Astrofotografie: FITS Header

Gehört zu: Astrofotografie
Siehe auch: FITS FormatMetadaten, Fitswork, Stacking, Platesolving, Deep Sky Stacker, Astro Pixel Processor, N.I.N.A., SiriL

Stand: 02.10.2023

Der FITS Header

Das beliebteste Dateiformat für Astrofotos ist das FITS-Format, welches von der NASA entwickelt wurde und von der IAU empfohlen wird.

Astro-Kameras erzeugen oft direkt Bilddateien im FITS-Format; beispielsweise macht das meine Astro-Kamera ZWO ASI294MC Pro so.

Ein besonderer und sehr wichtiger Teil bei Fotos im FITS-Format ist der sog. FITS-Header, in dem wichtige sog. Metadaten über das Astrofoto gespeichert werden. Die Einheiten im FITS Header nennen Spezialisten auch HDUs (=Header Data Units).

Im FITS Header steht u.a.:

  • Name des Beobachtungsobjekts
  • Ort der Beobachtung
  • Aufnahmedatum
  • Belichtungszeit
  • Brennweite
  • etc.

Wem der Inhalt des FITS-Headers egal ist, braucht nicht mehr weiterzulesen.

Die Einzelaufnahmen (Sub Exposures) bei solchen Kameras werden also von der Aufnahme-Software im FITS-Format (mit FITS Header) gespeichert, aber dann kommt die Stacking-Software und macht ein “Summenbild” aus den Einzelbildern. Sofort erhebt sich die Frage, ob denn im FITS-Header des Summenbildes auch alle relevanten Informationen aus den FITS-Headern der Einzelbilder übernommen werden.

Betrachten der Daten im FITS Header

Praktisch jede Software, die Bilddateien im FITS-Format bearbeiten kann, hat auch irgendwo eine Anzeigemöglichkeit für die Daten des FITS Headers. Beispiele: Fitswork, Siril

Editieren der Daten im FITS Header

Wenn man aber selber Veränderungen am FITS Header vornehmen möchte (weil z.B. durch Stacking-Software Informationen verloren gingen) gibt es sogut wie garnichts.

Eine Software, die ich dafür gefunden habe ist F4W2HDU, was aber sehr kryptisch arbeitet und auch Beschränkungen hat.

Es soll noch eine weitere Software mit dem Namen WCSTools geben.

Für Suchen mit Tante Google würde ich den Suchbegriff “WCS-FITS” probieren.

Jetzt habe ich noch die Software QFitsView gefunden: https://youtu.be/wmbsJLAamPU?feature=shared

Der FITS Header nach der Einzelaufnahme

Als erstes machen wir mit einer Aufnahme-Software Einzelaufnahmen. Die dazu benutzte Software schreibt einiges in den FITS Header.

Als solche Aufnahme-Software (FITS Header: SWCREATE) habe ich im Einsatz:

Viele wichtige Metadaten schreibt die Aufnahme-Software gleich in den FITS Header jedes Einzelfotos. Teilweise kommen diese Daten von verbundenen Geräten (z.B. ASCOM-Montierung),  teilweise von Einstellungen, die in der Aufnahme-Software gemacht wurden (z.B. über Profile) oder von Daten der Einzelaufnahme gemäß eines Aufnahmeplans (Sequence) oder etc. etc. pp.

Beispiele von FITS-Headern, die meine Aufnahme-Software geschrieben hat, habe ich nach unten verschoben. Einen Vergleich zeigt folgende Tabelle:

Tabelle 1: FITS-Header und Aufnahme-Software

Metadatum FITS Header APT SharpCap N.I.N.A.
Name der Aufnahmesoftware SWCREATE Konstante Konstante Konstante
Name des Beobachters OBSERVER aus Settings aus Settings Nein
Name des Beobachtungsobjekts OBJECT Eingabe Ja, falls angegeben “Snapshot” oder Target aus Sequence
Ort der Beobachtung SITELAT, SITELONG Eingabe Nein, aber OBSLAT, OBSLOG Eingabe
Datum der Beobachtung
The UTC date and time at the start of the exposure
DATE-OBS System Clock System Clock System Clock
Name der Kamera INSTRUME Eingabe Eingabe Eingabe
Pixel Size XPICSZ, YPICSZ Eingabe Eingabe Eingabe
Belichtungszeit EXPTIME Eingabe Eingabe Eingabe
Gain/ISO GAIN Eingabe Eingabe Eingabe
Name des Teleskops bzw. des Fotoobjektivs TELESCOP Eingabe aus Settings Eingabe
Brennweite FOCALLEN Eingabe Nein Eingabe
Equinoktikum EQUINOX Nein aus ASCOM-Teleskop aus ASCOM-Teleskop
Rektaszension OBJCTRA aus ASCOM-Teleskop aus ASCOM-Teleskop aus ASCOM-Teleskop
Deklination OBJCTDEC aus ASCOM-Teleskop aus ASCOM-Teleskop aus ASCOM-Teleskop

Je nachdem, wie die verwendete Montierung mithilfe der Aufnahme-Software auf das Beobachtungsobjekt gefahren wurde (z.B. GOTO), kennt die Aufnahme-Software die Himmelskoordinaten des Beobachtungsobjekts (im Pointing-Modell des ASCOM-Treibers der Montierung) und schreibt diese ebenfalls in den FITS Header als:

  • OBJCTRA
  • OBJCTDEC

Siehe dazu auch: https://forums.sharpcap.co.uk/viewtopic.php?t=734

Dabei bedeutet C2A  “Computer aided Astronomy” und ist ein Planetariumsprogramm (Link: http://www.astrosurf.com/c2a/english/)

Der FITS Header nach dem Stacken

Es gibt ja verschiedene Software, die man zum Stacken verwenden kann. Dabei gibt es einige Unterschiede beim eigentlichen Stacken (Kalibrieren, Registrieren und Stacken), aber auch Unterschiede bei der Behandlung der FITS Header.

Als Stacking-Software habe im Einsatz:

In das Summenbild übernimmt diese Stacking-Software aber nicht 100% aller möglichen und sinnvollen Werte:

Tabelle 2: FITS Header und Stacking-Software

Metadatum FITS Header DSS SiriL 1.2.0
Name der Software SWCREATE nein, stattdessen SOFTWARE nein, stattdessen PROGRAM
Name des Beobachters OBSERVER übernimmt aus erstem Bild
(Text aber nur bis zum ersten Blank)
übernimmt aus erstem Bild
Name des Beobachtungsobjekts OBJECT nein übernimmt
Ort der Beobachtung SITELAT, SITELONG übernimmt nicht unterstützt
Datum der Beobachtung
The UTC date and time at the start of the exposure
DATE-OBS nein übernimmt aus erstem Bild
Name der Kamera INSTRUME übernimmt übernimmt
Pixel Size XPICSZ, YPICSZ nein übernimmt
Anzahl Einzelbilder STACKCNT nein Anzahl gestackter Einzelbilder
Gesamte Belichtungszeit EXPTIME Summe aus den Einzelbilder Summe aus den Einzelbildern
Gain/ISO GAIN übernimmt übernimmt
Name des Teleskops bzw. des Fotoobjektivs TELESCOP übernimmt übernimmt
Brennweite FOCALLEN nein übernimmt
Equinoktikum EQUINOX nein übernimmt
Rektaszension (hms) OBJCTRA übernimmt übernimmt
Deklination (dms) OBJCTDEC übernimmt übernimmt

Der FITS Header nach dem Plate Solving (WCS Koordinaten)

Mit dem Plate Solving werden ja die Koordinaten (Himmelskoordinaten Rektaszension und Deklination) der  Bildmitte ermittelt sowie Drehwinkel und Abbildungsmaßstab.

Plate Solving wird einerseits eingesetzt, um das Teleskop auf das gewünschte Beobachtungsobjekt zu positionieren (also vor der Aufnahme); ggf. mit SYNC und GOTO  etc. Andererseits können auch nach der Aufnahme diese durch Plate Solving ermittelten Daten wichtig sein z.B. für eine fotometrische Farb-Kalibrierung oder auch ganz einfach für Annotationen.

Als Platesolving-Software auch ich im Einsatz:

Nach dem Platesolving hat man also einen Zusammenhang zwischen Bildkoordinaten (x,y in Pixeln) und astronomischen Koordinaten (Rektaszension, Deklination und genaugenommen noch Equinox). Diese astonomischen Koordinaten sind eine praktische Ausprägung des sog. “World Coordinate System (WCS)”.

Falls das “geplatesolvte” Astro-Foto im FITS-Foramat ist, werden die WCS Koordinaten durch folgende Einträge im FITS Header spezifiziert:

  • CTYPE1 = ‘RA—TAN’   (äquatoriale Koordinate ‘RA” in tangentialer (gnomonischer) Projektion)
  • CTYPE2 = ‘DEC–TAN’  (äquatoriale Koordinate “DEC” in tangentialer (gnomonischer) Projektion)
  • CRPIX1 = 2071   (x-Koordinate des Referenzpixels, normalerweise die Bildmitte)
  • CRPIX2 = 1411    (y-Koordinate des Referenzpixels, normalerweise die Bildmitte)
  • CRVAL1 =    WCS-Koordinate1 des Referenzpixels (normalerweise Rektaszension der Bildmitte)
  • CRVAL2 =    WCS-Koordinate2 des Referenzpixels (normalerweise Deklination der Bildmitte)
  • CDELT1 =     Pixelgröße in x-Richtung in Grad dezimal
  • CDELT2 =    Pixelgröße in y-Richtung in Grad dezimal

Häufig werden CRVAL1 und CRVAL2 auch weggelassen. weil diese Information ja schon in anderen KEY-Wörtern vorhanden ist.

Eigentlich könnten CDELT1 und CDELT2 auch weggelassen werden, weil diese Information auch schon an anerer Stelle steht, aber SiriL braucht diese Einträge.

Wenn man Siril zum Platesolven einsetzt, werden alle diese Parameter auch tatsächlich in den FITS-Header geschrieben.

Bei Siril sind solche WCS Koordinaten dann erforderlich, um ein Koordinatennetz und/oder Annotationen (Namen von DSOs und/oder Sternen) automatisch anzuzeigen.

SiriL schreibt auch  PLTSOLVD=T (nicht F) in den FITS-Header, was aber für die Funktion “Annotation” nicht erforderlich ist.

Post Processing mit WCS Koordinaten

Falls im FITS Header gültige WCS Koordinaten gefunden werden, unterstützt bestimmte Software (z.B. Siril) weitere Funktionen:

  • Photometric Color Calibration
  • Annotations: Star names, DSO names
  • Äquatoriale Koordinatenlinien: Rektaszension, Deklination

Beispiele von FITS-Headern durch Aufnhame-Software

Beispiel: FITS-Header mit APT

SIMPLE = T / file does conform to FITS standard
BITPIX = 16 / number of bits per data pixel
NAXIS = 2 / number of data axes
NAXIS1 = 4144 / length of data axis 1
NAXIS2 = 2822 / length of data axis 2
EXTEND = T / FITS dataset may contain extensions
COMMENT FITS (Flexible Image Transport System) format is defined in ‘Astronomy
COMMENT and Astrophysics’, volume 376, page 359; bibcode: 2001A&A…376..359H
BZERO = 32768 / offset data range to that of unsigned short
BSCALE = 1 / default scaling factor
OBJECT = ‘M57 ‘ / The name of Object Imaged
TELESCOP= ‘EQMOD HEQ5/6’ / The Telescope used
INSTRUME= ‘ZWO ASI294MC Pro’ / The model Camera used
OBSERVER= ‘Dietrich Kracht’ / The name of the Observer
DATE-OBS= ‘2022-09-12T09:51:36’ / The UTC date and time at the start of the expo
HIERARCH CAMERA-DATE-OBS = ‘2022-09-12T09:51:36’ / The UTC date and time at the
EXPTIME = 0.002 / The total exposure time in seconds
CCD-TEMP= 23.5 / Temperature of CCD when exposure taken
XPIXSZ = 4.63 / Pixel width in microns (after binning)
YPIXSZ = 4.63 / Pixel height in microns (after binning)
XBINNING= 1 / Binning factor in width
YBINNING= 1 / Binning factor in height
XORGSUBF= 0 / Sub frame X position
YORGSUBF= 0 / Sub frame Y position
EGAIN = 1.00224268436432 / Electronic gain in e-/ADU
FOCALLEN= 50 / Focal Length of the Telescope in mm
JD = 2459834.91083333 / Julian Date
SWCREATE= ‘Astro Photography Tool – APT v.4.01’ / Imaging software
SBSTDVER= ‘SBFITSEXT Version 1.0’ / Standard version
SNAPSHOT= 1 / Number of images combined
SET-TEMP= 21. / The setpoint of the cooling in C
IMAGETYP= ‘Light Frame’ / The type of image
OBJCTRA = ’05 12 43′ / The Right Ascension of the center of the image
OBJCTDEC= ‘-03 29 58’ / The Declination of the center of the image
OBJCTALT= ‘8.2047 ‘ / Nominal altitude of center of image
OBJCTAZ = ‘252.5824’ / Nominal azimuth of center of image
AIRMASS = 7.00717254857843 / Air Mass value
SITELAT = ‘+53 00 00.000’ / The site Latitude
SITELONG= ‘+10 00 00.000’ / The site Longitude
GAIN = 120 / The gain set (if supported)
OFFSET = 8 / The offset/black level set (if supported)
BAYERPAT= ‘RGGB ‘ / The Bayer color pattern
END

Beispiel: FITS-Header mit SharpCap

SIMPLE = T / C# FITS: 09/12/2022 12:18:27
BITPIX = 16
NAXIS = 2 / Dimensionality
NAXIS1 = 4144
NAXIS2 = 2822
XBAYROFF= 0 /
YBAYROFF= 0 /
FRAMETYP= ‘Light ‘ /
SWCREATE= ‘SharpCap v4.0.9268.0, 32 bit’ /
DATE-OBS= ‘2022-09-12T10:18:27.3673948’ / System Clock:Est. Frame Start
DATE-AVG= ‘2022-09-12T10:18:27.3682758’ / System Clock:Est. Frame Mid Point
BAYOFFY = 0 /
FOCUSPOS= 5000 /
GAIN = 120 /
BLKLEVEL= 8 /
DATE-END= ‘2022-09-12T10:18:27.3691567’ / System Clock:Est. Frame End
BAYOFFX = 0 /
COLORTYP= ‘RGGB ‘ / Try GBRG if image upside down or R/B swapped.
FOCTEMP = 0 / CELCIUS
CCD-TEMP= 27.1 / C
YBINNING= 1 /
XBINNING= 1 /
YPIXSZ = 4.63 / microns, includes binning if any
XPIXSZ = 4.63 / microns, includes binning if any
EXPTIME = 0.001762 / seconds
ROWORDER= ‘TOP-DOWN’ /
BSCALE = 1 /
BZERO = 32768 /
EXTEND = T / Extensions are permitted
BAYERPAT= ‘RGGB ‘ / Try GBRG if image upside down or R/B swapped.
INSTRUME= ‘ZWO ASI294MC Pro’ /
END

Beispiel: FITS-Header mit N.I.N.A.

SIMPLE = T / C# FITS
BITPIX = 16 /
NAXIS = 2 / Dimensionality
NAXIS1 = 4144 /
NAXIS2 = 2822 /
BZERO = 32768 /
EXTEND = T / Extensions are permitted
IMAGETYP= ‘LIGHT’ / Type of exposure
EXPOSURE= 1.0 / [s] Exposure duration
EXPTIME = 1.0 / [s] Exposure duration
DATE-LOC= ‘2022-09-12T13:01:51.863’ / Time of observation (local)
DATE-OBS= ‘2022-09-12T11:01:51.863’ / Time of observation (UTC)
XBINNING= 1 / X axis binning factor
YBINNING= 1 / Y axis binning factor
GAIN = 120 / Sensor gain
OFFSET = 8 / Sensor gain offset
EGAIN = 1.00224268436432 / [e-/ADU] Electrons per A/D unit
XPIXSZ = 4.63 / [um] Pixel X axis size
YPIXSZ = 4.63 / [um] Pixel Y axis size
INSTRUME= ‘ZWO ASI294MC Pro’ / Imaging instrument name
SET-TEMP= -10.0 / [degC] CCD temperature setpoint
CCD-TEMP= 28.9 / [degC] CCD temperature
BAYERPAT= ‘RGGB’ / Sensor Bayer pattern
XBAYROFF= 0 / Bayer pattern X axis offset
YBAYROFF= 0 / Bayer pattern Y axis offset
USBLIMIT= 40 / Camera-specific USB setting
TELESCOP= ‘Canon’ / Name of telescope
FOCALLEN= 50.0 / [mm] Focal length
ROWORDER= ‘TOP-DOWN’ / FITS Image Orientation
EQUINOX = 2000.0 / Equinox of celestial coordinate system
SWCREATE= ‘N.I.N.A. 2.0.0.9001 ‘ / Software that created this file
END

Astronomie: Smart Telescopes

Gehört zu: Teleskope
Siehe auch: Orion ED80/600, ZWO ASI294
Stand: 31.1.2025

Smart Telescopes und EAA

Man spricht ja seit einiger Zeit von EAA (= Electronically Assisted Astronomy). Elektronik bei der Astrofotografie zu verwenden ist ja eigentlich eine völlig normale Sache, die wir seit Jahrzehnten verwenden: Digitale Kameras auf computer-gesteuerten Montierungen (ASCOM, Goto, Platesolving,…), Stacking-Software, Post-Processing etc.  Die Hersteller, die heute von EAA sprechen, meinen damit aber ihre neuen Produkte, die besondes einfach zu benutzen sind und damit eine viel größere Zielgrauppe ansprechen, als die sehr spezialisierten klassischen Amateur-Astronomen mit ihrem teueren und komplizierten Gerätschaften incl. Software.

Wenn das Teleskop integriert wird mit Komponenten, um die man sich sonst separat kümmern müste (z.B. Autofokus, Kamera, Taukappenheizung, Steuerungs-Computer, Flattener,…), spricht man von “Smart Teleskops”; also so etwas wie “All In One”.

Typische Produkte sind z.B.:

  • Dwarf 3
  • ZWO Seestar S50
  • ZWO Seestar S30
  • Unistellar: EvScope2
  • Celestron Origin

Typische Merkmale eines “Smart Teleskop” sind

Integration der Komponenten “All In One”

Kann sehr schnell (und damit quasi spontan) zum Einsatz kommen

Ist klein und leicht (“kompakt”) und kann somit gut auf Reisen mitgenommen werden

Ergebnisse können schnell “sofort” bestrachtet werden (Live Stacking) – also für Laien, Journalisten etc.

Ganz einfache Bedienung: Smartphone, Akku bzw. Batterien, WiFi

Automatisches (motorisiertes) Positionieren auf das gewünschte Objekt: Goto mit Objektkatalog und Platesolving

Motorisierte Alt-Az-Montierung mit Alt-Az-Nachführung

Autofokus (Motorfokus)

Das ZWO SeeStar S50

Preis: 699,– bei https://www.apm-telescopes.net/de/zwo-seestar-s50-smart-teleskop-2

Das Original-Seestar S50 wird von Sternfreunden der älteren Generation etwas kritsch betrachtet, weil…

  • Die Öffnung von 50 mm ist kleiner als das, was man so üblicherweise in der Astrofotografie verwendet.
  • Die Montierung ist AltAz und nicht EQ. AltAz führt zu Bildfeldrotation mit deutlichen Problemen
  • Die Bildverarbeitung geschieht irgendwie intern automatisch
  • Die Bedienung geschieht über eine SmartPhone-App.

Das mit der “kleinen” Öffnung von 50mm hat auch mit der kompakten Bauweise zu tun. Schon bei D=50mm hat man f=250mm, wenn man das Öffnungsverhältnis von f/5 haben will. Damit die Bauweise kompakt bleibt, wird der Stahlengang beim S50 schon zweimal gespiegelt; was übrigens bei professionellen Teleskopen durchaus nicht unüblich ist: z.B. James Web Teleskop, ELT in Chile,…

Abbildung 1: Seestar S50 Strahlengang (Copyright: ZWO Astro)

Die Bildfeldrotation beim S50 hat verschiedene Auswirkungen:

  • Das Einzelbild (das Sub) kann nur kurz belichtet werden (z.B. 10 sec) damit auf dem Einzelbild an den Rändern die Sterne noch punktförmig bleiben.
  • Beim Stacken der Einzelbilder muss man einiges vom Rand abschneiden, da nicht alle Einzelbilder die gleichen Randbereiche voll erfassen.

EQ-Modus mit einer Wedge

Der Hersteller ZWO unterstützt den EQ-Modus beim S50 nicht.

Man kann trotzdem das S50 auf eine Polhöhenwiege (Wedge) stellen. Dann hat man aber einniges zu berücksichtigen:

  • Man muss gut auf das Gleichgewicht achten (z.B. längeres Stativ)
  • Ein Polar Alignment muss manuell ausgeführt werden
  • Mit der offiziellen Seestar-App können Objekte unterhalb des Himmelsäquators nicht angefahren werden
  • Die Belastung des Getriebes durch die Schräglage könnte zu Problemen führen

Seestar ALP

Alternativ zur Bedienung des Seestar über die Seestar-App gibt es eine Software namens “Seestar-ALP”, Dabei steht “ALP” für “Alpaca”.

Die Software ist in Python geschrieben und sollte ursprünglich die in der offiziellen Seestar-App fehlenden Funktionen (z.B. Mosaik) möglich machen.

Mit Python wird ein neues Passwort gesetzt (“Setpassword”, Remote Procedure Call).

Die “Experten” sprechen auch von einem SSC (soll heissen Simple Seestar Controller).

Viele “Ober-Spezialisten” meinen, man müsse Seestar-ALP auf einem Raspberry PI machen. So ein zusätzliches Gerät bracht man aber garnicht: es geht genausogut auf einem Windows-Laptop oder anderen Computern, die Python 3 unterstützen. Man braucht dann lediglich eine TCP/IP-Verbindung zum Seestar.

Mit Seestar ALP können im EQ-Modus auch Objekte unterhalb des Himmelsäquators angefahren werden.

Youtube-Link: Seestar ALP Basic Windows Install and Tutorial

Weiterführende Links

https://www.astrotreff.de/forum/index.php?thread/293126-seestar-alp-steuerung-%C3%BCber-windows-mac-raspberry-pi/

https://github.com/smart-underworld/seestar_alp/releases

https://www.astrophotography.tv/articles/2024/08/seestar-alp-raspberry-pi

https://youtu.be/S17HFlf30tg

https://youtu.be/Cm44uHXo5Rw

Technische Daten im Vergleich

Seestar S50 Celestron Origin Seestar S30 Dwarf 3
Öffnung 50 mm 152 mm 30 mm 35 mm
Brennweite 250 mm 335 mm 150 mm 150 mm
Optik Apochromatisches Triplett RASA Triplet ED Sextuplet
Gewicht 3 kg 19 kg 1,8 kg 1,3 kg
Preis 699,– 4990,– 548,– 435,–
Montierung AltAz AltAz AltAz AltAz oder EQ
Goto Platesoving Platesolving Platesolving Platesolving
Stativ Dreinbein 3/8″ incl. Dreibein sehr kleines Dreibein 3/8″ incl. 1/4″ extra
Kamera/Sensor Sony IMX462 CMOS Sony IMX178 CMOS Sony IMX662 CMOS Sony IMX678 CMOS
Mono/Colour Color Color Color Color
Amp Glow ? ja nein nein
Markteinführung
älter neu neuerer neuerer
Kühlung ohne ohne ohne
Sensorgröße
1080 x 1920 Pixel  (5,57 x 3,13 mm) 3096 x 2080 (7,4 x 4,9 mm) 1920 x 1080 (5,6 x 3,2 mm) 3840 x 2160 (7,73 x 4,32 mm)
Pixelgröße 2.9 µ 2,4 µ 2,9 µ 2,0 µ
Field of View 1,3° x 0,7° (78′ x 42′) 76′ x 51′ 2,1° x 1,2° (126′ x 72′) 3,0° x 1,7° (180′ x 102′)
Mosaikfunktion ja nein ja ja
Belichtungszeiten 10 sec (fest eingestellt) 10 sec (default) oder mehr 10 / 20 / 30 sec max. 60 sec bei EQ Modus
Gain/ISO ? ? ? einstellbar
Nachführung AltAz (field rotation) AltAz (flield rotation) AltAz (field rotation) ?
Dithering ? nein ? nein, nicht erforderlich
Fokussierung AF nicht perfekt, MF soll kommen AF AF AF/MF
Dark Frames jedes Mal neu Library
Flat Frames braucht er nicht Library
Bias Frames braucht er nicht Library
Stacking nicht perfekt ? ? ?
Tauschutzheizung ja ja ja nein, nur Taukappe
Filter UV/IR Cut und sog. Light Pollution, was in Wirklichkeit ein Dual Narrow Band (Ha 20 nm, OIII 30nm) ist (homofokal) Filterschublade UV/IR-Sperrfilter, Duo-Band-Filter (O-III mit 30 nm HWB, H-alpha mit 20 nm HWB), Dunkelfilter VIS-Filter (UV/IR block)
Astro-Filter (UV block)
Duo-Band-Filter
Interner Computer so eine Art AsiAir-Platine Raspberry Pi
Bedienung Android App Android App (ab Version 12) Android App
Verbindung WLAN Hotspot oder WLAN Station Mode
Transfer der Bilddateien auf PC USB or WiFi  Storage Drive
Stromversorgung Akku LiFePO4 Akku Akku 22,2 Wh (festverbaut)
Bildbearbeitung Entrauschen Background extraction,
Gradienten entfernen,
Deconvolution,
Farbkalibrierung,
Stretchen,
Entrauschen,
Schärfen
Entrauschen

Astronomie: Pulsar

Gehört zu: Astronomie
Siehe auch: Synchrotronstrahlung, Sternentwicklung, Kernfusion

Stand: 1.8.2023

Pulsare sind Neutronensterne

Der Zentralbereich eines massereichen Sterns kollabiert zu einem kleinen, sehr dichten Stern, den man Neutronenstern nennt.

Der typische Durchmesser eines solchen Neutronensterns ist ca. 20km. Da der Drehimpuls des ursprünglichen Sterns (genauer: des Zentralbereichs) erhalten bleibt, rotiert der Neutronenstern extrem schnell.

Durch das Kollabieren wird auch das Magnetfeld komprimiert und wird extrem stark (Millionen Tesla).

Da elektrisch geladene Teilchen sich nur längs der Feldlinien frei bewegen können, werden sie von dem Magnetfeld festgehalten. Nur an den magnetischen Polen können die geladenen Teilchen (Plasma) in einem kleinen Kegelbereich in den interstellaren Raum (sog. Jets) entkommen.

Das Plasma durchquert das starke inhomogene Magnetfeld und sendet deswegen Synchrotronstrahlung aus. Da die Richtung der Synchrotronstrahlung in Richtung der Plasma-Bewegung zeigt, geht sie also radial aus den magnetischen Polen heraus.

Pulsar

Wenn bei einem solchen Neutronenstern die Achse des Magnetfeldes identisch ist mit der Rotationsachse des Sterns, so ist die Richtung der Strahlung konstant und nur für Beobachter “sichtbar”, die sich genau in dieser Richtung befinden. Ein solcher Beobachter würde eine konstante Strahlung erhalten.

Wenn bei einem solchen Neutronenstern die Achse des Magnetfeldes aber gekippt ist zur Rotationsachse des Sterns…

Liegt die Erde im Strahlungskegel, empfängt sie wie von einem Leuchtturm regelmäßig wiederkehrende Signale. Beobachtbar sind dann diese Pulse.

Die Pulsperioden liegen typisch zwischen 0,0015 und 4,5 Sekunden,

Die Pulse werden vorwiegend im Radiobereich empfangen, einige Pulsare lassen sich aber auch im Röntgen- und Gamma- sowie im optischen Bereich nachweisen.

Geschichte

Jocelyn Bell Burnell (1943-) und ihr Doktorvater Antony Hewish (1924-2021) entdeckten den ersten Pulsar bei der Suche nach Radioquellen am 28. November 1967 am Mullard Radio Astronomy Observatory bei Cambridge. Die Signale pulsierten in einer ungewöhnlichen Regelmäßigkeit, so dass Bell und Hewish sie zunächst für ein künstliches Signal – eventuell einer extraterrestrischen Zivilisation – hielten (Little Green Man 1). Antony Hewish wurde 1974 für die Entdeckung der Pulsare mit dem Nobelpreis für Physik ausgezeichnet.

Astronomie: Raumsonden

Gehört zu: Astronomie
Siehe auch: Lagrange-Punkte, Swing-by-Manöver, Himmelsmechanik, Künstliche Erdsatelliten

Stand: 26.7.2023

Raumsonden gestartet 2023

Kürzlich gestatet: EUCLID

Gestartet am 1.7.2023 von einem ESA-Konsortium mit einer Falcon-9 von Cape Caneveral

Zielort: Halo-Bahn um den Langrange-Punkt L2 ca. 30 Tage nach dem Start

Aufgabe:
Kartierung der räumlichen Verteilung von mehreren Milliarden Galaxien. Mit den Daten erhoffen sich die sechs aus Deutschland beteiligten Institute des internationalen Euclid-Konsortiums Aufschluss über den Einfluss der dunklen Materie und dunklen Energie auf die Struktur des Universums.

Aktuell: JUICE

Gestartet am 14.4.2023 von der ESA mit einer Ariane 5 vom Weltraumbahnhof Kourou

Zielort: Jupiter-Orbit im Juli 2031

Aufgabe: Erforschung der Jupiter-Monde Europa, Ganymed

Raumsonden gestartet 2021

James Web Space Telescope

Gestartet am 25.12.2021 vom Weltraumbahnhof Kourou

Umlaufbahn: Lissajous-Bahn um den Lagrangepunkt L2

Raumsonden gestartet 2013

Astrometrie-Satellit Gaia

Gestartet am 19. Dezember 2013 in Kourou in Auftrag der ESA

Umlaufbahn: Lissajous-Bahn um den Lagrangepunkt L2

Aufgabe: Hochgenaue dreidimensionale optische Durchmusterung des Himmels

Raumsonden historisch

Weltraumteleskop Kepler

Start: 7. März 2009 von Cape Canaveral (NASA)

Bahn: um die Sonne, etwas hinter der Erde zurückbleibend

Aufgabe: Entdeckung von extrasolaren Planeten

Instrument: Schmidt-Teleskop (1,4 Meter Spiegel, 0,95 Meter Schmidt-Platte)

Weltraumteleskop Herschel

Gestartet am 14.5.2009 von Kourou

Zielort: Halo-Bahn um den Lagrangepunkt L2

Aufgabe: Untersuchung junger Galaxien im Infrarot, Sternentstehung u.a.

Instrument: 3,5 Meter Spiegel aus Silizium-Carbid

Weltraumteleskop Planck

Gestartet am 14.5.2009 von Kourou

Zielort: Lissajous-Bahn um den Lagrangepunkt L2

Aufgabe: Untersuchung der kosmischen Hintergrundstrahlung

Instrument: Hauptspiegel 1,75 Meter mit den Instrumenten HFI und LFI

WMAP-Satellit

Wilkinson Microwave Anisotropy Probe

Gestartet am 30.6.2001 (NASA)

Zielort: Lissajous-Bahn um den Lagrangepunkt L2

Aufgabe: Messung der Kosmischen Hintergrundstrahlung

Weltraumteleskop Hubble

Start: 24.04.1990 von der Raumfähre Discovery

Bahn: Erdumlaufbahn  (also eigentlich ein künstlicher Erdsatellit und keine Raumsonde)

Aufgabe:

Instrument: Speigelteleskop 2,4 Meter Spiegeldurchmesser

Astronomie: Flächenhelligkeit

Gehört zu: Helligkeit, Astronomie
Siehe auch: Gegenschein, Physikalische Größen, Lichtverschmutzung, SQM
Benutzt: Latex-Plugin

Stand: 16.07.2023

YouTube

Flächenhelligkeit von M101: https://youtu.be/rzBTMLCKpPg?si=GloV53Qm7mmcOYkJ

Praxis: Welche dunklen Objekte kann ich am Himmel noch erkennen?

Wenn man  anhand von Zahlen und Formeln herausbekommen will, ob man ein Objekt am Himmel mit dem bloßen Auge oder einer Fotokamera erkennen kann (sei es mit Teleskop oder anders), kann das nach den untenstehenden Formeln einigermaßen “fummelig” werden.

Alternativ hilft immer: ausprobieren.

Vergleiche auch: https://www.astronomie.de/einstieg-in-die-astronomie/sterne-beobachten/wahrnehmung-von-flaechenhaften-objekten

Punktförmige Lichtquellen

Von einem Stern der Scheinbaren Helligkeit m (gemessen in Magnituden) geht ein Lichtstrom Φv (gemessen in Lumen) aus von:

\( \Large \Phi_v = 10^{(-m-14.2064)/2.5}  \enspace Lumen \\ \)

Ein Stern, von dem ein Lichtstrom Φv (in Lumen) ausgeht, erscheint in einer Scheinbaren Helligkeit m (gemessen in Magnituden) von:

\( \Large m = -14.2064 – 2.5 \log{\Phi_v} \enspace mag \)

Addition von punktförmigen Helligkeiten

Zur Addition von Helligkeiten muss man eine lineare Skala verwenden. Die Scheinbaren Helligkeiten (logarithmische Skala in Magnituden) werden dafür in Lichtströme (lineare Skala in Lumen) umgerechnet.

Man sollte im Kopf behalten, dass die Magnituden-Skala eine logarthimische Teilung hat und so skaliert ist, dass 5 Magnituden einen Helligheitsunterschied vom Faktor 100 ausmachen.

Bei einer engen Konjunktion zweier Planeten oder auch bei Doppelsternen verschmelzen die Einzel-Helligkeiten zu einer Gesamt-Helligkeit einer punktförmigen Lichtquelle.

Nehmen wir als Beispiel die enge Konjunktion von Jupiter und Saturn vom 21.12.2020.

  • Die scheinbare Helligkeit des Jupiters war: -1.97 mag  = 1.2748 10-5 Lumen als Lichtstrom
  • Die scheinbare Helligkeit des Saturns war: 0,63 mag = 0.1163 10-5 Lumen als Lichtstrom
  • Diese Lichströme  kann man addieren und bekommt als Summe also 1.3911 10-5 Lumen.
  • Das entspricht einer (scheinbaren) Gesamt-Helligkeit von zusammen -2.06 mag.

So können wir also die Gesamthelligkeit aus den Einzelhelligkeiten mehrerer punktförmiger Lichtquellen (z.B. enge Konjunktion, Doppelstern etc.) ermitteln.

Zur Addition von Helligkeiten kann man natürlich irgendeine lineare Helligkeits-Skala nehmen, es muss nicht der Lichtstrom in Lumen sein.

Beispielsweise:

\( \Large m_{1+2} = -2.5 \cdot \log(10^{-\frac{m_1}{2.5}} + 10^{-\frac{m_2}{2.5}}) \)

Was ist Flächenhelligekeit?

Wenn ein astronomisches Objekt nicht mehr als punktförmige Lichtquelle behandelt werden kann, verwendet man die physikalische Größe “Flächenhelligkeit”. Das ist ganz einfach:

Flächenhelligkeit = Helligkeit / Fläche.

Mit “Helligkeit” ist die sog. “Gesamthelligkeit” gemeint, also die Helligkeit des Objekts wenn es punktförmig wäre.
Normalerweise betrachten wir  die “scheinbaren” Helligkeiten; also so wie sie uns von der Erde aus erscheinen.

Genaugenommen hängt die Fläche eines Objekts von seiner Form ab:

  • Rechteck: Höhe x Breite
  • Kreis: Pi * Radius²
  • Ellipse:  Pi * Große Halbachse * Kleine Halbachse
  • etc.

Eine so berechnete Flächenhelligkeit ist einfach ein Durchnittswert. Wenn das Objekt eine Struktur hat, sind Teile heller und Teile dunkler.

Maßeinheiten allgemein (SI)

Als Helligkeit messen wir den Lichtstrom Φv (in Lumen) oder besser die Beleuchtungsstärke Ev (in Lux = Lumen/m²).
Der Astronom nimmt stattdessen Magnituden (s.u.).

Wenn wir die Fläche als Raumwinkel in Sterad messen (der Astronom nimmt stattdessen arcsec²), erhalten wir als Maßeinheit für die Flächenhelligkeit Lux/Sterad = Candela/m².

Näheres dazu unter Helligkeiten.

Maßeinheiten in der Astronomie

Die klassischen physikalischen Größen in der Astronomie sind:

  • Helligkeit eines Objekts misst man  gern in sog. Magnituden (mag) – auch Größenklassen genannt
  • Fläche am Himmel misst man gerne in Quadrat-Bogensekunden (arcsec²) oder in Quadrat-Bogenminuten (arcmin²)

Damit würde man eine Flächenhelligkeit in mag/arcsec² oder mag/arcmin² ausdrücken. Man muss dann fürchterlich aufpassen, ob Bogenminuten oder Bogensekunden gemeint sind.

Der Amerikaner schreibt auch gerne MPSAS = Magnitudes per square arc second.

Beispiele:

  • Die Himmelshelligkeit in der Stadt Hamburg beträgt ca. 18 mag/arcsec²   (siehe auch: Lichtverschmutzung)
  • Die Flächenhelligkeit von M31 beträgt 13.31 mag/arcmin² (laut Stellarium)
  • Die Flächenhelligkeit von M101 beträgt 14.86 mag/arcmin² (laut Stellarium)
  • Die Flächenhelligkeit des Gegenscheins beträgt ca. 22,17 mag/arcsec2

Flächige Lichtquellen

Bei einer flächigen Lichtquelle verteilt sich die Gesamthelligkeit über die Fläche der Lichtquelle. In astronomischen Werken wird gerne die Gesamthelligkeit von Objekten ausgewiesen, seltener aber auch deren Flächenhelligkeit.

Wenn  wir die Flächenhelligkeit selber ausrechnen wollen, müssen wir die Fläche der Lichtquelle kennen.
Für die Verteilung der Gesamthelligkeit (m) auf die Fläche brauchen wir statt der logarithmischen Skala eine lineare Skala. Dafür können wir z.B. den Lichtstrom (Φv) in Lumen nehmen. Also (Formel s.o.):

\( \Large \Phi_v = 10^{(-m-14.2064)/2.5}  \enspace Lumen \\ \)

Für das Beispiel M31 bekommen wir mit:

  • Gesamthelligkeit: 3,4 mag    (laut Stellarium)
  • Größe: 3° 9′ x 1° 2′ = 189 arcmin x 62 arcmin  (laut Stellarium)

Die Fläche ist inetwa eine Ellipse mit den Halbachsen a=94,5 arcmin und b=31 arcmin. Damit ist die Fläche π * a * b = 9203,3 arcmin²
Der Lichtstrom ist: Φv = 10 ((-3,4 – 14.2064)/2.5) = 10 -7.04256 = 9,0665 10-8 Lumen.
Diesen Lichtstrom verteilen wir nun (gleichmäßig) auf die Fläche von 9203,3 arcmin².
Das macht also 9,0665 10-8 / 9203,3 = 9,851358 10-12  Lumen/arcmin²

Der Astronom hat aber gerne Magnituden (logarithmische Skala) statt Lumen (lineare Skala), also rechnen wir:
\( m = -14.2064 – 2.5 \log{\Phi_v} \enspace mag \)

Bmag = -14.2064 – 2.5 * (0,9934961017 – 12) =  13,31  mag/arcmin²

Für das Beispiel M101 bekommen wir mit:

  • Gesamthelligkeit: 7,90 mag    (laut Stellarium)
  • Größe:  28,8 arcmin x 26,9 arcmin    (laut Stellarium)

Die Fläche ist inetwa kreisförmig mit einem Radius von. ca. 14 arcmin. Damit ist die Fläche π * r² = 615,75 arcmin²
Der Lichtstrom ist: Φv = 10 ((-7,9 – 14.2064)/2.5) = 10 -8,84256 = 1,43694452 10-9 Lumen.
Diesen Lichtstrom verteilen wir nun (gleichmäßig) auf die Fläche von 615,75  arcmin².
Das macht also 1,43694452 10-9 / 615,75 =   2,3336492 10-12  Lumen/arcmin²

Der Astronom hat aber gerne Magnituden (logarithmische Skala) statt Lumen (lineare Skala), also rechnen wir:

Bmag = -14.2064 – 2.5 * (0,3680355724 – 12) =  14,87  mag/arcmin²

Formel für Flächenhelligkeiten

Da wir zur Ermittlung der Flächenhelligkeit ja “nur” die Gesamthelligeit durch die Anzahl Flächeneinheiten (arcmin²) dividieren müssen, können wir uns zu Nutze machen, dass  bei einer logarithmischen Skala die Division einer Subtraktion entspricht (minus minus = plus) und wir erhalten eine einfache Formel:

Bei einer Gesamthelligkeit von m (in Magnituden) und einer Fläche von F  haben wir eine Formel zur Berechnung der Flächenhelligkeit:

\( B_{mag} = m  + 2.5 \log{F}  \\ \)

Wenn wir die Fläche F in Einheiten von arcmin² einsetzen, ergibt die obige Formel die Flächenhelligkeit in mag/arcmin². Wenn wir die Fläche F in arcsec² angeben, erhalten wir die Flächenhelligkeit in mag/arcsec².

Für unsere Beispiele erhalten wir damit:

M31 (m = 3,4  F = 9203,3 arcmin² = 33131880 arcsec²)

  • Flächenhelligkeit: 3,4 + 2,5 * 3,963943579 = 3,4 + 9,9098589475 = 13,31 mag/arcmin²   (13,31 laut Stellarium)
  • Flächenhelligkeit: 3,4 + 2,5 * 7,5202460797 = 3,4 +18,8006151993 = 22,20 mag/arcsec²

M101  (m = 7,9  F = 615,75 arcmin² = 2216700 arcsec²)

  • Flächenhelligkeit:  7,9 + 2,5 * 2,7894044205 = 7,9 + 6,9735110513 = 14,87 mag/arcmin²  (14,86 laut Stellarium)
  • Flächenhelligkeit:  7,9 + 2,5 * 6,3457069213 = 7,9 + 15,8642673033 = 23,76 mag/arcsec²

Addition von flächigen Lichtquellen

Hier geht es typischerweise darum die Flächenhelligkeit des Himmels und die Flächenhelligkeit eines flächigen Beobachtungs-Objekts zu betrachten.

Früher dachte ich, dass ein Beobachtungsobjekt in der Helligkeit des Hintergrunds verschwindet, wenn es zu schwach ist. Es ist aber so, dass sich die beiden Flächenhelligkeiten immer addieren. Das Beobachtungsobjekt hat dann effektiv als Flächenhelligkeit die Summe der beiden Flächenhelligkeiten und die Frage ist nur, ob sich  diese Summen-Flächenhelligkeit noch genug von der Flächenhelligkeit des Himmels abhebt. Ob es da also genügend “Kontrast” gibt.

Bevor wir zwei Flächenhelligkeiten einfach so addieren, solten wir aber sicherstellen, dass beide in gleichen Masseinheiten angegeben sind; also beispielsweise beide in mag/arcsec².

Der Himmel in Hamburg-Eimsbüttel: 18 mag/arcsec²

Dann können wir einfach addieren für M31 (habe ich mit Excel gemacht):

m = -2,5 * log(10^-22,20/2,5  + 10^-18,00/2.5) = -2,5 * log( 10^-8,88  +  10^-7,2) = -2,5 * log( 1,31826E-9 + 6,30957E-8) = -2,5 * log(6,441396E-8) = -2,5 * -7,191020 = 17,977550

Und für M101 erhalten wir auf gleiche Weise (habe ich mit Excel gemacht):

m = -2,5 * log(10^-23,76/2,5  + 10^-18,00/2.5) = -2,5 * log( 10^-9,504  +  10^-7,2) = -2,5 * log(3,133286 E-10 + 6,30957E-8) = -2,5 * log(6,340906E-8) = -2,5 * -7,197849 = 17,994622

Beispielsweise (FH = Flächenhelligkeit):

Objekt FH in mag/arcmin² FH in mag/arcsec² Himmel in mag/arcsec² FH Summe in mag/arcsec²
M31 13,31 22,20 18,00 17,9775
M101 14,87 23,76 18,00 17,9946

Bei einem Hamburger Großstadt-Himmel von 18 mag/arcsec² ist also

  • M31 gerade mal 0,0225 mag heller als der Himmelshintergrund
  • M101 gerade mal 0,0054 mag heller als der Himmelshintergrund

Wo da bei visueller Beobachtung die Grenzen sind, weiß ich nicht.
Bei fotografischer Beobachtung kann ich das Foto so lange belichten, bis das Histogramm sich vom linken Rand löst und dann das Histogramm so bearbeiten, dass M101 knapp sichbar wird.

Der Himmel in Handeloh 21 mag/arcsec²

Wenn wir das Gleiche nicht in Hamburg City, sondern in Handeloh machen, sieht das schon ganz anders aus.
In Handeloh gehen wir mal von einer Himmelshelligheit von 21 mag/arcsec² aus.

Damit ergibt sich (FH Summe mit Excel errechnet):

Objekt FH in mag/arcsec² Himmel in mag/arcsec² FH Summe in mag/arcsec²
M31 22,20 21,00 20,6894
M101 23,76 21,00 20,9177

Unter einem dunklerem Himmel von 21 mag/arcsec² ist also

  • M31  schon 0,3 mag heller als der Himmelshintergrund
  • M101 schon 0,1 mag heller als der Himmelshintergrund

Conclusio: Nicht ist besser als ein noch dunklerer Himmel

Astronomie: Aberration

Gehört zu: Astronomie
Siehe auch: Parallaxe, Nikolaus Kopernikus, Koordinatensysteme, Lichtgeschwindigkeit

Stand: 5.7.2023

Fixstern-Aberration

Aberation bedeutet im Wortsinne eigentlich soetwas wie “Abweichung” oder “Ablenkung”. Aber Abweichung von was? Und wodurch wird so eine Abweichung bewirkt?

So eine Fixstern-Aberration wurde im Jahre 1727 von James Bradley (1693-1762) entdeckt. Bradley beschäftigte sich längere Zeit mit der Vermessung von Sternörtern (Astrometrie). Zu diesem Zwecke hatte er sich ein sog. Zenith-Fernrohr bauen lassen, mit dem er zenith-nahe Objekte sehr genau vermessen konnte.

Am Stern Etamin (Gamma Draconis) wollte James Bradley die Parallaxe bestimmen. Was er statt dessen messen konnte war die Aberration.

Bei der Beobachtung von Fixsternen misst man kleine Verschiebungen der Sternposition am Himmel, weil sich die Erde um die Sonne bewegt (Bahngeschwindigkeit ca. 30 km/s) und das Licht ja nur eine endliche Geschwindigkeit (ca. 300.000 km/s) hat.

Abbildung 1: Aberration im Regen (https://www.gutefrage.net/frage/mechanik-vektoraddition-regentropfen-aus-meiner-sichtweise)

GuteFrage.org

Die Größe der Fixstern-Aberration durch die jährliche Bewegung der Erde hängt dann nur noch von der Lichtgeschwindigkeit ab. Heute weiss man, dass die Lichtgeschwindigkeit (im Vakuum) immer gleich ist und weder von der Entfernung noch von der Bewegung eines Fixsterns abhängt – auch einen Äther, der evtl. mitbewegt sein könnte, gibt es nicht. Damit ist auch die Fixstern-Aberration unabhängig von der Entfernung des Fixsterns und unabhängig von vielem anderen. Allerdings beschreibt die Aberration eines Fixsterns im Laufe des Jahres eine kleine Figur, die von der ekliptischen Breite des Stern abhängt.

Wenn man mal als bekannt voraussetzt:

  • Lichtgeschwindigkeit: ca. 300.000 km/s
  • Erdbahngeschwindigkeit: ca. 30 km/s

ergibt sich ein Aberationswinkel α von:

\( \Large \alpha = \frac{30}{300000} rad = \frac{1}{10000} rad = \frac{360 * 60 * 60}{10000 * 2* \pi} arcsec = 20 \enspace arcsec \\ \)

Die Verschiebung des Sternortes beträgt also einen Winkel von 20″ und zwar in Richtung der Erdbewegung. Ein Stern am Pol der Ekliptik (β=90º) beschreibt einen Kreis mit dem Durchmesser 20″. Sterne mit einer ekliptischen Breite von β < 90º eine Ellipse mit den Halbachsen 10″ und 10″ · cos β.

Eine genauere Erklärung der Fixstern-Aberration gibt die Spezielle Relativitätstheorie. Link: https://explainingscience.org/2019/05/28/stellar-aberration/

Eigentlich wollte Bradley die Parallaxe des Sterns Gamma Draconis bestimmen, die war aber mit  0,021 arcsec weit unterhalb der damaligen Messgenauigkeit. Auch die Richtung der Verschiebung bei Parallaxe und Aberration ist unterschiedlich (s.u.).

Abgesehen von den damals noch nicht so genau bekannten Eigenschaften der Lichtgeschwindigkeit war das auch ein erster Beweis des heliozentrischen Weltbildes des Nikolaus Kopernikus.

Unterschiede zwischen Fixstern-Aberration und Fixstern-Parallaxe

Quelle: https://www.youtube.com/watch?v=3JaFVH36WHQ

Fixstern-Aberration Fixstern-Parallaxe
Ursache (der Ellipse) Änderung der Bewegungsrichtung der Erde beim jährlichen Umlauf um die Sonne Änderung des Ortes der Erde beim jährlichen Umlauf um die Sonne
Entdecker Bradley 1727 Bessel 1838
Veränderung mit der Entfernung Nein Ja, ändert sich umgekehrt proportional zur Entfernung. Nähere Sterne zeigen größere Parallaxe
Größe (der Ellipse) 20.5 arcsec (Durchmesser) 0.769 arcsec für den nähesten Stern, Proxima Centauri

 

Astronomie: Claudius Ptolemäus

Gehört zu: Sonnensystem
Siehe auch: Nikolaus Kopernikus, Johannes Kepler

Stand: 16.06.2023

Claudius Ptolemäus (ca. 80 – 160) lebte in Alexandria und forschte auf den Gebieten der Astronomie, Mechanik  u.a.

Er verfeinerte das geozentrische Weltbild des Apollonius von Perge (ca. 265 – 190 v.Chr.) und des Aristoteles (394 – 322 v.Chr.), indem er auf die Epizyklen weitere Epizyklen setzte.
Durch immer mehr Epizyklen kann man schließlich beliebige Funktionen erreichen, wie mehr als 1000 Jahre später Joseph Fourier (1768-1830) zeigte.

Um die scheinbaren Bahnen der Planeten am Himmel zu ermitteln benötigte Ptolemäus die Positionen von Hintergrundsternen sozusagen als Referenz.  Das ermöglichte sein Sternkatalog “Almagest“, in dem mehr als 1000 Sterne verzeichnet waren.

Geozentrisches Modell

Um die Bewegung der Planeten am Sternenhimmel gut zu erklären, musste man im Geozentrischen Modell (Erde im Mittelpunkt) zu einigen “Kunstgriffen” greifen:

Durch die Einführung von Epizyklen konne man die retrograde (rückläufige) Bewegung der Planeten erklären.

Um die unterschiedliche Geschwindigkeit in der Bewegung eines Planeten zu erklären, wurde der Kreis (der Deferent) etwas exzentrisch verschoben; d.h. die Sonne stand dann nicht genau im Mittelpunkt des Deferenten eines Planeten.

Heliozentrisches Modell

Abgelöst wurde das Geozentrische Modell des Sonnensystems dann viel später durch die Arbeiten von Nikolaus Kopernikus und Johannes Kepler.

 

Astronomie: Exo-Planeten

Gehört zu: Astronomie
Siehe auch: Sonnensystem
Benutzt: WordPress-Plugins

Stand: 15.06.2023

Exo-Planeten: Stichworte

Die erste Entdeckung eines Exo-Planeten

Um den Stern  51 Peg wurde der erste außersolare Planet entdeckt. Er bekam den Namen 51 Peg b.

Er wurde am 06.10.1995 durch Michel Mayor & Didier Queloz am Observatoire de Haute Provence (OHP) nachgewiesen.

Die beiden erhielten 2019 dafür den Nobelpreis.

Zur Zeit (2023) sind über 5000 Exo-Planeten nachgewiesen. Vergleiche dazu die Website NASA Exoplanet Archiv (s.u.)

Transit-Methode

Die Transit-Methode ist zur Zeit die häufigste Methode zur Entdeckung von Exo-Planeten.

Transit Finder von Eric Jensen: https://astro.swarthmore.edu/transits/transits.cgi

NASA Exoplanet Archiv: http://exoplanetarchive.ipac.caltech.edu/

Exoplanet Transit Database (ETD): http://var2.astro.cz/ETD/predictions.php

Was ist WASP?

Die Abkürzung WASP steht für: Wide Angle Search for Planets.

The WASP project is an exoplanet transit survey that has been automatically taking wide field images since 2004.
Two instruments, one in La Palma and the other in South Africa, continually monitor the night sky, building up light curves of millions of unique objects.

Photometrie

Die Lichtkurve eines Sterns, der seine scheinbare Helligkeit über die Zeit verändert, kann man fotografisch bestimmen.

Man macht eine Serie von Fotos des betreffenden Sterns. Mit Hilfe der Software AstroimageJ  kann man dann die Helligkeiten des Sterns auf den Fotos bestimmen.

Links zum Thema Exo-Planeten

Diagramme: http://www.exoplanet.eu/diagrams/

CourseRA: https://www.coursera.org/learn/exoplanets

Enzyklopädie der Exoplaneten: http://www.exoplanet.eu/

Online-Teleskope (Remote Telescops)

SkyGems: https://skygems-observatories.com/#home

Astronomy with an online telescope (Onlinekurs):

https://www.open.edu/openlearn/science-maths-technology/astronomy/astronomy-online-telescope/content-section-overview?active-tab=description-tab

 

Astronomie: Kugelsternhaufen

Gehört zu: Beobachtungsobjekte
Siehe auch: Sternhaufen
Benutzt: Fotos aus Google Archiv

Stand: 31.05.2023

Link: https://people.smp.uq.edu.au/HolgerBaumgardt/globular/

Kugelsternhaufen

Der Klassiker: M13 im Herkules

  • M13 = NGC6205
  • Anzahl Sterne: 500.000
  • Entfernung:  25.000 Lichtjahre
  • Alter: 11,6 – 12,6 Milliarden Jahre

Auch im Herkules: M92

  • M92 = NGC 6341
  • Gesamtmasse:  330.000 Sonnenmassen
  • Entfernung: ca. 26.000 Lichtjahre
  • Alter: ca. 13 Milliarden Jahre

Was ist ein Kugelsternhaufen?

  • Kugelsternhaufen gehören zu den Deep Sky Objekten
  • Sie sind kugelsymmetrisch
  • Anzahl Sterne: typischerweise mehrere 100.000
  • Die Sterne gravitativ an einander gebunden
  • Der Haufen ist gravitativ an eine Galaxis gebunden – die meisten Bahnen verlaufen ausserhalb der galaktischen Scheibe

Kugelsternhaufen in unserer Galaxis

  • ca. 168 Kugelsternhaufen in unserer Milchstrasse
  • Diese Kugelstenhaufen befinden sich in einem kugelförmichen Halo um die Milchstrasse herum

Alter von Kugelsternhaufen

  • So alt wie die Milchstrasse (Population II, fast keine Metalle)
  • Abknickpunkt im Hertzsprung-Russel-Diagramm

Kugelsternhaufen in der Andromeda-Galaxis (M31)

Im Halo der Andromeda-Galaxis gubt es ca. 500 Kugelsternhaufen.

Schöne Kugelsternhaufen (in unserer Galaxis)

Meine Kriterien: Größer als 10′ und heller als 8,0 mag

Lfd.Nr. Kurzbezeichnung Ausdehnung Helligkeit Sternbild Bemerkungen Status
 Omega Cen  55′  5,3 mag Zentauer  Namibia (NGC 5139)
 47 Tuc  31′  4,9 mag Tukan  Namibia (NGC 104)
 M2  16′  6,3 mag Wassermann  Dekl=0°, sichtbar Sep, Okt, Nov (NGC 7089)
 M3  18′  6,3 mag Jagdhunde  im Frühjahr sichtbar  (NGC 5272)
 M4  36′  5,9 mag  Skorpion Dekl=-26°, bei Antares, sichtbar Mai= am Morgenhimmel, Juni= ab Mitternacht
(NGC 6121)
 M5  23′  5,6 mag  Serpens  Dekl=+2°, Beobachtung: April-September
(NGC 5904)
 M10  20′  6,6 mag  Oph Zweithellster KH im Oph (NGC 6254)
 M12  16′  6,1 mag  Oph  Der hellste Kugelhaufen im Oph (NGC 6218)
 M13  20′  5,8 mag  Herkules  Abendhimmel: Apr, Mai, Juni (NGC 6205)
 M15  18′  6,2 mag  Peg (NGC 7078)
 M22  32′  5,5 mag  Sgr Hellster Kugelsternhaufen, der von Hamburg aus beobachtbar ist – allerdings tief am Südhimmel (NGC 6656)
 M30  12′  7,7 mag  Capricornus  Dunkel, Dekl= -23°, Aug – Okt (NCC 7099)
 M80   10′  8,7 mag  Skorpion  Dekl=-23°   (NGC 6093)
 M92  14′  6,3 mag  Herkules  Abendhimmel: Apr, Mai, Juni (NGC 6341)

Helle Nebel und Galaxien im Messier-Katalog

Quelle: VdS “Astronomie – Ihr neues Hobby”

Nr. Name Sternbild Beobachtungszeit
M 1 Krebsnebel (SN) Stier Nov, Dez
M 27 Hantelnabel (PN) Fuchs Juni, Juli
M 81 Bodes Galaxie Großer Bär Jan-Dez
M 82 Zigarren Galaxie Großer Bär Jan-Dez
M 94 Katzenauge-Galaxis Jagdhunde Feb, Mrz,…
M 101 Pinwheel-Galaxis Großer Bär Mrz, Apr,…

Asterismen

Bis Feb. 2024 noch nicht beobachteter Asterismus:

The broken engagement ring  SAO 27788  Rechts von Merak (Beta UMa Kasten rechts unten)

Astronomie auf Kiripotib 2023: Was ist neu?

Gehört zu: Namibia
Siehe auch: Namibia 2022, Namibia 2024, OnStep-Controller

Stand: 22.05.2023

Astronomie auf Kiripotib – ein Update 2023

Da hat sich einiges getan: Astronomie auf Kiripotib 2023

OnStep-Controller für Fornax51, Fornax55 und Alt AD6

Astronomie auf Kiripotib 2023: Plattformen

Drei neue Plattformen mit Säulen

WLAN auf den Plattformen

Hasenschanze: Dach motorisiert

Es gibt ein Remote Observatory

Astronomie auf Kiripotib 2023: Neue Montierungen

1 x Fornax55  oder Fornax 62 ?

4 x Skywatcher EQ6-R

Entsorgte Montierungen

GP-DX, GP-D2, New Atlux.

Neue Teleskope:

2 x 8″ Foto-Newton

1 x Esprit Apo 100/500

Neue Autoguider

2 neue MGEN III

Neue Controller

OnStep anstelle der FS-2 an den Montierungen: Fornax55, Fornax51, ALT AD6, (MK100  noch nicht).
Die OnStep-Controller brauchen 24 Volt.

Und die liebe SEQ Analyse will viel mehr Wörter in diesem Artikel haben. Da müssen wir eben etwas mehr labern oder so.

Und die liebe SEQ Analyse will viel mehr Wörter in diesem Artikel haben. Da müssen wir eben etwas mehr labern oder so.

Und die liebe SEQ Analyse will viel mehr Wörter in diesem Artikel haben. Da müssen wir eben etwas mehr labern oder so.

Und die liebe SEQ Analyse will viel mehr Wörter in diesem Artikel haben. Da müssen wir eben etwas mehr labern oder so.

Und die liebe SEQ Analyse will viel mehr Wörter in diesem Artikel haben. Da müssen wir eben etwas mehr labern oder so.

Und die liebe SEQ Analyse will viel mehr Wörter in diesem Artikel haben. Da müssen wir eben etwas mehr labern oder so.

Und die liebe SEQ Analyse will viel mehr Wörter in diesem Artikel haben. Da müssen wir eben etwas mehr labern oder so.