Astronomie: Berechnung der Tageslaenge nach Jahreszeit und geografischer Breite

Gehört zu: Sonnensystem
Siehe auch: Tägliche Bewegung, Sphärische Trigonometrie , Koordinatensysteme,  Astronomie    Collected Excel Sheets

Berechnung der Tageslänge mit ebener Trigonometrie

 Die Formel

Dafür habe ich als Schüler folgende Formel gefunden:

	cos t  = -(tan(φ) * tan(δ))

Wobei:

t
halber Tagesbogen
φ (phi)
Geografische Breite
δ (delta)
Deklination der Sonne

Die Deklination der Sonne können wir vereinfacht berechnen als (Quelle: http://lexikon.astronomie.info/zeitgleichung/):

	delta = 0.40954*sin(0.0172*(T-79.35))

Wobei:

T:
Tagesnummer im Jahr; d.h. der erste Januar hat die Nummer 1, der zweite Januar die Nummer 2 usw.

Die Zeichnung (auch als ODG vorhanden)

Abbildung 1: Berechnung der Tageslänge (GitHub: Tageslaenge.svg)

Tageslaenge.svg

— Main.DietrichKracht – 19 Mar 2005

Astronomie: Seite (aus Wiki)

Gehört zu: Astronomie
Siehe auch: Astronomie Oberartikel (Root)

Astronomie

Geografische Koordinaten

Hamburg, Bundesstrasse: 53 Grad 34 Minuten Nord, 9 Grad 58 Minuten Ost
Kalender
http://kr8.de/kalender
Beobachtung von Erdsatelliten
http://www.heavens-above.com
http://www.esa.int/SPECIALS/Track_ESA_missions_GE/index.html
Mars Express
Mars Express 25.12.2003
astronomie.info
http://www.astronomie.info

Wie berechne ich die  Tageslaenge  ?

Sternenhimmel-Software

Das ist speziell im Urlaub ganz praktisch, um eine “fremden” Sternenhimmel einordnen zu können.

Astrofotografie

Siehe meinen Blog-Artikel: Astrofotografie im Überblick

Bildformate

In der Astronomie wird vorwiegend das Format FITS (Flexible Image Transfer System) verwendet.

— Main.DietrichKracht – 28 Dec 2003

Astronomie am Tage: Sonnenbeobachtung

Gehört zu: Das Sonnensystem
Siehe auch: Meine Astro-Geräte, Sonne 17.7.2016, Google Fotos
Benutzt: Fotos von Google Drive

Stand: 18. Sep 2021

Was kann ein Anfänger mit einfacher Ausrüstung bequem am Tage beobachten?

Als Astronomie-Wieder-Anfänger (nach 40 Jahren Pause) versuche ich alles auszuprobieren, was mit meinen gegenwärtigen Geräten möglich ist.

Folgendes Equipment steht mir zur Verfügung:

Webseiten für Sonnenbeobachtung

Kanzelhöhe: http://www.kso.ac.at

INAF- Osservatorio Catalaniahttp://www.oact.inaf.it

Königlich Belgische Sternwarte Uccle: http://www.astro.oma.be

VdS Fachgruppe Sonne “Sonnennetz”:   http://sonne.vdsastro.de   oder  http://www.sonneonline.org/

Debrecen HELIOPHYSICAL OBSERVATORY:    http://fenyi.solarobs.unideb.hu/

SDO Solar Dynamics Observatory: http://sdo.gsfc.nasa.gov/

Solar HAM:   http://www.solarham.net/

Space Weather Prediction Center: http://www.swpc.noaa.gov/

Liste meiner Sonnenfotos mit Sonnenflecken

Aufbau: Sonnenbeobachtung mit einem LidlScope

Die Sonne kann ich im Sommer vormittags von der Terrasse aus beobachten.

Das LidlScope kann ich mit seiner Vixen-Prismenschiene einfach auf meiner iOptron SmartEQ montieren.

Gestern habe ich dann einen Sonnenfilter aus der Baader Solar-Folie für mein LidlScope gebastelt.

Die Sony-NEX-5R kann ich mit Adapter auf T2 bringen und dann mit einen weiteren Adapter auf  1,25 Zoll Okularstutzen bringen…

Abbildung 1: LidlScope mit Solarfilter (Google Drive: DK_20160710_0716.jpg)

LidlScope mit Solarfilter aus Solarfolie

Meine Sony-NEX-5R-Kamera kann ich über WLAN mit meinem iPad fernbedienen – inkl. Live-View.
Bei der Brennweite des LidlScopes von 700mm ist das Gesichtsfeld des APS-C-Sensors dann 1,9 Grad x 1,3 Grad.

Abbildung 2: Fernbedienung der Sony NEX 5R per iPad (Google Drive: DK_20160710_0714.jpg)

iPad mit Sony PlayMemories

Das erste Sonnenfoto mit diesem Aufbau

Heute (10.07.2016) ist der Himmel sehr wolkig, aber für ein paar Probeaufnahmen sollte es reichen.

Abbildung 3: Eine erste Probeaufnahme (Google Drive: DK_20160710_08847.jpg)

Sonne im LidlScope

Die Fokussierung ist sehr problematisch. Ich probiere es einfach einige Male nach bestem Anschein im Live-View. Eigentlich müsste man systematisch Probefotos machen und diese auf einen Notebook-Computer übertragen und dort die Fokussierung messen.
Auf einer Ausschnittsvergrößerung dieses  Sonnenfotos kann man sogar Sonnenflecken (unten rechts: 2562, unten links: 2564, oben: 2563) erkennen:
Abbildung 4: Ausschnittsvergrößerung mit Sonnenflecken (Google Drive: DK_20160710_08847_4.jpg)

Sonnenflecken im LidlScope – Ausschnitt

Astronomie: Die Entwicklung des Teleskops in der Geschichte

Gehört zu: Teleskope
Siehe auch: Zeitmessung und Navigation

Stand: 05.10.2022

Die Entwicklung des Teleskops in der Geschichte

Gegen 1450 fand  Angelo Barovier auf der Insel Murano heraus, wie durchsichtiges klares Glas “cristallo” hergestellt werden kann. Später wurden daraus auch Leselupen (sog. Lesesteine) gefertigt, die den Priviligierten beim Lesen ihrer kostbaren religiösen Schriften halfen, wenn die Sehkraft im Alter nachlies. Mit der Erfindung des Buchdrucks entstand eine massenhafte Nachfrage nach Lesebrillen. Aus diesen Linsen enstanden die ersten Teleskope. Teleskope auf der Erde wandern auf hochgelegene Berge oder Plateaus (z.B. Mount Sowieso) in einsamen Gegenden und schließlich verlassen die Teleskope die Erde und erobern den Weltraum, wo die Sicht nicht mehr durch die irdische Atmosphäre gefiltert bzw. beeinträchtigt wird.

Geschichte des Teleskops: Timeline

Contine reading

Astronomie: Planetarium-Software: Meine Anforderungen – Stellarium – Cartes du Ciel – Guide

Gehört zu: Beobachtungsplanung
Gehört zu: Astro-Software

Planetarium-Software

Mit einer guten Planetarium-Software kann ich schnell den Himmel für die abendliche Beobachtungsplanung abchecken oder für einen Urlaub astronomische Aktivitäten planen.

Wenn die Anforderungen steigen,  muss man etwas genauer vergleichen, welche Planetariums-Software (zunächst für Microsoft Windows) was bietet.  In meine nähere Auswahl (“Short List”) sind gekommen:

Ausserdem habe ich:

Meine Anforderungen sind

  • Günstige Kosten
  • Zukunftssicherheit
  • Leicht beherschbare Benutzeroberfläche
  • Einstellen des Beobachtungsorts (speichern mehrerer Orte)
  • Einstellen des Zeitpunkts der Beobachtung
  • Einfaches Navigieren und Orientieren am (virtuellen) Sternhimmel
  • Auswahl der Himmelsobjekte, die angezeigt werden sollen
    • Selektion nach Grenzhelligkeit und Objekttypen
    • Namen von Objekten
    • Erdsatelliten
    • Kometen
    • Gradnetze
  • Suchen eines Beobachtungsojekts
  • Messen von Winkelabständen
  • Gesichtsfeld-Rahmen (Sensorfeld bzw. Okular)
  • Liste von Beobachtungsobjekten
  • Sternkataloge einbinden
  • Sternkarten ausdrucken
  • ASCOM-Teleskopsteuerung
  • Skripting

Astrofotografie: Bestimmung der Grenzgröße

Gehört zu: Astrofotografie
Siehe auch: All Sky Plate Solver, Guide
Benutzt: Fotos aus Google Drive

Stand: 10.09.2021

Welches sind die schwächsten Sterne auf meinem Foto?

Bei meiner Astrofotografie fragte ich mich manchmal, wie ich die Grenzgröße auf einem Astro-Foto einfach ermitteln kann.

Auf Empfehlung meines Bruders habe ich mit Astrometrica beschäftigt, was etwas mühsam für mich war.

Da ich mich aus anderen Gründen sowieso mit “All Sky Plate Solver” und mit “Guide” beschäftige, habe ich es auch damit versucht und fand den Weg recht gut.

Arbeitsschritte mit “All Sky Plate Solver” & “Guide”

  1. Das Astrofoto durch die Software All Sky Plate Solver solven lassen und das gesolvte Bild anzeigen lassen (Schaltfläche “Browse solved image”)
  2. Einen markanten Stern anklicken und Koordinaten (R.A. & Dekl.) merken und das Fenster offen lassen.
  3. In der Software Guide die Bildmitte mit Menue -> Finden -> Koordinaten  auf eben diese Koordinaten einstellen. Der markante Stern steht dann bei Guide in der Mitte und Guide sagt uns (Rechts-Klick), wie dieser Stern heist – im Beispiel ist es SAO 50298, was ich händisch in den untenstehenden Screenshot eingetragen habe.
  4. In “Guide” die Himmelsansicht so drehen (Menue: Karte -> Orientierung -> Drehwinkel), dass sie in etwa mit der Ausrichtung in “All Sky Plate Solver” übereinstimmt
  5. Ich stelle dann in Guide die Beschriftung der Sterne so ein, dass nur noch die Helligkeiten angezeigt werden (Menue: Karte -> Sterndarstellung -> Beschrift. bis Mag) . Im Beispiel bis Mag. 12. Mein “markanter Stern” hat also 5,55m und die Sterne weiter rechts unten 7,43 und 11,89 und 9,85m
  6. Ich stelle diese “Beschrift. bis Mag” nicht zu hoch ein, da sonst das Bild unübersichtlich wird.
  7. Die Feinarbeit ist jetzt im linken Fenster (All Sky Plate Solver) schwache Sterne zu finden, die auch im rechten Fenster (Guide) erkennbar sind und dann dort sich mit Rechts-Klick die Helligkeit anzeigen zu lassen.
  8. Wir finden etwa den Stern 3UC269-199074 mit einer scheinbaren visuellen Helligkeit von 13,51 mag

Abbildung 1: Guide 9.0 zeigt die Magnituden an (Google Drive: Grenzhelligkeit.jpg)


Grenzhelligkeit eines Astrofotos bestimmen mit “All sky plate solver” und Guide

xxxx

Arbeitsschritte mit Astrometrica

1. Das Astrofoto in Graustufen umwandeln und im FITS-Format speichern

Z.B. mit Fitswork

1a. Das gestackte TIF-Bild in Fitswork laden   (Im Beispiel:  DK_20160603_8625-8633_3a.tif )

1b. Das Farb-Bild in 16 Bit Graustufen umwandeln:  Menü -> Bearbeiten -> Farbbild in s/w umwandeln  „Luma“

1c. Das Bild als 16 Bit FITS speichern   (im Beispiel: DK_20160603_8625-8633_3a2.fit )

2. Plate Solving

Z.B. in nova.astrometry.net  oder AllSkyPlateSolver oder …

Bestimmen der Koordinaten des Bildzentrums (R.A. ud Dekl.) sowie des Rotationswinkels….

Das Bild DK_20160603_8625-8633_3a2.fit hat mit nova.astrometry.net:

  • Bildmitte    18 48 46,7     +35 58 37
  • 7,26 “/Pixel (mit f = 135 mm sind das 4,75 μm pro pixel)
  • Up is 92,7 Grad (267,3 Grad)

3. Astrometrica: CFG-Datei erstellen

File=C:\Users\<userid>\AppData\Local\Astrometrica\Lyra.cfg

3. In Astrometrica eine CFG-Datei erstellen: Menü -> File -> Settings

3a.  Tab “Observing Site” …….

3b. Tab “CCD”  Pixelgröße und Brennweite:  4,8 my pro Pixel, f=136,3 mm

3c.  Tab “CCD” Der Position Angle  kann vorgegeben werden  (ist nur eine Voreistellung, kann später modifiziert werden)

3d.  Tab “CCD”  Color Band V   (für visuelle Helligkeiten)

Mit Astrometrica und 4,8 mu pro Pixel ergibt sich:

  • Bildmitte 18 48 46,8 +35 58 33 (das stimmt aufs Pixel genau)
  • Position Angle 272,2 Grad (da hat nova.astrometry.net nur gut geschätzt)
  • mit den 4,8 mu pro Pixel ist dann f = 136,3 mm

4. In Astrometrica: Bildverarbeitung

4a. Das Bild (Menue: File -> Load Images) laden, das Bildzentrum und den Rotationswinkel eingeben.

4b. Berechnungen durchführen lassen: Menue -> Astrometry -> Data Reduction

4c. Bildmitte eingeben: R.A. und Decl.   (Object Name leer lassen)

4d. Der Berechnungen dauern recht lange. Am Ende erscheint (häufig) die Meldung “Reference Star Match Error” mit der Möglichkeit “Continue with:”

  • Manual Reference Star Match
  • Automatic Reference Star Match using  nnn Stars
  • Present (possibly erroneous) Match

4d. Die Helligkeit steht hinter RA De als R = 9.5, für visuelle Helligkeiten muß im CCD Tab als Color Band V gewählt werden.

Damit wird das Bild gut gelöst und hat eine Grenzgröße von etwa mag 14.

Astrofotografie für Einsteiger: Digital-Kamera Sony NEX-5R – Einstellungen

Gehört zu: Digitalkameras
Siehe auch: Einstellungen, Langzeitbelichtung

Stand: 03.05.2023

Mein Einstieg mit der Sony NEX-5R Kamera

Als ich mich vor zwei Jahren (2014) begann für Astrofotografie zu interessieren, habe ich mir die Sony NEX-5R angeschafft. Ausschlaggebend waren für mich damals folgende Eigenschaften der Sony:

  • Smart Remote Control (incl. LiveView und Capture) über WiFi  mit einer App auf dem iPad
  • Fernauslösung  per iPad über WiFi (Smart Remote Control)
  • Wechselbare Objektive um z.B. ältere MF Objektive (via Adapterring)  zu benutzen (mein erstes: Olympus G. Zuiko f=50mm)
  • Live View (u.a. zum Fokussieren auf unendlich, mit Lupen-Funktion)
  • kein Spiegel (Was soll der? Nur für einen Sucher, den ich nicht brauche? LiveView ist doch viel besser.)

Der Nachteil bei der Sony NEX-5R ist, dass ich damit nicht im “Mainstream” der Astrofotografen schwimme, was bedeutet, dass es weniger Zubehör und Angebote, die für Astrofotografie sinnvoll sind gibt.

Die Remote Control Software Sony “PlayMemories mobil” unterstützt nur Belichtungszeiten bis 30sec. Eine Bulb-Einstellung, die an der Kamera selbst im M-Modus möglicht ist, ist bei Sonys Play Memories Mobil auf dem iPad leider nicht möglich.

Der Sensor der Sony NEX-5R

Die NEX-5R hat einen APS-C-Sensor, d.h. 23,50 x 15,60 mm – das bedeutet einen Crop-Faktor von 1,5

Der Sensor hat 4912 x 3264 Pixel bei einer Pixelgröße von 4,8 µ.

Das Seitenverhältnis des Sensors ist 3:2

Objektive für die Sony NEX-5R

Das mitgelieferte Kit-Objektiv hat Brennweiten von 16mm bis 50mm (f/3.5 – f/5.6).

Wechselbare Objektive um z.B. ältere MF Objektive (via Adapterring)  zu benutzen (mein erstes: Olympus G. Zuiko f=50mm)

Zu allen meinen Objektiven habe ich noch einen ausfühlichen Artikel geschrieben.

Fokussierung mit der Sony NEX-5R

Bei Astro-Aufnahmen macht die automatische Fokussierung der Kamera (“AF”) keinen Sinn.

Die manuelle Fokussierung geht so (hierzu gibt es einen eigenen Blog-Eintrag):

  • MENU -> [Kamera] -> [AF/MF-Auswahl] -> gewünschter Modus   (MF – AF – DMF)

Als Hilfestellung bei der Fokussierung kann man die Funktion Bildschirmlupe (Sucherlupe)  einstellen:

  • MENU -> [Einstellung] -> [MF-Unterstützung] -> Ein

Die Bildschirmlupe wird aktiviert, wenn man auf den Bildschirm tippt, bzw. wenn man den Fokusring eines Sony-Objektivs dreht.

Gitterlinien für genaue Markierung der Bildmitte für z.B. Ajustment bei der Sony NEX-5R

Für ein genaues Alignment der Sony-Kamera können auf dem Live View Display Gitterlinien (aka Crosshairs, Fadenkreuz) angezeigt werden. Das geht so:

  • MENU -> Einstellung -> Gitterlinie -> 4×4 Raster + Diag.

Leider ist die Farbe der Gitterlinien nicht verstellbar; d.h. sie sind immer schwarz, was sie bei Fotos des Sternenhimmels fast unsichtbar macht…

Fernauslöser und Fernbedienung für die Sony NEX 5R  – Remote Control & Live View

Wie die Sony NEX-5R über Fernsteuerung bedient werden kann ist einer einem separaten Blog-Artikel beschrieben.