstand sein soll

Dieser Testkörper hat nun eine Potentielle Energie (Epot) im Gravitationsfeld und eine Kinetische Energie (Ekin) aufgrund der Expansionsbewegung.

Als Kinetische Energie bekommen wir:

\( E_{kin} = \frac{m}{2} \dot{R}^2  \)

Die Potentielle Energie bekommen wir, wenn wir die Gravitationskräfte betrachten, die auf den Probekörper wirken.

Als Gravitationswirkung haben wir die Masse der Kugel vom Radius R um den betrachteten Punkt. Da wir eine homogene Dichte ρ haben, ergibt sich diese Masse zu:

\(  M = \frac{4}{3} \pi R^3 \rho  \)

Nach Newton können wir diesen Teil der Gravitation wie eine punktförmige Masse berechnen. Die Massen ausserhalb dieser Kugel heben sich nach dem Newtonschen Kugelschalen-Theorem gegenseitig zu Null  auf.

Das Gravitationspotential der Kugel ist also:

\(  \Phi(r) = – \frac{G \cdot M}{r}\)

und als Potentielle Energie der unserer Probemasse ergibt sich:

\(  E_{pot} = \Phi(R) \cdot m = – \frac{G \cdot M \cdot m}{R}\)

Wenn wir hier die Masse M, nach obiger Formel einsetzen, erhalten wir:

\(  E_{pot} = – \frac{G  \cdot m}{R}  \cdot \frac{4}{3}  \pi R^3 \rho      \)

und schließlich:

\(  E_{pot} = – \frac{4}{3}  \pi \cdot G  \cdot m  \cdot  R^2 \cdot \rho      \)

Die Sume aus kinetischer und potentieller Energie soll gleich bleiben:

\(  E_{kin} + E_{pot} = \frac{m}{2} \dot{R}^2  – \frac{4}{3}  \pi \cdot G  \cdot m  \cdot  R^2 \cdot \rho  = E = const.   \)

Wenn wir dass mit 2 multiplizieren und die Masse m herauskürzen bekommen wir:

\(    \dot{R}^2  – \frac{8}{3}  \pi \cdot G  \cdot  R^2 \cdot \rho  = 2 \frac{E}{m} = const.  \)

Wenn wir \( \dot{R}(t) \: und \: R(t) \) einsetzen bekommen wir::

\(    (\dot{a} \cdot R_0)^2  – \frac{8}{3}  \pi \cdot G  \cdot  (a \cdot R_0)^2 \cdot \rho  = 2 \frac{E}{m} = const.  \)

Dies können wir noch durch R02 dividieren und bekommen:

\(    (\dot{a} )^2  – \frac{8}{3}  \pi \cdot G  \cdot  (a )^2 \cdot \rho  = 2 \frac{E}{m \cdot {R_0}^2} = const.  \)

Nun dividieren wir noch durch a2 und bringen den Minus-Term nach rechts:

\(\Large \left(\frac{\dot{a}}{a}\right)^2 = \frac{8}{3} \pi \cdot G \cdot \rho \; – \: \frac{const}{a^2} \)

Das ist schon die gerühmte Friedman-Gleichung…

Damit die die Newtonsche Friedmann-Gleichung ganz analog der relativistischen aussieht, formen wir sie etwas um:

\(\Large \left(\frac{\dot{a}}{a}\right)^2 = \frac{8}{3} \pi \cdot G \cdot \rho \; – \: \frac{k \cdot c^2}{a^2} \)

k nennen wir Krümmungsparameter; das wäre also:

\( \Large k = \frac{2 E}{m \cdot c^2 \cdot {R_0}^2} \)

Dieser Krümmungsparameter wird uns später bei der Robertson-Walker-Metrik wieder begegnen.

Je nach dem wie der sog. Krümmungsparameter k ist sagt man:

  • wenn k=0  ==> “flaches” Universum (Euklidische Metrik)
  • wenn k>0  ==> “geschlossens” Universum (Zweidimensionale Metrik analog einer Kugeloberfläche)
  • wenn k<0 ==> “offenes” Universum (Zweidimensionale Metrik analog einer Sattelfläche)

Im Falle k=0 würde sich für die Dichte ergeben:

\( \Large \rho_0 =  \frac{3 \cdot \left(\frac{\dot{a}}{a}\right)^2}{8 \pi G} \)

Oder, wenn wir für \(\frac{\dot{a}}{a} \) die Hubble-Konstate H einsetzen:

\( \Large \rho_0 =  \frac{3 H^2}{8 \pi G} \)

Diese Dichte nennen die Kosmologen gern die “kritische Dichte” und messen in ihren Modellen die Dichte dann gerne im Verhältnis zu dieser “kritischen Dichte”:

\( \Large \Omega = \frac{\rho}{\rho_0} \)

Die Friedmann-Gleichung mit der ART

Diesen Abschnitt muss ich noch überarbeiten…

Wir gehen aus von den Einsteinschen Feldgleichungen der Allgemeinen Relativitätstheorie (ART)…

\( \Large R_{\mu \nu} – \frac{1}{2} R g_{\mu \nu} + \Lambda g_{\mu \nu} = \frac{8 \pi G}{c^4} T_{\mu \nu} \\\)

Der Energie-Impuls-Tensor ist:

\(\Large T_{\mu \nu} = \left[ \begin{array}{rrrr} -\rho c^2 & 0 & 0 & 0\\  0 & p & 0  & 0\\  0 & 0 & p & 0\\ 0 & 0 & 0 & p\end{array} \right]  \\ \)

Wobei ρ(t) die Massendichte und p(t) der Druck ist.

Ich muss zugeben, dass ich das alles in keiner Weise mehr verstehe: Der Energie-Impuls-Tensor ist für mich völlig unverständlich…

===================================================

Zur sog. Friedmann-Gleichung können wir der Wikipedia (https://de.wikipedia.org/wiki/Friedmann-Gleichung) folgendes entnehmen:

\( \displaystyle \frac{\dot a}{a}=H_{0}(\frac{\Omega_{m0}}{a^3}+(1-\Omega_{m0}))^{\frac{1}{2}} \)

Wobei hier die sog. Hubble-Konstante H, die ja nicht wirklich konstant ist, vorkommt. In neuerer Zeit wird statt “Hubble-Konstante” auch der Begriff “Hubble-Parameter” verwendet.

Omega M = Anteil an Materie (barionisch und dunkle)

Omega groß Lambda = Anteil an dunkler Energie

Omega rad = Anteil Strahlungsenergie

k = Krümmung

Link: https://www.spektrum.de/lexikon/astronomie/friedmann-weltmodell/136

 

Astronomie: Kosmologie

Gehört zu: Astronomie
Siehe auch: Mathematik, Physik, Diagramm, Teilchenphysik, Entfernungsbestimmung, Relativitätstheorie
Benötigt: WordPress Latex-Plugin, Grafiken von GitHub, Bilder von Wikipedia

Kosmologie

In der Kosmologie wollen wir das Universum als Ganzes beschreiben inklusive der Entwicklung vom Urknall bis heute und weiter…
Am Ende kommen wir zum vielgenannten “Standardmodell der Kosmologie“…

Unsere Grundannahmen dabei sind: Isotropie (das Universum sieht in alle Richtungen gleich aus) und Homogenität (das Universum sieht an jedem Punkt gleich aus). Wobei das alles nur bei der Betrachtung sehr großer Skalen der Fall ist.

Expansion des Universums

Einsteins Gleichungen der Allgemenien Relativitätstheorie (ART) haben zwar eine statische Lösung (Einstein – De Sitter Universum), aber die allgemeinen Lösungen erheben ein dynamisches Universum z.B. mit einer Expansion.

Hierzu habe ich einen eigenen Blog-Post begonnen.

Die Friedmann-Gleichung

Auch hierzu habe ich einen eigenen Blog-Post begonnen.

Kosmische Hintergrundstrahlung

Am 15.5.2018 nahm ich an einem Gesprächskreis über die “CMB” (Cosmic Microwave Background radiation)  teil.

Themen waren u.a.:

  • Wie kommt es, dass die kosmische Hintergrundstrahlung (CMB) heute bei uns aus allen Richtungen gleichmäßig (“isotrop”) ankommt?
  • Kann die Fluchtgeschwindigkeit von Galaxien bzw. die Expansionsgeschwindigket des Raumes schneller als die Lichtgeschwindigkeit sein?
  • Woher kommt die Rotverschiebung der Galaxien?

Stichwörter

Da fielen eine Reihe von Stichwörtern, die mir nicht so geläufig waren:

  • Minkowski-Raum d.h. ohne Gravitation  –> Minkowski-Diagramm s.u.
  • Friedmann Gleichung
  • Robertson-Walker-Metrik
  • Roger Penrose “CCC”
  • Steinhardt Princeton

Entfernungen im Universum

In der Kosmologie hat man zwei verschiedene Maße für Entfernungen im Universum (Davis & Lineweaver 2004):

Proper Distance: Entfernung eines Objekts zu einem bestimmten Zeitpunkt. Wegen der Expansion des Universums ändert sich die “Proper Distance” mit der Zeit.

Comoving Distance: Entfernung eines Objekts, die sich mit der Zeit nicht ändert – also die Expansion des Universums “herausgerechnet”. Die “Comoving Distance” wird definiert als identisch der “Proper Distance” zum jetzigen Zeitpunkt. Man spricht auch vom sog. Skalenfaktor a(t), der sich im Laufe der Zeit ändert. Zur Zeit t=heute ist a(heute)=1.

Minkowski  (Raum, Diagramm, Metrik)

Hermann Minkowski (1864-1909) war Mathematiker und lehrte an den Universitäten Bonn, Königsberg, Zürich und hatte schließlich einen Lehrstuhl in Göttingen. In Zürich war er einer der Lehrer von Albert Einstein.

Auf Minkowski geht die Idee zurück, die Welt (wie Lorenztranformation und Spezielle Relativitätstheorie) als einen nicht-euklidischen vierdimensionalen Raum zu verstehen. Wobei er mit  anschaulichen Bildern (grafischen Darstellungen) anstatt mit schwerer verständlichen Formeln arbeitete.

Zwei Begriffe kommen sofort bei “Minkowski” ins Gespräch:

  • Minkowski-Raum
  • Minkowski-Diagramm

Der Minkowski-Raum ist eine “größere Geschichte”: Ein vierdimensionaler Raum mit einer speziellen Metrik, denn in einem Raum möchte man ja Abstände zweier Punkte messen, Länge von Vektoren, Winkel und Flächen bestimmen.  Eine solche Metrik kann man beispielsweise durch ein Skalarprodukt von Vektoren definieren.
Eine einfache Definition der Metrik im Minkowski-Raum ist gegeben durch (“Linienelement”):

ds²  = c² dt² – (dx² + dy² + dz²)

Soetwas schreiben die Oberspezialisten gern als einen Tensor, auch “metrischer Tensor” genannt:  \( ds^2 = g_{\mu \nu} dx^{\mu} dx^{\nu}\) (bei einem Tensor wird “implizit” summiert.)

Ein Minkowski-Diagramm ist eine ganz einfache grafische Darstellung, nämlich ein rechtwinkliges zweidimensionales Koordinatensystem mit einer Zeitachse und einer Raumachse (also der dreidimensionale Raum auf eine Dimension vereinfacht) .
Beobachter, die sich mit konstanter Geschwindigkeit bewegen (Inertialsysteme) haben dann als sog. “Weltlinie” eine Gerade.

Abbildung 1: Weltlinie eines Photons (Github: weltlinie.svg)

weltlinie.svg

Weltlinie eines Photons

Wenn man auf der Ordinate nicht die Zeit selbst, sondern c*t aufträgt, wird die “Weltlinie” eines Photons die 45° Gerade.

Wenn man unser Universum als Minkowski-Raum verstehen wollte, mit einer durch das Linienelement

ds²  = c² dt² – (dx² + dy² + dz²)

definierten Metrik, wäre das ein “flacher” Raum, also nicht gekrümmt (so zu sagen ohne Gravitation).

In so einem Minkowski-Raum, also mit der Minkowski-Metrik, lässt sich die Spezielle Relativitätstheorie (SRT) sehr einfach grafisch darstellen.

Expandierendes Universum

In einem expandierenden Universum kann man eine Metrik definieren durch ein Linienelement:

ds²  = c² dt² – a²(t) (dx² + dy² + dz²)

Mit a(t) als sog. Expansionsfaktor, auch “Skalenfaktor” genannt.

Robertson-Walker-Metrik

Durch die Forderung nach Isotropie erhält man aus den Einsteinschen Feldgleichungen der Allgemeinen Relativitätstheorie (ART) das Robertson-Walker-Linienelement

\( {\displaystyle \mathrm {d} s^{2}=c^{2}\mathrm {d} t^{2}-a(t)^{2}R_{\mathrm {C} }^{2}\left({\frac {\mathrm {d} x^{2}}{1-k\ x^{2}}}+x^{2}\mathrm {d} \Omega ^{2}\right)\ ,} \)

wobei der Krümmungsparameter k = + 1 , 0 , − 1 ist und \( {\displaystyle x=r/R_{\mathrm {C} }}\) .

Urknall: Geschichte des Universums

Abbildung 2: Geschichte des Universums (Wikipedia: History_of_the_Universe_lang.svg)

Notizen zum Vortrag im DESY am 6.2.2020

Siehe auch: Kosmische Hintergrundstrahlung

CMB = Cosmic Microwave Background Radiation, also die Hintergrundsrahlung

Heute messen wir eine Plancksche Schwarzkörperstrahlung von 2,7 K  isotrop

Entdeckt wurde die CMB zufällig (als Störstrahlung) von Wilson & Penzias bei den Bell Labs New Jersey. Sie erhielten den Nobelpreis dafür.

Gleichzeitig haben Astrophysiker im nahe gelegenen Princton das Big-Bang-Modell mit einem mathematischen Modell dargestellt. Dieses Modell sagte eine kosmische Hintergrundstrahlung voraus. Man musste so eine Strahlung nur noch praktisch nachweisen.

Am Anfang war demnach ein “Big Bang”. Das Universum bestand aus sehr heißem Plasma (1032 Kelvin) und kühlte dann aber ab.
Das Universum bestand aus Materie (Protonen und freien Elektronen) sowie aus Strahlung (Photonen).
Die Photonen konnten nicht herausfliegen, weil sie extrem oft mit den freien Elektronen kollidierten.

Solange die Temperatur schön heiß war, konnten die freien Elektronen nicht dauerhaft an die Protonen gebunden werden. Die Bindungsenergie eines Elektrons im Wasserstoffatom liegt bei 13,6 eV, was so ca. einer Temperatur von 3000 K entspricht. Erst bei einer Abkühlung auf ca. 3000 K konnten dann die freien Elektronen an Protonen gebunden werden und sich so neutrale Wasserstoffatome bilden. Man nennt dieses “Rekombination” (obwohl es ja keine “erneute Kombination” war – aber der Begriff ist historisch). Nun gab es nur noch wenige freie Elektronen und der Weg war frei für die Photonen das Plasma zu verlassen.

Damit gab es zum ersten Mal “Licht” im Universum. Modellrechnungen ergaben, das diese “Rekombination” so etwa 380000 Jahre nach dem Urknall geschah.

Genauere Messungen der CMB wurden später mit Erdsatelliten gemacht.

  • 1989-1993 COBE – Cosmic Background Explorer
  • 2001-2010 WMAP – Wilkinson Microwave (im Lagrangepunkt L2)
  • 2009-2013 ESA Planck-Mision (im Lagrangepunkt L2)

Der Satellit COBE hat die CMB bei verscheidenen Frequenzen gemessen und so sehr genau die Kurve eines Planckschen schwarzen Stralers erhalten. Die Temperatur dieses Schwarzen Strahlers (Mikrowellenhintergrund) beträgt 2,735 K

Noch genauere Messungen durch WMAP und Planck zeigten in verscheidenen Richtungen minimale Schwankungen dieser Temperatur.

Abbildung 3: CMB Temperatur Fluktuationen gemessen vom WMAP (Wikimedia: WMAP_2010.png)

CMB Temperatur Fluktuationen gemessen vom WMAP

Wenn man aus diesen minimalen Schwankungen (Frequenz bzw. Temperatur) die bekannten Bewegungen (Milchstraße, Sonne etc.) herausrechnet, bleiben relativ gleichmäßg verteilte kleinste Temperaturschwankungen übrig, von denen man das sog. “Leistungsspektrum” (Stärke der Schwankung in Abhängigkeit von der Winkelausdehnung) analysiert.

Die Astrophysiker haben ein mathematisches Modell entworfen, das die Entwicklung des Universums seit dem Urknall beschreibt. Mit Hilfe der Methode der kleinsten Quadrate kann man die Modellparameter, die die beste Passung ergeben bestimmen. Das ganze nennt sich “Lambda-CDM-Modell”, was auch als “Standardmodell der Kosmologie” bezeichnet wird.

Zu den Modellparametern dieses Standardmodells gehören:

  • Anteil der baryonischen Materie:  4,9%
  • Anteil der “dunklen” Materie:       26,8%
  • Anteil der “Dunklen Energie”:       68,3%
  • Hubblekonstante…

Das Alter des Universums ergibt sich zu 13,8 Millarden Jahren.

Stark vereinfachtes Modell

Dies stark vereinfachte Modell habe ich gefunden bei:  http://scienceblogs.de/hier-wohnen-drachen/2010/09/19/wie-gross-ist-das-beobachtbare-universum/

Nur eine Raumkoordinate: x und eine Zeitkoordinate: t

Messung der Zeit in Sekunden, Messung der Raumkoordinate in Lichtsekunden

Szenario 1:

Wir beobachten 7 Galaxien (n = 1, 2, …, 7), die sich vom Beobachter mit Fluchtgeschwindigkeit entfernen.

Anfangsbedingungen (zum Zeitpunkt t=0):

  • Entfernung vom Beobachter: \( x_n(0) = n \)
  • Fluchtgeschwindigkeit bezogen auf den Beobachter: \( \dot x_n(0) = \Large \frac{n}{4} \)
  • Wir haben also zum Zeitpunkt t=0 eine Hubble-Konstante von \(  H(0)= \Large \frac{\dot x(0)}{x(0)} = \large 0,25 \)

Differentialgleichung (Bewegungsgleichung): \( \dot x_n(t) = \Large \frac{n}{4} \)

Lösung: \( x_n(t) = \Large \frac{n}{4} t + n \)

Damit wäre der Hubble-Parameter in unserem “Vereinfachten Modell”:
\( H(t) = \Large \frac{\dot x}{x} = \frac{\Large \frac{n}{4}}{\Large \frac{n}{4} \cdot t + n} = \Large \frac{1}{t+4} \)

Abbildung 4: Raum-Zeit-Diagramm der 7 Galaxien (Github: Kosmologie-1.svg)

Raum-Zeit-Diagramm der 7 Galaxien

Szenario 2:

Zusätzlich zu Szenario 1 wird zum Zeitpunkt t=0 ein Lichtsignal von Galaxis 7 in Richtung des Beobachters gesendet.

Anfangsbedingungen (zum Zeitpunkt t=0):

  • Entfernung des Signals vom Beobachter: x(0) = 7
  • Geschwindigkeit des Signals in Bezug auf den Beobachter: v(0) = c – Fluchtgeschwindigkeit der Galaxie 7 also v(0) = 1 – (7/4) = – (3/4)

Bewegungsgleichung des Lichtsignals:

  • v(t) = c – Fluchtgeschwindigkeit (x,t)
  • \(  \dot x = 1 – \Large \frac{x}{t + 4}  \)

Abbildung 5: Raum-Zeit-Diagramm der 7 Galaxien mit einem Lichtsignal (Github: Kosmologie-2.svg)

7 Galaxien und ein Lichtsignal