Astronomie Software: Sky Safari

Gehört zu: Astro-Software
Siehe auch: Planetarium-Software

Astronomie-Software: Sky Safari

Sky Safari ist eine Astro-Software (eine App) für Tablets oder SmartPhones. Wobei iOS und Android unterstützt werden.

Android-Versionen

  • Sky Safari 6 Basic   “Astronomy App”    kostenlos
  • Sky Safari 6 Plus    7,49 Euro
  • Sky Safari 6 Pro    27,99 Euro

Manual: https://skysafariastronomy.com/support/manual/index.html

Was leistet SkySafari?

Das kostenlose SkySafari ist ein einfaches Planetariumsprogramm.
Es gibt viele kostenpflichtige Zusätze.

Das kostenpflichtige SkySafari Plus bietet folgende Zusätze:

  • Mehr Objekte: 2,5 Mio Sterne, 31000 DSOs etc.
  • Himmelsansichten von ausserhalb der Erde
  • Telscope Control über WiFi – Benötigt die kostenpflichtigen Zusatzprodukte SkyFi  (199 USD, Serial to WiFi Adapter) oder SkyWire (iOS only)

    • Evtl. geht es auch über die “Skysafari Bridge”, die in ASIair enthalten sein soll
  • Observing Lists

Das kostenpflichtige SkySafari Pro bietet weitere Zusätze:

  • Mehr Objekte: 25 Mio Sterne, 750000 Galxien etc.
  • Encyclopedic  descriptions and images

 

Astronomie: Astrofotografie in Namibia

Gehört zu: Beobachtungsplätze
Siehe auch: Lichtverschmutzung, Sternhaufen, Galaxien, Nebel

Astrofotografie in Namiba

Die Astrofotografie in Namibia gehört zu den “Geheimtipps” der Astros, wenn es um richtig dunklen Himmel geht, denn dort gibt es kaum Lichtverschmutzung.

Die meisten meiner Astro-Kollegen sind ja richtige “Profi-Spezialisten” und gehen für die Astrofotografie in Namibia nach Tivoli.

Ich las zufälligerweise im April 2017 eine Anzeige der Astrofarm Kiripotib und bewarb mich dort als sog.  Astrobetreuer.

Auf der Farm Kiripotib gibt es ein spezielles Astroangebot.

Astrofotografie in Namibia 2017

Als “Praktikant” für Astrofotografie in Namibia  begab ich mit 2017 nach Kiripotib vom 12. bis 18.9.2017

Für die Astro-Fotos am Teleskop nehme ich meine DSLR Canon EOS 600D.

Als Foto-Software nehme ich auf Anraten von Berd erst einmal (12.9.2017) “Canon EOS Utility DPP” (DPP=Digital Photo Professional).

Am 15.9.2017 wechsele ich die Foto-Software von Canon DPP auf die Software APT.

Foto: Erdschattenbogen (Panorama mit dem iPhone)

Foto: 47 Tuc

Foto: Kleine Magellansche Wolke (SMC) mit 47 Tuc  (DSLR 135mm)

Auch ein erstes Foto von NGC6334, dem Katzenpfoten-Nebel, gelang. In 2019 habe ich aber noch ein besseres Foto von diesem Objekt gemacht.

Auch ein schönes Foto von Omega Centauri gelang. In 2019 habe ich aber noch ein besseres Foto von diesem Objekt gemacht.

Foto: NGC 253 – Silver Dollar Galaxy

Artikel: Rotlicht-Scheibe für Notebook

Astrofotografie in Namibia 2018

Als verantwortlicher “Astrobetreuer” ging ich 2018 nach Kiripotib vom 4.6. bis 20.6.2018

Foto: Die Große Magellansche Wolke – LMC

Foto: M8 Lagoon – In 2019 habe ich ein besseres Foto von M8 gemacht.

Foto: M20 Trifid – In 2019 habe ich ein besseres Foto von M20 gemacht.

Foto: Strichspuren – Star Trails

Foto: Zodiakallicht

Foto: Neigungsmesser  (Wie finde ich Sigma Octantis?)

Astrofotografie in Namibia 2019

Astrobetreuer auf Kiripotb vom 21.8. bis 8.9.2019

Der Hinflug wurde von Air Namibia kurzfristig abgesagt, ich konnte aber neu buchen mit Ethiopian über Addis Abeba…

Artikel: FS-2-Steuerung per Computer

Foto: Omega Centauri

Foto: Eta Carinae Nebel

Foto: Running Chicken Nebel

Foto: Katzenpfoten-Nebel mit Tri-Narrowband-Filter

Astrofotografie in Namibia 2020

wegen Corona ausgefallen

Astrofotografie in Namibia 2021

Im Jahre 2021 möchte ich endlich wieder Astrofotografie in Namibia betreiben.

Neumondperiode

Im Jahr 2021 haben wir folgende Neumondphasen.

Geplant ist die Astrozeit vom 2.6. bis 15.6.2021 (ursprünglich war für mich der Mai geplant, was ich auf Wunsch von Gert aber mit seiner Juni-Periode getauscht habe).

Flug-Möglichkeiten:

Hinflug (Non Stop)

Condor Mo 31.5.2021 DE2292 Preis Classic 376,99, Flex 436,36 + Gepäck 1x20kg zu 85,38

Air Namibia Mo 31.05.2021 SW286 Preis 467,– Gepäck 1x30kg inklusive

Eurowings So 30.5.2021    Preis Economy Smart Classic 442,74

Rückflug (Non Stop)

Condor Fr. 18.6.2021  DE2293 Preis Classic 388,98 Gepäck 1x20kg inklusive, Flex 450,24

Air Namibia Do. 17.6.2021 SW285 Preis 307,01 Gepäck 1x30kg inklusive

Eurowings Fr. 18.6.2021 EW1279  Brussels Airline Preis 274,15 inklusive 1x23kg

Lufthansa  Fr. 18.6.2021 LH5435  Brussel Airline/Eurowings Preis: 332,06 USD inklusive 1x20kg

Mögliche Beobachtungsobjekte

  1. Veil Nebula  NGC 6960 “Western Veil”
    1. “Finger of God”
    2. Wann:  SPÄT
    3. Teleskop: f=300
  2. Markanian Chain M84 + M86 + … +
    1. Wann: FRÜH
    2. Teleskop: f=500
  3. Leo Triplet M66 + M65 + NGC3628 + NGC3627 + NGC3623    “HELL”
    1. Wann:
    2. Teleskop: Foto Newton   (10″ 254mm/1000mm)
  4. Gegenschein
    1. Wann:
    2. Teleskop:

 

 

 

Astronomie: Aufnahmeverfahren (Image Capturing)

Gehört zu: Astrofotografie
Siehe auch: Bildbearbeitung, Calibration

Astrofotografie: Historie

Früher als man noch keine digtalen Kameras (Sensoren) hatte und nur den chemischen Film, war klar: man muss lange belichten.
Link: http://www.astrotreff.de/topic.asp?TOPIC_ID=237847

Die ersten Digitalkameras hatten als Sensor CCD-Chips – heute findet man immer mehr CMOS-Chips.

Quellen und Links

Ich bin durch Videos von Nico Carver auf Youtube darauf gekommen, mal etwas ausführlicher die Vorgehensweise (Workflow) bei meiner Astro-Fotografie zu beschreiben.

Welche Geräte setze ich ein?

Hier behandele ich zuerst den Fall, dass eine Digitalkamera (One Shot Colour) fokal an einem Teleskop angebracht wurde und Fotos (keine Videos) geschossen werden sollen.

Einstellungen für die Digitalkamera

Wenn man die Geräte und den Plan zusammen hat und das Wetter mitspielt, geht es an das Fotografieren ansich, also das Aufnehmen eines Bildes (Image Capturing).

Dazu muss man das Beobachtungsobjekt richig ins Gesichtsfeld einstellen (Suchen, Framing), das Bild schön scharf stellen (Fokussieren) und dann belichten – aber mit welchen Einstellungen?

  • Welche Empfindlichkeit?    (ISO bzw. Gain)
  • Welche Blende?
  • Welche Belichtungszeit?
  • Wieviele Einzelbilder?

ISO Empfindlichkeit

Als ISO-Zahl für die Empfindlichkeit verwende ich bei meiner Digitalkamera Canon EOS 600Da meist 800 ISO oder 1600 ISO.
Höheres ISO (Gain) rauscht mehr, also vielleicht mal ISO 400 probieren…

Kamerasensoren können “ISO-invariant” sein oder auch nicht.
Link: https://www.stephanwiesner.de/blog/iso-invarianz-iso-loser-sensor/

Blende

Die Blende heisst in der Astrofotografie “Öffnungsverhältnis” und ist durch das Gerät praktisch vorgegeben. Mein kleiner Refraktor Orion ED 80/600 hat immer 600/80 = 7,5 oder mit dem Flattener/Reducer 510/80 = 6,375 – sprich also f/7,5 bzw. f/6,375.

Belichtungszeit

Prinzipiell gilt: Mit steigender Belichtungszeit sammelt man mehr Licht und das Nutzsignal hebt sich besser vom Hintergrund ab: sog. Signal-Noise-Ratio = SNR. Aber da kommen noch weitere Aspekte hinzu.

Mit steigender Belichtungszeit (ceteris paribus):

  • verbessert sich der Signal-Rausch-Abstand (SNR)
  • nimmt auch das Dunkelrauschen (des Sensors) zu; dieses kann man aber durch den Abzug von Dunkelbildern (s.o.) komplett eliminieren.
  • wird der Himmelshintergrund immer heller.  Das sieht man im Histogramm: dort wandert der “Berg” immer weiter nach rechts.
  • macht sich die (scheinbare) Bewegung der Himmelsobjekte durch die Erdrotation immer stärker bemerkbar; diesen Effekt können wir durch Nachführung eliminieren

Maximale Belichtungszeit limitiert durch Himmelshelligkeit

Um die maximale Belichtungszeit zu finden, mache ich bei konstantem ISO eine kleine Serie von Aufnahmen mit zunehmender Belichtungszeit und schaue dann die Histogramme an. Je länger ich belichte, um so mehr rückt das Histogramm an den rechten Rand d.h. das Bild wird heller und heller. Ich muss eine Belichtungszeit finden, bei das das Histogramm nicht ganz am linken und auch nicht ganz am rechten Rand steht. Das hängt näturlich von der Himmelshelligkeit ab, also von der Lichtverschmutzung am Standort (natürlich fotografiere ich erst nach Ende der astronomischen Dämmerung und wenn der Mond nicht da ist).

  • In Handeloh (Bortle 4) finde ich so: xyz
  • In Hamburg-Eimsbüttel (Bortle 7) habe ich: xyz

Diese Ergebnise können je nach ISO-Einstellung der Digitalkamera leicht unterschiedlich sein oder auch nicht s.o. ” ISO-Invarianz”.

Maximale Belichtungszeit limitiert durch Nachführung

Ab welcher Belichtungszeit werden die Sterne nicht mehr punktförmig, sondern Striche?

Als Fausregel gilt: Max. Beliechtungszeit in Sekunden = 500 / Brennweite in Millimetern

Siehe dazu: Nachführung

Rauschen bei der Digitalkamera

Ein elektronischer Sensor erzeugt auch immer einen “Dunkelstrom” der sich als leichtes Rauschen im gesamten Hintergrund zeigt. Dieser ist abhängig von der Dauer der Belichtung und von der eingestellten Empfindlichkeit (ISO bzw. Gain).
Dieses Dunkelrauschen können wir komplett eliminieren, indem wir Dunkelbilder mit gleicher Belichtungszeit und gleicher Empfindlichkeit bei gleicher Temperatur aufnehmen und so ein Dunkelbild vom Nutzbild subtrahieren. Das funktioniert, weil dieses Dunkelrauschen komplett zufällig verteilt ist.

Die Aufnahmesequenz für mein Beobachtungsobjekt

Ist das Beobachtungsobjekt scharfgestellt (Fokussieren) und schö in den gewünschten Ausschnitt eingestellt (Framing) wird man die eingentliche Fotoaufnahmen automatisiert durchfürhren wollen. Das geht beispielsweise so:

  • Ohne Computer im Felde: Intervallometer
  • Mit Computer im Felde: Software wie z.B. APT, BackyardEOS, Sequence generator Pro, MaximDL,…

Planung einer Aufnahmesequenz

Gesetzt den Fall, ich wollte für ein Beobachtungsobjekt eine Gesamtbelichtungszeit von 60 Minuten bei ISO 800 erreichen, so kann ich das durch Stacking ja auf verschiedenem Weg erreichem. beispielsweise:

  • 1 Aufnahme mit 60 Minuten (=3600 Sekunden)
  • 10 Aufnahmen mit je 6 Minuten (=360 Sekunden)
  • 100 Aufnahmen mit je 36 Sekunden
  • 720 Aufnahmen mit je 5 Sekunden
  • etc.

Was ist dann die richtige Wahl? Sicher muß ich berücksichtigen, was meine (oben ermittelte) maximale Belichtungszeit wegen Himmelshelligkeit ist.

  • Das ist in Hamburg-Eimsbüttel dann die 30 Sekunden bei ISO 800. Damit bräuchte ich also 3600:30=120 Einzelaufnahmen.
  • Das wäre in Handeloh dann 300 Sekunden bei ISO 800. Was 3600:300=12 Einzelaufnahmen bedeutet.

Nun gibt es noch zwei Dinge zu berücksichtigen:

  • Nachführung
  • Ausleserauschen

Das Ausleserauchen entseht bei jedem Einzelbild und soll proportional der Wurzel aus n, der Anzahl der Einzelbilder sein.
Link: http://www.astrotreff.de/topic.asp?TOPIC_ID=237847&whichpage=1#829591

Durchführung einer Aufnahmesequenz

Ist das Beobachtungsobjekt scharfgestellt (Fokussieren), schön in den gewünschten Ausschnitt eingestellt (Framing) und entschieden welche Aufnahmesequenz man machen möchte, dann wird man die eingentliche Fotoaufnahmen automatisiert durchführren wollen. Das geht beispielsweise so:

Nachbearbeitung der Bilder (Post Processing)

Sind die Aufnahmen im Kasten, beginnt die Bearbeitung im Computer:

 

Astronomie: Remote Control

Gehört zu: Astronomie
Siehe auch: Kabelmanagement, Nano-Computer ZOTAC, Remote Capturing, Remote Sternwarten, ComputerAstrobaer, Mein Observatorium

Stand: 12.12.2023

Warnung / Disclaimer

Diesen Blog-Artikel schreibe ich ausschließlich zur persönlichen Dokumentation; quasi als elektronisches persönliches Notizbuch. Wenn es Andere nützlich finden, freue ich mich, aber ich kann kleinerlei Garantie für die Richtigkeit bzw. die Fehlerfreiheit übernehmen. Insbesondere weise ich darauf hin, dass jeder, der diese meine Notizen benutzt, das auf eigene Gefahr tut.

Remote Control in der Astrofotografie

Zu einem gewissen Zeitpunkt in der Entwicklung meiner Astro-Geräte kam bei mir der Wunsch hoch, das alles “Remote” steuern zu können: z.B. um nicht draussen in der Kälte beim Teleskop sitzen zu müssen, sondern alles vom warmen Wohnzimmer steuern zu können. Das ist allerdings kein “Muss”, sondern eine nette Bequemlichkeit.

Heutzutage (2019) wird oft angeboten, seine Montierung über WLAN oder ähnlich, also remote, zu steuern. Das ist aber weniger als die halbe Miete, denn ausser der Steuerung der Montierung (hauptsächlich Goto) habe ich ja noch eine DSLR,  eine Autoguiding-Kamera und einen Motor-Fokusser – alles das will ja auch remote gesteuert werden. Also:

Wir haben also 4 Datenverbindungen, die als USB realisert werden. Um diese mit einem Remote Computer zu steuern, gibt es prinzipiell mehrere Möglichkeiten:

  • Lokaler USB-Hub verbunden über USB-Kabel mit einem Windows-Computer
  • Lokaler USB-Hub (USB Server) verbunden über WLAN-Modul mit einem Remote-Windows-Computer
  • Lokaler Windows-Mini-Computer mit den USB-Anschlüssen ferngesteuert über WLAN TCP/IP von einem Remote-Windows-Computer (TightVNC)
  • Lokaler Windows-Mini-Computer mit den USB-Anschlüssen über ein Netzwerk-Protokoll mit einem häuslichen Computer verbunden (z.B. INDI, ASCOM Remote)

Lösungen der ersten Art: Remote per USB

“lokaler USB-Hub mit WLAN” (USB Server) sind heutzutage (2019) überall im Gespräch, denn soetwas ist ja eine schicke technische Architektur wo man “nur” die USB-Verbindungen über LAN zum Remote-Computer führt. Allerdings sind USB-Verbindungen zu Videoquellen besonders anspruchsvoll (das Gerät muss “isochronen” Datentransfer beherrschen).
Ich habe ausprobiert:

  • Silex DS-520AN   –> ausprobiert und zurückgeschickt
  • ALLNET Server für kabellose Geräte 4 Anschlüsse 100Mb LAN USB 2.0 802.11b/g/n (991352505)  –> ausprobiert und zurückgeschickt
  • in Foren wird auch empfohlen: DIGITUS Multifunktion USB Netzwerk Server, 4-port, Netzwerk USB Hub, NAS, Print Server USB 2.0, RJ45, Wireless LAN 11n, schwarz  –> nicht ausprobiert

Solche  Remote-USB hören sich zwar gut an, sind mir persönlich aber zu “wackelig”.

Lösungen der zweiten Art: Remote per lokalem Mini-Computer

“Lokaler-Mini-Computer” sind zwar nicht so elegant, sind aber grundsolide. Auf dem lokalen Mini-Computer wird die ganze erforderliche Software installiert und dieser lokale Mini-Computer wird über TCP/IP (z.B. WLAN) von einem “Großen Bruder” ferngesteuert z.B. über TightVNC, TeamViewer oder auch Microsoft Remote Desktop oder…  Ich habe mich für TightVNC entschieden, weil da Server und Viewer kostenlos sind und auch Android unterstützt wird.

Eine solche Lösung ist dann “grundsolide”, wenn der lokale Mini-Computer unter Windows 10 läuft und alle erforderliche Astro-Software darauf vernünfig (lokal) läuft. Der Mini-Computer braucht vier USB-Anschlüsse und WLAN. Die Stromversorgung muss auch bedacht werden (220 Volt oder 12 Volt oder …).

Als lokalen Mini-Computer mit Windows 10 verwende ich einen bei mir noch vorhandenen etwas älteren Mini-Computer Zotac ZBOX Nano AD12 Plus (19 Volt, 3.42 A).
Heutzutage gibt es neuere Lösungen wie z.B. MSI Barebone ProBox23

Update (Nov 2021): Der “Lazy Geek” hat ein Youtube-Video dazu gemacht My new AstroPhoto Mini-PC.
Der Lazy Geek empfieht u.a.:

  • MeLE Quieter 2 Fanless Mini PC  (Maße: 13.2 x 8.1 x 1.9 cm)
  • Chuwi mini PC (GMK)
  • ECS Liva Q3

Der Quieter ist schön klein und leicht und kann statt des USB-Hubs auf dem Teleskop montiert werden. Einziges Problem: Stromversorgung geschieht über USB-C und man bräuchte ein Adapterkabel mit USB-C-Stecker (“male”) auf DC-Buchse (“female”) 2,1×5,5mm der die Power Deliverry mit 12 Volt macht.

Update (Okt 2021): Für eine Teil meiner Astro-Aufgaben muss ich direkt an der Montierung stehen und benötige einen Computer mit Bildschirm (Fokussieren und Polar Alignment). Um das einfach und bequem zu machen habe ich mir ein Windows-Tablet (s. ComputerFlachmann) angeschafft.

Update (Dez 2021): So einen kleinen MeLE Quieter habe ich mir jetzt (Dez. 2021) bei Amazon UK bestellt. Einzelheiten unter ComputerAstrobaer.

Bei der Remote-Bedienung über TightVNC hat man das Problem dass die Bildschirmgrößen von Host und Client evtl. verschieden sind. Wenn ich beim Verbindungsaufbau mit dem TightVNC-Client bereits einen Vergrößerungsfaktor eingebe, ist später der Mausanzeiger verschoben. Ich baue also die TightVNC-Verbindung zuerst ohne Bildschimgrößenanpassung auf und gehe später im TightVNC-Client oben auf das Symbol “Scale: Auto”.

Achtung: Was tun, wenn WLAN-Verbindung nicht funktioniert?

In meinem Fall habe ich im Hause bereits ein lokales WLAN und der lokale Mini-Computer am Teleskop muss sich also “automatisch” mit diesem vorhandenen WLAN verbinden.

Das ist unter Windows 10 ja überhaupt kein Problem. Das vorhandene WLAN wird automatich erkannt und die Verbindung automatisch hergestellt (wenn man das Kästchen “Automatisch verbinden” ankreuzt).

Was aber wenn da irgendetwas schief geht; also aus irgend einem Grunde die WLAN-Verbindung nicht zustande kommt? Der lokale Mini-Computer (VNC-Gateway)  hat keinen Bildschirm und ich kann nicht sehen, was auf diesem Computer genau geschieht. Vom Wohnzimmer-Computer (VNC-Viewer) merkt man nur, das die Verbindung nicht da ist. Watt nu?

Genau so etwas ist mir vorgestern in einer dunklen und kalten Beobachtungsnacht passiert. Ich habe zwar einen keinen Bildschirm, den ich per HDMI an den Nano-Computer stöseln kann und eine Bluetooth-Tastatur. Die Diagnose und Fehlerbehebung ist also möglich. Aber das ist alles sehr fummelig und nervig. In meinem Fall war aus einem nicht nachvollziehmaren Grund das WLAN auf dem Nano-Computer abgeschaltet. Also WLAN einschalten und alles palletti.

Zur Sicherheit habe ich deshalb einen Zweit-Computer mit der entsprechenden Software konfiguriert, sodass der auch notfalls als lokaler Steuer-Computer am Teleskop fungieren kann. Dieser “Plan B Computer” ist ein kleinerer bei mir noch vorhandener Notebook “Computer Thinkbaer“, der auch Bildschirm und Tastatur hat…

Erforderliche Astro-Software

Auf dem lokalen Nano-Computer habe ich installiert:

 

Astronomie: USB Hub Orico H7928-U3

Gehört zu: Astronomie, Geräteliste
Siehe auch: USB, Kabel-Management  Mobile Stromversorgung

Der USB Hub Orico H7928-U3

Im Zuge meines Kabel-Managements habe ich mir für die Zusammenfassung meiner diversen USB-Datenverbindungen am Teleskop einen aktiven USB-Hub besorgt, der mit einer 12V Spannung bei 2,5 A versorgt werden muss. Den gab’s im Mai 2018 bei bei Amazon für EUR 26,99.

Der Anschluss an mein Notebook erfolgt über ein steckbares USB3.0-Kabel.

Der Orico hat 7 USB-A 3.0 Buchsen, über die Daten und Strom geliefert werden können.

  • Strom: 5V
  • USB 3.0-Ports: 7x USB-A Buchse
  • Computer-Anschluss: USB-B 3.0 Buchse
  • Datenrate: 5 Gbps

Die Spannung von 5V ist ausreichend, um mein Samsung Galaxy S5 aufzuladen. Mein Samsung Tablet findet die Stromstärke zu niedrig und lädt nicht.

Im August 2021 habe ich ein USB-Kabel gekauft, das für den Hub eine USB-B-Stecker hat und an mein neues Windows-Tablet ComputerFlachmann per USB-C-Stecker angeschlossen wird.

deleyCON 2m USB 3.0 Druckerkabel Scannerkabel – Stecker Typ 3.1 – USB C auf USB B – 5 Gbit/s Datenkabel

Computer: Paintshop (aus Wiki)

Gehört zu: Bildbearbeitung

Bildbearbeitungs-Software: Paintshop (aus Wiki)

Das klassische Bildbearbeitungs-Programm für JPEG, GIF und Co. (vergl. auch: VektorGrafik).

Genutzte Funktionen:

  • * Konvertieren von Formaten, z.B. BMP -> JPG etc.
  • * Verkleinerungen
  • * Ausschnitte
  • * Drehungen
  • * Bearbeiten von ScreenShots
  • * …

Andere Bildbearbeitungs-Software

  • Adobe Photoshop der grosse Bruder für die Profis…
  • “Imaging for Windows” (Bestandteil von Windows2000) der TIFF-Spezialist (vergl. auch: DokumentenManagement)

Installation

  • Definitive Software Library ID: PaintShop
  • Name: Paint Shop Pro
  • Version: 8.01
  • Hersteller/Bezugsquelle: [http://www.jasc.com Jasc Software, Inc.] geschluckt von der Firma Corel
  • Installations-Ordner: d:\Programme\Paintshop
  • Systemvoraussetzungen: Windows

Besonderheiten

  • Kann EXIF-Tags (Metadaten) anzeigen und bearbeiten (Menü: Image > Image Information… > EXIF Information).

— Main.DietrichKracht – 17 Aug 2005

Astronomie: Zeitmessung und Navigation (aus meinem Web)

Astronomie: Zeitmessung und Navigation

Entnommen aus: http://www.kr8.de/zeitmessung.html
Siehe auch: Der Null-Meridian

Stichworte

Harrison Chronometer H.4, Zeitmessung, Uhr, Navigation, Räderuhr, Pendeluhr, Huygens, Cook, Eisenbahn, Zeitzone, GMT, Zeitzeichen, Sommerzeit, Quarzuhr, Atomuhr, Schaltsekunde, UTC, PTB, GPS, Venusdurchgang, Astrolabe, Oktant, Sextant, Meridian, …

Überblick

  • 750 In der Literatur werden erstmals Sanduhren erwähnt.
  • 1284 Die erste mechanische Turmuhr wird an der Kathedrale von Exeter (England) in Betrieb genommen.
  • 1288 Die Westminster Hall zu London erhält eine mechanische Türmeruhr. Die Tageseinteilung in zweimal zwölf gleich lange Stunden beginnt.
  • 1300 In Florenz wird die erste öffentliche mechanische Stadtuhr aufgestellt,
  • 1336 In Florenz wird eine Turmuhr mit Schlagwerk bekannt
  • 1344 In Padua vollendet Jacopo de Dondi eine öffentliche Schlagwerkuhr.
  • 1345 (spätestens) Die Stunde wird in 60 Minuten zu 60 Sekunden eingeteilt
  • 1348 London erhält seine erste öffentliche Schlagwerkuhr, Big Tom genannt.
  • 1511 Der Nürnberger Schlosser Peter Henlein baut tragbare Uhren – vermutlich gab es tragbare Uhren aber auch schon früher…
  • 1655 Christiaan Huygens (1629-1695) entdeckt in Den Haag mit seinem Fernrohr den ersten Saturnmond (Titan).
  • 1656 Christiaan Huygens entdeckt die Saturnringe und den Orionnebel…
  • 1656 Christiaan Huygens erfindet die Pendeluhr, die er 1657 zum Patent anmeldet. (franz. Patentamt?).
  • 1665 oder 1674 Huygens konstruiert aus Spiralfeder und Unruh ein Schwingungssystem für eine Taschenuhr, wofür er 1675 ein französiches Patent erhält. Prioritätsstreit mit R. Hooke (Elastizitätsgesetz).
  • 1761 Das von John Harrison gebaute Chronometer H.4 wird auf einer Reise nach Jamaica getestet. Auf der zwei Monate langen Reise verliert der “Time Keeper” nur 5 Sekunden.
  • 1768-1771 Kapitän James Cook konnte auf seiner ersten Reise den H.4 noch nicht mitnehmen.
  • 1772-1775 Zweite Reise von James Cook (HMS Resolution) mit Harrisons H.4 Chronometer…
  • 1776-1779 Dritte Reise von James Cook. Tod auf Hawaii.
  • 1825 Eräffnung der ersten Eisenbahnstrecke in England zwischen Stockton und Darlington am 17.09.1827. George Stephenson (1781-1848), der Erbauer der Lokomotive, steuert sie selbst.
  • 1835 Eisenbahn Nürnberg-Fürth
  • 1840-47 Einführung der Railway Time in England.
  • 1880 In Großbritannien wird die Greenwich Mean Time GMT eingeführt
  • 1893 Im Deutschen Reich wird die Mitteleuropäische Zeit MEZ eingeführt
  • 1926 Die GMT wird durch die Universal Time UT abgelöst
  • 1929 wurde die erste Quarzuhr von dem amerikanischen Uhrmacher Warren A. Marrison gebaut.
  • 1946 Am 6. Dezember stellt der amerikanische Physiker Willard F. Libby (1949 Radiocarbon-Methode) seine Atomuhr öffentlich vor. Seine Erfindung, die Atomuhr, die eine sehr genaue Zeitbestimmung möglich macht, weil sie in 300.000 Jahren weniger als eine Sekunde nachgeht, zählt die eigenen Schwingungen des Cäsium Atoms.
  • 1967 Definition der SI-Sekunde anhand der Cäsium-Atomuhr (9 192 631 770 Schwingungen sind eine Sekunde)
  • 1972 Einführung der Universal Time Controlled UTC anstelle der UT von 1926
  • 1978 Start des ersten Satelliten für den Aufbau des GPS Global Positioning System. 24 Satelliten mit Atomuhren an Bord…

Uhren

Die ersten Methoden zur Zeitmessung: Sonnenuhr, Wasseruhr, Sanduhr. Wichtiger Meilenstein: Die Erfindung der Mechanischen Räderuhr. Diese Art von Uhren gab es am Anfang vor allem in Klästern. Die schweren Gewichte trieben auch die Mechanik des Stundenschlag an…

Wann, wo und von wem die ersten Räderuhren mit mechanischem Hemmwerk gebaut wurden, ist nicht bekannt. Jedenfalls geschah dies im ausgehenden 13. Jahrhundert, möglicherweise in Spanien, aber auch Frankreich kommt als Heimat der Räderuhr in Frage.

Um 1300 werden Räderuhren mit Gewichtantrieb, Spindelhemmung und Waag werden zunehmend hergestellt. Daraufhin beginnt etwa ab 1310 die Ausstattung von Kirchen, Rathäusern, Klöstern und Türmen mit großen Räderuhren und Schlagwerken. Doch man musste immer wieder mit der Sonnenuhr die Zeit überprüfen und die Uhren neu stellen, denn die Ganggenauigkeit betrug so 1 Stunde pro Tag.

Christiaan Huygens erforscht die Pendelbewegungen (unabhängig von Galilei zum zweiten Mal) und erfindet die Pendeluhr, die er 1657 zum Patent anmeldet. (franz. Patentamt?) . Solche Uhren waren, bzw. sind so genau, dass sie nur wenige Minuten pro Tag abweichen! Aber nur unter der Voraussetzung, dass die Uhr an einem Ort stehenblieb.

Huygens konstruiert aus Spiralfeder und Unruh ein Schwingungssystem für eine Taschenuhr, wofür er 1675 ein französiches Patent erhält. Prioritätsstreit mit R. Hooke (Elastizitätsgesetz). Die neuen Uhren mit Spiralfeder und Unruh haben eine deutlich bessere Ganggenauigkeit, als die bisher üblichen Taschenuhren. Deshalb wird jetzt der Minutenzeiger eine ständige Einrichtung bei den moderen Uhren (früher liess man ihn oft weg, u.a. wegen der Ungenauigkeit).

Gegen 1680 Die erreichte Präzision und die Genauigkeit der Pendeluhren führen zum allgemeinen Einsatz des Minutenzeigers im Zentrum des Zifferblattes (“koaxial”). Minutenzeiger waren bis dato eher ein optionales Beiwerk.

Das von John Harrison (1693-1776) gebaute Chronometer H.4 wird 1761 auf einer Reise der HMS Deptfort nach Jamaica getestet. Auf der zwei Monate langen Reise verliert der “Time Keeper” nur 5 Sekunden. Das entspricht einer Abweichung von 1,25′ in der Bestimmung der geographischen Länge; d.h. 2,2 km. Harrison erfüllte damit die Bedingungen des Board of Longitude Acts von 1714, mit dem ein Preisgeld von 20000 Pfund ausgesetzt wurde für eine Abweichung kleiner 30 Meilen.

Navigation

Der Navigator auf See konnte seine geografische Breite sehr gut mit dem Sextanten bestimmen (z.B. Höhe der Mittagssonne). Zur Ermittlung der geografischen Länge muss man z.B. die Zeit des Meridiandurchgangs (etwa der Sonne) bestimmen, wozu man aber die Zeit ersteinmal genau genug kennen musste. Eine Zeitungenauigkeit von 4 Sekunden bedeut eine um 1,8 km (eine Seemeile) verfälschte Positionsbestimmung (am Äquator).

1598 König Philipp II. von Spanien setzte einen Preis für eine Methode zur Bestimmung der geografischen Länge aus (Williams, 1992:78).

1674 Setzte König Charles II von England eine Kommission ein, die das Problem der Längenbestimmung lösen sollte. Mit dieser Aufgabe wurde dann das 1675 gegrändete Royal Greenwich Observatory beauftragt.

22.10.1707 Die halbe englische Flotte geht bei den Scilly Inseln (westlich von Cornwall) verloren. Admiral Sir Clowdisley Shovel und seine Navigatoren hatten auf dem Rückweg von siegreichen Schlachten die Position der Flotte (wegen ungenauer Schiffsuhren???) so falsch ermittelt, dass es zur Katastrophe kam, bei der 2000 Seeleute ums Leben kamen. Geschockt von diesem Unglück befasste sich das House of Commons mit der Thematik.

08.07.1714 Aufgrund einer Empfehlung des House of Commons unterschreibt Queen Anne einen Act, der für die Entwicklung genauerer Methoden für die praktische Längenbestimmung auf See einen Preis aussetzte: Auf einer sechswöchigen Reise nach Westindien (Karibik) für eine Längenabweichung bis 60 Meilen: 10000 Pfund, bis 40 Meilen: 15000 Pfund und bis 30 Meilen: 20000 Pfund. Das dafür ins Leben gerufene Board of Longitude sollte eingehende Vorschläge prüfen und über die Vergabe des Preis entscheiden (Quill, 1966:7).

Wesentliche Ursachen für Gangungenauigkeiten der damaligen Uhren mit Feder/Unruh: Zu empfindlich gegenüber äußeren Erschütterungen und Temperaturschwankungen…

1759 Konstruierte John Harrison (1693-1776) das H.4 genannte Schiffs-Chronometer, welches 1761 diese Prüfung erfolgreich bestand: Auf einer zweimonatigen Reise von England nach Jamaica mit der HMS Deptfort ging die H.4 nur 5 Sekunden falsch, was einer Längenabweichung von weniger als 2 Meilen entsprach. Auf der geografischen Breite von Jamaica (18 Grad Nord) entsprechen 5 Sekunden genau 2,2 km. (H.4 Durchmesser: 5 1/4 Zoll, Technologie “Remontoire”). Den Preis erhielt Harrison erst 11 Jahre später auf Grund einer Intervention von König George III nachdem sich dieser von den Erfolgen des Nachfolgemodells H.5 (1772) persönlich überzeugt hatte.

Kapitän James Cook konnte auf seiner ersten Reise (1768-1771 HMS Endeavour, Venusdurchgang Tahiti 3.6.1769) den H.4 noch nicht mitnehmen.

Auf seiner zweiten Reise (1772-1775 HMS Resolution) verwendete Cook den H.4 Chronometer und konnte so die genaue Kartierung des südlichen Indischen Ozeans (der sich zwischen 40 und 60 Grad Süd einfach als leer erwies), Australiens, Neuseelands und fast aller Gebiete des Pazifiks durchführen.

Dritte Reise von Cook (1776-1779 HMS Resolution und HMS Discovery) (H.4 an Bord??). Tod auf Hawaii.

Das Ergebnis der letzten beiden Reisen von Cook mit dem H.4 war: Umfassende und genaue Kartografierung der Welt. Es gab keine unbekanten Gegenden mehr. Die seit Jahrhunderten erhoffte Terra Australis Incognita gab es nicht. Das Zeitalter der Entdeckungen war beendet. Als letzte Herausforderungen blieben noch die Arktis/Antartis und der Weltraum…

Schiffs-Chronometer waren anfangs ziemlich teuer und fanden deshalb zunächst keine große Verbreitung. Später konnten Zeitsignale der Greenwich Mean Time (GMT) per Radiowellen gesendet werden und so auch die Zeitabweichungen billigerer Uhren korrigiert werden. Die Erfindung der Quarz-Uhr machte dann auch das Radio-Zeitzeichen überflüssig. Schießlich wurde durch die Einführung von GPS und die Verfügbarkeit kleiner und erschwinglicher GPS-Empfänger die Navigation zu einem Kinderspiel…

Zeitmessung und Kalender

Babylonische Zeiteinheiten

Die Babylonier sollen den Tag in 24 Stunden zu ja 60 Minuten eingeteilt haben…

Sommerzeit in Deutschland

Erstmals wurde die Sommerzeit in Deuschland am 01.05.1916 eingeführt. Sie galt in Deutschland:

  • 1916 – 1918
  • 1942 – 1949
  • 1980 – heute (Vorgeschieben für die ganze EU)

Zeitzonen

Es war üblich, dass jeder Ort die seiner geografischen Länge entsprechende Ortszeit benutzte. Der Uhrmeister der Kirchturmuhr bestimmte die Ortszeit. Bei Reisen von Ort zu Ort musste man am Ankunftsort seine Taschenuhr auf die neue Zeit einstellen. Durch die Verbreitung der Eisenbahn entwickelte sich aus diesem Zeitsystem schnell ein Chaos.

Die Eisenbahngesellschaft Great Western Railway (London-Bristol) führte im November 1840 die Londoner Zeit für alle Fahrplähne und Bahnhöfe ein. Die “railway time” wird damit Vorläufer der Greenwich Mean Time.

Anschläge in Londoner Bahnhöfen: “London Time is kept at all the stations on the Railway, which is four minutes earlier than Reading time; 7 1/2 minutes before Chippenham time; 11 minutes before Bath and Bristol time; and 18 minutes before Exeter time.”

Öffentliche Uhren wurden nun mit zwei Minutenzeigern versehen: “railway time” (in schwarz) und “local time” (in rot). Als Relikt aus dieser Zeit trägt noch heute die grosse Uhr über der Old Corn Exchange in Bristol diese zwei Minutenzeiger.

Für das tägliche Leben im Eisenbahnzeitalter wird nun die Bahnhofsuhr (z.B. Paddington Clock, Foto oben) wichtiger als die Kirchturmuhr.

Beispielsweise galt in Bayern die Münchener Ortszeit und in Berlin die Berliner Ortszeit. Da Berlin knapp 2 Grad östlicher als München liegt, gingen dort die Uhren 7 Minuten vor gegenüber den Uhren in München.

1878 machte der Canadische Eisenbahn-Ingenieur Sandford Fleming (1827-1915) den Vorschlag, statt der bis dahin üblichen vielen verschiedenen Zeiten für Städte und Länder, ein weltweites System mit nur 24 Zeitzonen einzuführen. Alle 15 Grad geografischer Länge sollte eine neue Zeitzone beginnen mit einer um 1 Stunde anderen Uhrzeit (15 Grad = 360 Grad / 24). Die Eisenbahngesellschaften in Amerika führten das Flemingsche System der Zeitzonen am 18.11.1883 ein. Am 1. November 1884 wurde von der Internationalen Meridiankonferenz in Washington D.C. beschlossen, dieses System weltweit einzuführen (World Time Convention). Der Meridian von Greenwich wird als “Nullmeridian” festgelegt. Auf den “gegenüberliegenden” Seite der Erde befindet sich die Datumsgrenze.
Quellen: http://www.crooksville.k12.oh.us/5thgrade/timezone.html http://www.nationmaster.com/encyclopedia/Sandford-Fleming

Seit dem 01.04.1893 gilt für Deutschland, dass genau am 15. Längengrad Ost gelegene Görlitz als Maßstab der Mitteleuropäischen Zeit (MEZ). So beschlossen es die Gesetzgeber am 12. März 1893. Die Eisenbahn benutzte schon ab dem 30.07.1890 die MEZ.

  • Großbritannien: Seit 01.01.1880 GMT
  • Belgien: Seit 01.05.1891 GMT
  • Dänemark: Seit 01.01.1894 MEZ

http://www.themamundi.de/aws/tabel/tbzone.htm http://www.willi-stengel.de/page5.htm http://www.uhrzeit.org/technik.html http://www.surveyor.in-berlin.de/himmel/himmel.04.11.html#gmt

Einführung der Universal Time “UT”

1926 wird die GMT durch die UT abgelöst. Die UT wird vermittels einer festgelegten Formel aus der Sternzeit berechnet. Die Sternzeit wird durch astronomische Beobachtungen ermittelt. Die Sekunde als der 86400. Teil eines Tages ist wegen der Schwankungen der Tageslänge auch eine entsprechend leicht schwankende Zeiteinheit.

Atomzeit

Am 06.12.1946 stellt der amerikanische Physiker Willard F. Libby seine Atomuhr öffentlich vor. Seine Erfindung, die eine sehr genaue Zeitbestimmung möglich macht, weil sie in 300.000 Jahren weniger als eine Sekunde nachgeht, zählt die eigenen Schwingungen des Cäsium Atoms.

Zur Weiterentwicklung des Metrischen Systems wurde die Generalkonferenz für Maße und Gewichte (Conférence Générale des Poids et Mésures, CGPM) geschaffen. Die 11. CGPM beschloß 1960, daß das SI (Internationales Einheitensystem, Systäme International d’Unitäs) als Einheitensystem für die Mitgliedsstaaten der Meterkonvention angenommen werden soll. Das SI ist inzwischen in über 100 Staaten verbindlich eingeführt. In Deutschland wurde das SI mit Wirkung vom 1.1.1978 im amtlichen und geschäftlichen Verkehr obligatorisch.

Im Oktober 1967 erfolgte die Neudefinition der Sekunde durch die 13. Generalkonferenz für Maß und Gewicht (CGPM) in Paris. Die “SI-Sekunde” wird nun durch die Schwingungen des in der Atomuhr (Libby 1946) verwendeten Caesiums definiert:
“Die Sekunde ist das 9 192 631 770fache der Periodendauer der dem Übergang zwischen den beiden Hyperfeinstrukturniveaus des Grundzustandes von Atomen des Nuklids 133Cs entsprechenden Strahlung.”
(Gleichzeitig wurde die Maßeinheit Kelvin für die Temperatur beschlossen.)

Die 14. CGPM beschliesst 1971 parallel zur Universal Time (UT1) von 1926, die Atomzeit (TAI) auf Basis der SI-Sekunde (“Atom-Sekunde”) einzuführen.

Auf der 17. CGPM 1983 wird das Meter neudefiniert auf der Basis der SI-Sekunde und der Lichtgeschwindigkeit…

PTB Physikalisch Technische Bundesanstalt

1969 nimmt die Physikalisch Technische Bundesanstalt “PTB” in Braunschweig die erste Atomuhr CS1 (Caesium-Eins) in Betrieb.

Am 01.01.1972 beschiesst die CCIR, die Universal Time UT durch die Universal Time Controlled UTC abzugelösen. 1975 schliesst sich auch die 15. CGPM dem an (Quelle: Bureau International des Poids et Mesures).

UTC verwendet als Sekundenlänge nicht mehr den 86400. Teil eines Tages (so die UT-Definition von 1926), sondern die SI-Sekundenlänge (“Atomsekunde”). Damit die Abweichung zwischen UT (genauer UT1) und UTC immer kleiner als 0,9 s bleibt, wurde die UTC bereits um 10 Sekunden versetzt gegenüber der Atomzeit (TAI) gestartet. Danach werden bei Bedarf Schaltsekunden in die UTC ein- oder ausgefügt (bisher 22 Sekunden). Damit differieren UTC und Atomzeit (TAI) bis Mitte 2003 bereits um 32 Sekunden.

Zum Ausgleich der gravitativen Zeitdilatation wird an den Gängen der primären Atomuhren, die in der Höhe h über dem Geoid aufgestellt sind, eine Korrektion von -1,09·10-16(h/m) angebracht. Für die Atomuhren der PTB beispielsweise, die auf einer Höhe von h = 75 m über dem mittleren Meeresspiegel aufgestellt sind, beträgt die entsprechende relative Korrektur -8,2·10-15. Damit wird also berücksichtigt, dass die in der Atomuhrenhalle der PTB realisierten Sekundenintervalle um 8,2·10-15 s kürzer sind als bei einer auf dem Geoid aufgestellten Uhr.

GPS Global Positioning System

Das Global Positioning System GPS besteht aus einem Netz von Erdsatelliten in ca. 12-ständigen Umlaufbahnen. Jeder Satellit hat eine Atomuhr an Bord.

1978 Start des ersten Satelliten für den Aufbau des GPS.

Gerade das GPS-System liefert heute ein Argument dafür, die Schaltsekunden aufzugeben und die reine Atomzeit (TAI) als Weltzeit zu definieren: Bei der notwendigen sorgfältigen Synchronisation der GPS-Satelliten wurden die Schaltsekunden nicht berücksichtigt. Seit Einführung von GPS im Jahr 1980 hat sich die Differenz zwischen der internen GPS-Zeit und der offiziellen Weltzeit UTC auf 13 Sekunden aufsummiert. Eine versehentliche Verwechslung der Zeiten, etwa bei der Navigation von Flugzeugen, könnte zu Katastrophen führen.

Die ersten Eisenbahnlinien

Tabelle 1: Die ersten Eisenbahnlinien

27.09.1825 Stockton – Darlington 9 Meilen. George Stephenson “Locomotion”
15.09.1830 Liverpool – Newton – Manchester 31 Meilen. George Stephenson.
07.12.1835 Nürnberg – Fürth 5 km, Lokomotive Adler, Ingenieur …
1836-1838 London – Deptfort – Greenwich
04.07.1837 Newton Junction – Birmingham 82 Meilen, Grand Junction Railway
17.09.1838 London (Euston St.) – Birmingham
29.10.1838 Berlin – Zehlendorf – Potsdam 26 km, 07.08.1846 bis Magdeburg
07.04.1839 Leipzig – Dresden Johann Andreas Schubert funktionsfähige erste Dampflokomotive Deutschlands
30.03.1840 London (Paddington) – Reading Great Western Rayway (GWR), Chief Engineer Brunel
30.06.1841 London (Paddington) – Reading – Bath – Bristol 118 Meilen, Great Western Rayway (GWR), Chief Engineer Brunel
1849 Saar – Rhein (Ludwigshafen)

Quellen

  • Quill, H. 1966 John Harrison. The Man Who Found Longitude. John Baker Publishers. London.
  • Williams, J.E.D. 1992 From Sails to Satellites. The Origin and Development of Navigational Science. Oxford University Press. Oxford.
  • Jonathan Medwin: The Discovery of Longitude: An Historical Account of Maritime Navigational Practice and the subsequent invention of the Chronometer http://rubens.anu.edu.au/student.projects97/naval/
  • Bureau International des Poids et Mesures: Beschlüsse der CGPM
  • PTB: Die Geschichte der Zeiteinheit – Definition der Sekunde

Weiterführende Links


Stoffsammlung

Erst wurden nur in Klöstern die mechanischen Räderuhren verwendet. Ihre großen Gewichte dienten nicht nur zum Antrieb, sondern sie dienten auch dazu, die Mechanik des Stundenschlages anzutreiben!

Die von den Babyloniern erfundene Wasseruhr wurde von den Ägyptern übernommen und später von den Griechen und den Römern immer mehr verbessert. Die Griechen benutzen ihre verfeinerten Wasseruhren im täglichen Gebrauch. Diese Uhren waren genauer, doch auf Reisen waren sie einfach nicht zu gebrauchen.

Die Babylonier gaben dem Tag seine 24 Stunden zu 60 Minuten. Bei den ägyptern wie bei den Rämern hatte der Tag 12 Stunden, genauso wie die Nacht. Doch im Sommer waren die Tage länger und die Nächte kürzer. Umgekehrt im Winter: Die Tagstunden waren kürzer, während die Nachtstunden länger waren. Stunde war also eine ziemlich variable Einheit.

One of the scientific instruments that the conquering Europeans were eventually to develop as a direct result of their conquests and exposure to new learning was the Sea Astrolabe. Developed about 1470 the Sea Astrolabe was based on the design of the much earlier planispheric astrolabe, which had its origins with the Greek philosophers and astronomers immediately prior to the European conquest which had ended the Dark Ages. The Sea Astrolabe was used to plot the attitude of the sun near the meridian. It came into use on ships – the Spanish Armada (1588) carried it (Turner, 1980:31).

By 1726 James and John Harrison had manufactured two clocks which lost no more than one second a month. This was a remarkable achievement and advanced far beyond any existing technologies of the day (Quill, 1966:8).

Astronomie: Teleskope

Gehört zu: Astronomie
Siehe auch: Montierungen

Teleskope: Überblick (Overview)

Dies soll mein “Über-Artikel” zur Kategorie “Teleskope” werden.

Der Begriff “Teleskop” wird manchmal auch als “Teleskop + Montierung” gebraucht, Das Teleskop ohne Monierung heisst dann genauer OTA (Optical Tube Assembly).

Auch bei der Software Cartes du Ciel spricht man von “Teleskopsteuerung”, obwohl eigentlich die Steuerung der Montierung gemeint ist.

Klassischerweise unterscheidet man Teleskope nach:

  • Refraktoren d.h. Linsenfernrohre
  • Reflektoren d.h. Spiegelteleskope

In der professionellen Astronomie gibt es eigentlich nur noch Spiegelteleskope (z.B. 10 m Durchmesser), Linsenteleskope können in vergleichbarer Größe nicht gebaut werden.

Bei den Amateurastronomen arbeitet man auch gern mit Spiegelteleskopen, weil das Preis-Leistungs-Verhältnis sehr gut ist. Allerdings werden in der Astrofotografie auch gerne kleinere gute “ED” Refraktoren verwendet, denn diese sind kompakter und kontrastreicher. Der visuelle Sternfreund beginnt gern mit einem Dobson.

Artikel zum Thema “Teleskope”

Geschrieben habe ich schon folgende Artikel zum Thema “Teleskop”: