Astronomie: Einnorden – Polar Alignment mit QHY PoleMaster

Gehört zu: Montierung, Einnorden
Siehe auch: SharpCap, Liste meiner Geräte, QHY PoleMaster, Einnorden mit N.I.N.A.
Benutzt: Fotos aus Google Archiv, Videos von Youtube

Stand: 30.12.2022

Generelles zu Einnordung / Einsüdung / Polar Alignment

Eine parallaktische Montierung muss “eingenordet” sein, damit das Goto und die Nachführung richtig funktionieren.

Hat man keine fest aufgebaute Montierung, sondern eine mobile Montierung, die jedesmal wieder neu aufgestellt werden muss, so hat man die Prozedur des Einnordens immer wieder erneut durchzuführen und man fragt sich, wie man das einfach, genau und bequem gestalten kann.

Einnorden muss man also immer, wenn man parallaktisch per Motor nachführen will – z.B. wegen längerer Belichtungszeiten.

Zur “Einnordung” gibt es verschiedene Methoden, die ich im Überblick in diesem Artikel dargestellt habe. Dies sind:

  • Scheinern – Drift Alignment
  • Polfernrohr mit Fadenkreuz und Sternenmaske
  • Spezielle Funktion von computerisierten Montierungen (per Handbox)
  • Software “AlignMaster” mit ASCOM Goto Montierungen
  • QHY PoleMaster (Hardware und Software)
  • Software “SharpCap
  • N.I.N.A.  Three Point Polar Alignment

Ich benutze zum Einnorden meiner Montierungen SkyWatcher HEQ5 Pro und iOptron SmartEQ Pro den QHY PoleMaster. Das Einnorden/Einsüden meines NanoTrackers (neu: Skywatcher Star Adventurer Mini) versuche ich ebenfalls mit QHY PoleMaster ggf. muss ich mit SharpCap Aufnahmen machen, die dann für ein Plate Solving auf dem Windows-Notebook zur Verfügung stehen. um definitiv zu wissen, welche Stern im Gesichtsfeld stehen.

QHY PoleMaster verkauft

Neuerdings (seit 2020) verwende ich das Polar Alignment der Software SharpCap anstelle des QHY PoleMasters. den PoleMaster habe ich verkauft.

QHY PoleMaster Review

Autor: Chuck’s Astrophotography

Abbildung 1: How to Use the QHYCCD PoleMaster Software (YouTube https://www.youtube.com/watch?v=DJvfYAAxXsA&t=75s)

AstroBackyard Review: https://astrobackyard.com/qhy-polemaster-review/

Polar Alignment mit PoleMaster QHYCCD

Warum QHY PoleMaster?

Im Rentenalter wollte ich mein Astronomie-Hobby aus der Jugendzeit wieder aufnehmen, nachdem ich fast 40 Jahre garnichts astronomisches gemacht hatte.

Ich schielte von Anfang an auf die Astrofotografie und wollte mit einer kleinen mobilen parallaktischen Montierung anfangen, mit der ich auch die in den letzten Jahrzehnten möglich gewordenen neuen Dinge wie GoTo und Autoguiding mal praktisch ausprobieren wollte. Meine Wahl fiel vor zwei Jahren auf eine iOptron SmartEQ Plus. Mittlerweile (2017) habe ich eine gebrauchte Skywatcher HEQ5 Pro….

Mein hauptsächlicher Beobachtungsort ist die Innenterrasse meiner Erdgeschosswohnung in Hamburg-Eimsbüttel (also Lichtverschmutzung durch Stadtlicht). Ich habe dort keine fest eingerichtete Terrassensternwarte, sondern muss die Montierung für jede Beobachtungsnacht neu aufstellen und einjustieren.

Für die Füße des Dreibeinstativs habe ich auf den Terrassenfliesen Markierungen mit Nagellack gemacht.

Belichtungszeit

Ich habe gelesen, dass man für vernünftige Astrofotos sehr lange belichten soll (Poisson-Verteilung der ankommenden Photonen). Beispielsweise so etwa mindestens 30 Einzelaufnahmen (sub exposures) mit je 300 sec Belichtungszeit.

Die maximal mögliche Belichtungszeit (bei festem ISO von z.B. 800) muss man experimentell herausfinden. Je heller der Himmel ist (Lichtverschmutzung) desto kürzer wird die maximale Belichtungszeit werden (Histogramm ganz rechts, Bild ganz hell) . In Handeloh kann ich z.B. 300 Sekunden bei ISO 800 belichten.

Damit die für solche Belichtungszeiten benötigte Nachführung gut funktioniert, ist eine exakte Aufstellung der Montierung erforderlich. D.h.

  • Waagerechte Aufstellung
  • Einnordung (Polar Alignment)

Die Auflageplatte der Montierung soll exakt waagerecht liegen, also muss der Polkopf abgeschraubt werden und eine Wasserwaage daher, um die Stativbeine genau auf eine waagerechte einzustellen. Dann kommt der Polkopf (Achsenkreuz) wieder drauf und die Stundenachse muss genau auf den Himmelspol ausgerichtet werden…

Danach erst kann das Goto Alignment geschehen, damit ich meine Beobachtungsobjekt leicht per Goto in die Bildmitte einstellen kann und damit die Nachführung dann gut funktioniert.

Die Nachführung durch die Montierung selbst (manche sagen das Tracking) sollte für 30-60 Sekunden gut sein. Falls das noch weiter verbessert werden soll, wäre schließlich ein Autoguiding angezeigt.

Einnorden

Für das sog. Einnorden gibt es ja viele Techniken. Meine schöne iOptron SmartEQ Pro Montierung (die HEQ5 Pro auch) hat dafür in der Stundenachse ein beleuchtetes Polfernrohr mit konzentrischen Ringen und einer Zifferblatt-Mimik. In der Praxis war das aber für mich viel zu unbequem (Foto: Kniefall).

Abbildung 2: Kniefall zum Einnorden durch das Polfernrohr (Google Drive: PolarScope_20170223_1 Kopie.jpg)


Der Kniefall: So bequem schaut man durch das beleuchtete Polfernrohr

Deswegen war ich begeistert, als ich von dem neuen Produkt „QHY PoleMaster“ lass und Erfahrungsberichte dazu in Google und Youtube fand.

  • Dietrich Kracht auf YouTube
  • QHYCCD PoleMaster Polar Alignment Camera by Jeffrey Geiss P1:

  • QHYCCD PoleMaster Polar Alignment Results, Software, Hardware P2:

     

Was ist QHY PoleMaster?

Was der QHY PoleMaster genau ist und wie er funktioniert haben andere schon sehr schön im Web erklärt.

Kurzgesagt ist es eine kleine USB-Kamera mit einem lichtstarken Objektiv (f=25mm) und einem Sensor 1280×960 (Aptina ASX340, 1/3″, 3,75µ) wie bei der QHY5L II, die auf die Montierung gesteckt wird und mit der man die Gegend um den Himmelpol fotografiert (FoV 11×8 Grad). Die kleine Kamera wird per USB mit einem Notebook-Computer verbunden auf dem eine spezielle PoleMaster-Software von QHY installiert ist.

Installation der Software für QHY PoleMaster auf dem Windows-Notebook

Am 27.2.2017 habe ich dann den QHY PoleMaster bei Teleskop-Express für EUR 355,00 erstanden.
Zunächst ist ein Treiber für die im QHY PoleMaster enthaltene Kamera erforderlich. Was mitgeliefert wird ist ein proprietärer Treiber, der eine vom Hersteller erfundene Gruppe “AstroImaging Equipment” im Windows-Gerätemanager aufmacht: PoleMasterDriverLatestEdition.zip

Nach erfolgreicher Installation des Treibers erscheint die Kamera im Windows-Gerätemanager wie folgt:

Abbildung 3: POLEMASTER im Windows-Gerätemanager (Google Drive: Polemaster-02.jpg)


QHY PoleMaster Driver

Das Herzstück der PoleMaster-Lösung ist dann die spezielle Software, die das Bild der Kamera auf dem Window-Notebook anzeigt und dann durch die Prozedur des Polar Alignments führt.

Abbildung 4: Der Rotationskreis der Stundenachse (Google Drive: Polemaster_006.jpg)


QHY PoleMaster Rotation

Abbildung 5: Himmelspol und Rotationszentrum zur Deckung bringen (Google Drive: DK_20170726_Polemaster.jpg)

Wie funktioniert das Einnorden mit QHY PoleMaster?

Im ersten Schritt richtet man die Kamera auf die Polgegend, identifiziert Polaris durch Doppelklick und die Software errechnet aufgrund des Sternfeldes insgesamt, wo sich genau der Himmelspol befindet.

Im zweiten Schritt soll man die Montierung mehrfach um die Stundenachse drehen und dabei die Drehung eines “anderen” Sterns verfolgen und Doppelklicks machen um die Position an die Software zu übergeben. Daraus ermittelt die Software den Rotationskreisbogen und damit genau wohin die Rotationsachse (Stundenachse) der Montierung zeigt.

Im dritten Schritt muss man die Montierung so im Azimut und in der Polhöhe einstellen, das beides zur Deckung kommt – was auf dem Bildschirm durch zwei Markierungen angezeigt wird.

Das ganz soll nur 3 Minuten dauern und eine Genauigkeit von 30″ liefern.

Zusammenfassung Schritt für Schritt:

  1. USB-Stecker an Kamera soll nach rechts schauen, USB-Kabel mit Laptop-Computer verbinden
  2. Montierung auf Home-Position stellen
  3. PoleMaster-Programm auf Laptop-Computer starten.
  4. Oben links auf “Connect” klicken.
  5. Zoom einstellen
  6. Region Selection: North
  7. Belichtungszeit aufdrehen bis auch die dunkleren Sterne (dunkler als Polaris) auf dem Display sichtbar werden.
  8. Ggf. Fokussierung des PoleMasters überprüfen
  9. Doppelklick auf Polaris und softwaremäßiges Rotieren einer Maske von Umgebungssternen bis sie übereinanderliegen (damit ist der Himmelspol identifiziert)
  10. Selektieren eines anderen Sterns als Polaris mit Doppelklick (dieser Stern dient dazu, den Drehpunkt der Stundenachse zu messen, muss also bei Rotation im Bildfeld bleiben)
  11. Physisches Drehen um die Rotationsachse des Geräts zweimal um jeweils 30-40 Grad und Doppelklick auf den “anderen” Stern. Daraus berechnet die Software den Drehkreis des “anderen” Sterns und damit ist der Drehpunkt der Montierung identifiziert
  12. Montierung zurück in die Home-Position fahren. Dabei muss der “andere” Stern entlang des berechneten Kreises laufen.
  13. Die Software zeigt jetzt die errechneten Positionen des Himmelspols (grüner Kreis) und des Drehpunkts der Montierung (roter Kreis) an. Diese müssen an der Montierung durch manuelles Verstellen von Azimut und Polhöhe zur Deckung gebracht werden.

Befestigung des QHY PoleMaster auf einer Skywatcher HEQ5 Pro

Wie wird die PoleMaster Kamera auf der Montierung befestigt? Die Kamera selbst hat unten drei M3 Schrauben kreisförmig in Winkeln von 120 Grad angeordnet. Die werden von oben auf eine Adapter-Scheibe geschraubt, die mit ihrer unteren Seite auf der Öffung des Polfernrohrs ihrer Montierung befestigt wird. Je nach Montierung gibt es verschiedne Adapter-Unterteile z.B. für:

  • EQ6/AZEQ6
  • HEQ5
  • iOptonCEM60 ZEQ25/CEM25 iEQ45 iEQ30
  • AZEQ5
  • Celestron AVX CGEM
  • EM200/EM11

11. Juli 2017: Ich plane nun von meiner SmartEQ Pro auf eine Skywatcher HEQ-5 Pro Synscan umzusteigen.

Für diese Montierung gibt es einen passenden Adapter, den ich z.B. bei Teleskop Express gefunden habe. Um den QHY PoleMaster auf einer Montierung Skywatcher HEQ5 Pro zu befestigen, gibt es (z.B. bei Teleskop-Express) den Adapter “PoleMaster Adapter für Skywatcher H-EQ5 Montierung” (AL70410 für EUR 39,00).

http://www.teleskop-express.de/shop/product_info.php/info/p8803_ALccd-PoleMaster-Adapter-fuer-Skywatcher-H-EQ5-Montierung.html

Der Adapter kommt auf die Öffnung des Polfernrohrs der HEQ5, dabei bleibt eine Öffnung, so dass das Polfernrohr weiter benutzt werden könnte.

Abbildung 6: Polemaster Adapter für die HEQ5 (Google Drive: PoleMaster_20190219_124331.jpg und PoleMaster_20190219_124618.jpg)


PoleMaster Adapter for HEQ5 Pro

PoleMaster on HEQ5 Pro

Befestigung des QHY PoleMaster auf der Montierung SmartEQ Pro

Ich habe ja, wie gesagt, eine Montierung, die nicht ganz so „Mainstream“ ist, nämlich einen iOpton SmartEQ Pro. Mein deutscher Lieferant konnte keinen passenden Adapter liefern. Ich spielte schon mit dem Gedanken, meine Montierung zu wechseln (etwa CEM25), dann fand ich aber im Internet bei der englischen Firma „Modern Astronomie“ den Adapter für die SmartEQ Pro. Den habe ich mal als erstes alleine bestellt, um die prüfen, ob das Ding auch das tut, was ich für den PoleMaster benötige. Gestern kam das Paket mit dem Adapter aus England hier an. Man montiert das Teil auf die vordere Öffnung des Polfernrohrs, die damit blockiert ist (anders als bei anderen Adaptern). Es passt auf meine Montierung und sieht insgesamt gut aus.

Abbildung 7: Polemaster Adapter für die Montierung SmartEQ Pro (Google Drive: DK_20170303_1315.JPG)


QHY Polemaster Adapter auf iOptron SmartEQ Pro

Da der Adapter OK war, habe ich nun auch den eigentlichen PoleMaster bestellt (ohne Adapter). Mein deutscher Lieferant hatte den auf Lager und lieferte extrem schnell.

Abbildung 8: QHY Polemaster auf SmartEQ Pro (Google Drive: DK_20170303_1316.JPG)


QHY Polemaster on SmartEQ Pro

Befestigung des QHY PoleMaster auf dem Star Adventurer Mini

Als kleinen Tracker für DSLR auf Fotostativ bin ich ja vom NanoTracker (s.u.) auf den Star Adventurer Mini umgestiegen.

Der funktionierte auch auf der Südhalbkugel sehr gut, allerdings musste man den schwachen Stern Sigma Octantis ersteinmal ins Gesichtsfeld bekommen. Was recht zeitaufwendig sein kann, wenn man in zwei Freiheitsgraden sucht (rechts-links und oben-unten). Das kann man vereinfachen auf einen Freiheitsgrad, indem man die Polhöhe vorher schon exakt einstellt, dann hat man nur noch die Einstellung des Azimuths als einen Freiheitsgrad (siehe dazu: Elektronischer Neigungsmesser).

Im Juni 2018 ist mir das beispielsweise auf Kiripotib, Namibia, gelungen, wie das Foto zeigt.

Abbildung 9: Polemaster auf der Südhalbkugel (Google Drive: 20180606_polemastersouth-01.jpg)

Befestigung des QHY PoleMaster auf dem NanoTracker

5. April 2017: Um den QHY PoleMaster auf einem ganz normalen 3/8-Zoll Fotogewinde zu befestigen, gibt es von der Firma Cyclops Optics einen speziellen Adapter namens “Universal Portable Mount Adapter PM-ST”.

https://www.cyclopsoptics.com/adapter/cyclops-optics-universal-portable-mount-adapter-t6061-cnc-for-polemaster/

Die eine Scheibe befestigt man mit drei kleinen Schrauben hinten am PoleMaster; diese Scheibe hat nach unten ein 3/8-Zoll Innengewinde. Mit einem 3/8-Zoll auf 1/4-Zoll Zwischengewinde kann ich das dann auf den NanoTracker schrauben. Die zweite Scheibe dient dann als (große) Kontermutter, um die Verbindung nach unten in der gewünschten Richtung (hier: USB nach rechts) zu fixieren

Wenn ich statt des NanoTrackers den Skywatcher Star Adventurer Mini verwende ist das Ganze noch einfacher…

Abbildung 10: QHY Polemaster mit Spezialadapter auf NanoTracker (Google Drive: DK_20170628_Nanotracker-01.JPG)


QHY Polemaster mit Spezialadapter auf NanoTracker

Am 8. Juli 2017 konnte ich damit ein Polar Alignment meines NanoTrackers auf dem Fotostativ “Sirui ET-1204” mit einem Stativkopf “Rollei MH-4“erfolgreich durchführen.

Den Stativkopf Rollei MH-4 habe ich am 16. Mai 2017 bei Amazon für Euro 24,99 gekauft (Belastbarkeit 2,5 kg).

Das Fotostativ Sirui ET-1204 habe ich am xxx gekauft (für die Flugreise: Carbon, 4 Segmente,…)

Für das Polar Alignment mit der PoleMaster-Software waren erforderlich:

  • Stabile Aufstellung des Fotostativs: Das ging durch beschweren der Mittelsäule mit einer Plastiktüte mit schwerem Inhalt
  • Nivellieren in die Waagerechte: Das ging mit einer kleinen Wasserwage
  • Drehen der Kamera um die Rotationsachse des Motors: Das ging, wenn man die Kontermutter etwas lockerte
  • Kleine Bewegungen der “Montierung” im Azimut und Polhöhe: Das ging mit Hilfe des Neigekopfs MH-4

Den Rollei Stativkopf (Neigekopf) MH-4 habe ich eigens zur einfacheren Einnordung angeschafft:

Abbildung 11: Neigekopf Rollei MH-4 (Google Drive: DK_20170711_1789.JPG)


Neigekopf Rollei MH-4

Statt dieses MH-4 Neigers habe ich mir später den Manfrotto MG460 Neiger, angeschafft.

Noch eleganter fand ich schliesslich die Lösung mit einer Wedge, die zum Star Adventurer Mini gehört. Damit fand ich es am einfachsten, die Höhe und das Azimuth des Himmelspols einzustellen.

Astrofotografie: Kometen

Gehört zu: Das Sonnensystem
Siehe auch: Welche Objekte, Liste meiner Fotos
Benutzt: Fotos von Google Drive

Stand:  01.05.2023

Beobachtungsobjekt Kometen

Unter allen Beobachtungsobjekten ist ein Komet, wenn er schön eindrucksvoll sein soll, schwer vorherzusagen.

Historisch hatten wir einige “große” Kometen: an die ich mich “erinnere”:

  • Komet Arend-Roland  C/1956 R1
  • Komet West  C/1975 V1
  • Komet Hale-Bopp C/1995 O1

Ich persönlich habe nur wenige persönliche Beobachtungen geschafft.

Historie meiner Kometenbeobachtungen

Ich habe in meiner Jugend mal den Kometen Burnham 1959k (C/1959 Y1) von Bremen aus fotografiert. Das Foto ist aber verschollen. Der Komet stand damals im UMi, glaube ich. Wir hatten länger belichtet und per Hand auf den Kometen nachgeführt. Die Sterne wurden dann kleine Striche.

Später am 24. März 2013 habe ich dann mal den Versuch gemacht, einen Kometen über der Hamburger Aussenalster zu fotografieren. Das müsste C/2011 L4 (Panstarrs) gewesen sein. Da war ich noch ganz am Anfang meiner wiederaufgenommenen amateurastronomischen Bemühungen und hatte keine Ahnung, wie ich ein nicht mit blossem Auge sichtbares Objekt fotografieren sollte.

Am 17. Jan 2016 habe ich dann einen weiteren Versuch gemacht, einen Kometen zu fotografieren.  Das war der Komet Catalina C/2013 (von meiner Terrasse in Eimsbüttel).

Für das Jahre 2017 hatte ich mir vorgenommen, irgendeinen Kometen mal endlich “systematisch” abzulichten. Die Wetterbedingungen und die persönliche Energie führten dazu, dass es fast zu spät wurde im ersten Halbjahr 2017. Ein Kollege zeigte mir am 21. Mai 2017 sein gelungenes Foto von C/2015 V2 (Johnson), was mich erneut motivierte, es auch einmal zu probieren.

Dann, im Sommer 2020, war es endlich so weit: Ein “richtiger” Komet (soll heissen mit Schweif) war knapp am aufgehellten Nordhorizont zu sehen: C/2020 F3 (Neowise).

Aktuelle Kometenbeobachtungen

C/2022 E3 (ZTF)

Anfang 2023 war ein kleiner Komet zu beobachten.

Es gibt viele Websites, die die Koordinaten des Kometen zeigen. Eine davon ist:

https://theskylive.com/where-is-c2022e3

Da es in Hamburg kalt ist und das Wetter auch nicht astro-freundlich ist, versuche ich es mal über iTelescope.net.

Damit gelang mit am 13.02.2023 folgendes Beweisfoto von Utah aus (T2 TOA150, QHY268C, 9x60sec).

Abbildung 1: Komet C/2022 E3 (ZTF) (Google Drive: 20230213_Utah_C2022E3_stacked_4.jpg)


Komet C/2022 E3 (ZTF)

C/2020 F3 (Neowise)

Am 11. Juli 2020 konnte ich den Kometen Neowise vom Fußballplatz in Eimsbüttel beobachten und fotografieren.
Die nautische Dämmerung endet um 23:53 Uhr und beginnt wieder um 03:01 Uhr

  • Ort: Fußballplatz, Hamburg Eimsbüttel
  • Zeit: 11.7.2020  02:07 Uhr
  • Kamera: Canon EOS 600Da mit Olympus E.ZUIKO 135mm
  • Belichtungszeit 11 x 4 Sekunden ISO 800, Blende 3,5
  • Fotostativ Sirui ET-1240

Abbildung 1: Das Ergebnis von der Südecke des Fußballplatzes nach Nord-Nord-Ost (Google Drive: DK_20200711_0067_beschriftet.jpg)


Komet Neowise C/2020E3

C/2015 V2 (Johnson)

Am 18. Juni 2017 war es dann soweit. Die Wettervorhersage prognostizierte eine sternklare Nacht. Allerdings hatten wir hier in Hamburg schon die “weißen Nächte”; d.h. es wurde in der Nacht nicht richtig dunkel. Die nautische Dämmerung (-12°) sollte um 00:22 Uhr enden, aber die astronomische Dämmerung  (-18°) sollte erst wieder am 30. Juli enden und dann erst eine wirklich dunkle Nacht bescheren. So lange wollte ich aber nicht warten.

Beobachtungsplanung C/2015 V2 (Johnson)

Die Beobachtungsplanung mit Stellarium ergab folgendes:

  • Ort: Handeloh   53° 14′ 06,4″ N, 09° 49′ 46,6″ E
  • Zeit: 18.6.2017 ab 22:00 Uhr
    • Sonne: Nautische Dämmerung   (h = -12° 14′)
    • Mond:  h = -18°,  Phase= 0,34 abnehmend
    • Komet: h = +30°,  mag = 6,80
  • Montierung: SmartEQ Pro  mit Stromversorgung
  • Kamera: Sony NEX-5R, IR-Fernauslöser, mit Objektiv Takumar 135mm FoV 6°x9°
  • Computer: Windows-Notebook, iPad, iPhone
  • Koordinaten des Kometen (für Goto):    14:19:42, +02:53:47     (sagte Stellarium am 17.6.2017)

Beobachtungsprotokoll

  • Montierung aufgestellt, mit Wasserwaage nivelliert.
  • Einnordung mit QHY PoleMaster   (30″ genau)
  • Fokussierung Kamera
  • 1-Star-Alignment auf Arkturus
  • Goto Komet   (Abweichung 10′)
  • Probefoto: ISO 3200, 30 Sekunden, f/3.5:   zu hell
  • Himmelshelligkeit  SQM-L  20,1 mag/arcsec²
  • Belichtungsserie: 40 x 15 Sekunden – Komet als schwacher Lichtfleck in der Mitte erahnbar
  • Dunkelbilder: 10 x 15 Sekunden

Bildbearbeitung

  • Plate Solving mit ASPS: Positionierungsgenauigkeit: 10′,  Dokumentation in Excel
  • Stacking: DSS Ergebnis als FITS speichern
    • Die Lightframes: 012277-01244 hatten einen Score von um die 800, während die 01245-1265 eine Score von mehr als 3000 haben.
  • Fitswork: Stacking-Ränder beschneiden, Vignettierung entfernen, Himmelshintergrund neutrale Farbe, speichern als 16-Bit-TIFF
  • Gimp:  Stretchen
  • Flats: gleiche Blende, am besten gleich nach den Lights wegen der aktuellen Lage der Staubkörner,… gleiches ISO, T-Shirt vor Lichtquelle (z.B. Notebook-Display)

Abblidung 2: Der Komet C/2015 V2 (Johnson) Google Drive: DK_20170618_01227-01265_5.jpg)


Komet C/2015 V2 (Johnson)

C/2013 US10 (Catalina)

Am 18. und 19. Jan 2016 machte ich einen weiteren Versuch:

Der Komet sollte 5,2 mag hell sein und zwischen Zeta UMa (Mizar) und Alpha Dra stehen.

  • Ort: Hamburg, Terrasse Eimsbüttel
  • Zeit: 18./19.1.2016
  • Kamera: Sony NEX-5R
  • Objektiv: Brennweite: 50 mm
  • Blende: f/2,8
  • Belichtungszeit: 30 sec
  • ISO: 400

Ergebnis: leider ist auf den Fotos kein Komet zu sehen

C/2011 L4 (Panstarrs)

Am 24. März 2013 macht ich einen ersten Versuch.

  • Ort: Hamburg, Aussenalster Ostufer
  • Zeit: 24.3.2013 19:00 Uhr
  • Kamera: Panasonic Lumix DMC-FZ28
  • Objektiv: Zoom Leica DC VARIO-ELMARIT Brennweite: 4,8 mm
  • Blende: f/2,8
  • Belichtungszeit: 15 sec
  • ISO: 100

Auf diesem Foto Richtung Westen über die Außenalster ist der Komet schwach in der Dämmerung zu sehen.

Abbildung 3: Komet C/2011 L4 (Panstarrs) (Google Drive: DK_20130324_Komet_1140624b.jpg)


Komet C/2011 L4 (Panstarrs)

Astrofotografie: Langzeitbelichtung per IR mit Opteka RC-3 Remote Control

Gehört zu: Astrofotografie
Siehe auch: DSLR
Benutzt: Fotos von Google Archiv

Stand: 02.05.2023

Astrofotografie mit der Sony NEX-5R: Opteka RC-3 Remote Control

Um Astrofotografie mit meiner Digitalkamera Sony NEX-5R machen zu können, benötige ich ja eine Lösung für:

  • Erschütterungsfreies Auslösen der Bilder
  • Langkeitbelichtung (mehr als 30 Sekunden)

wie ich im Artikel Astrofotografie mit der Sony NEX-5R beschrieben habe.

Auch für meine neue Digitalkamera Canon EOS 600Da habe ich mir eine Remote Control-Lösung geleistet…

Die Lösung: Infrarot-Fernauslöser Opteka RC-3 Remote Control

Da mir das Sony-Original-Gerät zu teuer war, habe ich mir am 28.4.2015 über Amazon ein Opteka RC-3 für 36,49 Euronen besorgt: Contine reading

Astrofotografie: Langzeitbelichtung per IR mit Astrus & Tempus from byMac Inventions

Gehört zu: Astrofotografie
Siehe auch: DSLR
Benutzt: Fotos aus Google Archiv

Stand: 03.05.2023

Update 2023

Mache meine Langzeitbelichtungen nun mit meiner Canon EOS 600D und der Software APT bzw. N.I.N.A.

Langzeitbelichtung mit Tempus & Astrus bei meiner DSLR Sony NEX-5R

Ich möchte mit meiner Astrofotografie jetzt einen Schritt “professioneller” werden und Fotos mit längerer Belichtungszeit machen.

Beispielsweise 45 x 60 sec = 2400 sec = 45 min  (für Deep Sky Objekte wie z.B. M8 & M20) – oder noch langer z.B. 60 x 120 sec ?

Länger als 30 Sekunden kann ich mit meiner Sony NEX-5R nur im Bulb-Modus belichten. Das könnte ich per Hand mit meinem IR-Fernauslöser Opteka machen.

Aber das ganze 45 Mal per Hand wäre doch extrem nervig.

Lösungen zur Langzeitbelichtung

für meine Kamera, die Sony NEX-5R, gibt es Lösungen, die als IR-Fernbedienung fungieren (denn die NEX-5R hat ja kein USB) und dann den BULB-Modus der NEX-5R ausnutzen.

Contine reading

Astronomie: Planetarium-Software “Cartes du Ciel” (Sky Chart)

Gehört zu: Astro-Software
Siehe auch: Planetariumsoftware., Stellarium, N.I.N.A.
Benutzt: Fotos aus Google Drive

Stand: 25.12.2022

Planetarium-Software “Cartes du Ciel”

Neben Stellarium und Guide ist Cartes du Ciel “CdC” die bekantesten Planetarium-Software für Windows-Computer, welche gern für die Planung von Beobachtungen benutzt wird.

Das Planetariumprogramm Cartes du Ciel ist kostenlos. Es wird auch “Sky Chart” genannt.

Ausserdem gibt es viele Apps für iOS und Android, die ähnliches leisten.

CdC High Lights

  • Mehrere Standorte können abgespeichert werden
  • Beobachtungsliste – Observation List
  • Teleskopsteuerung Goto und Sync über ASCOM  (aber nicht Kamera/Imager: dazu nehme ich APT): s.u.
  • Drucken von Auffinde-Karten

CdC Website / Bezugsquelle / Version

https://www.ap-i.net/skychart/en/start

Versionen

  • Version 4.2.1 vom 24. Nov 2019
  • Version 4.0 vom 19. März 2017

Kosten

Licensing has changed from Freeware to Open Source GPLv2.

Dokumentation

https://www.ap-i.net/skychart/en/documentation/start

Intuitive Benutzeroberfläche

Ganz gut: Fenster und Menüleisten a la Windows – deutlich besser als Guide

Aber etwas kompliziert.

Zukunftssicherheit

  • Es gibt Versionen für Windows, Mac OS und Linux.
  • Der Programmierer ist der Schweizer Patrick Chevalley.
  • Version 4.0 stammt vom März 2017
  • Version 4.2.1 ist vom Nov 2019

Installation und Einstellungen

Nach der Installation stelle ich noch einige spezielle Dinge ein.
Gespeichert wird Vieles davon in: C:\Users\<userid>\AppData\Local\skychart

  • Oberfläche (Sprache, Werkzeugleisten)
  • Beobachtungsorte: Hamburg, Handeloh, Kiripotib (Observatory Database?)
  • Horizont-Linien: D:\data\Ciel\horizon\horizon_Eimsbuettel.txt
  • Sternkataloge: Setup -> Catalog -> CdC Deep Sky: LBN, SH2
  • Gesichtsfelder: xxx

Server-Parameter einstellen

Für die Zusammenarbeit mit N.I.N.A. stellen wir folgendes in CdC ein:

Menüleiste -> Setup -> General -> Server:  Server IP-Port 3292

Beobachtungsorte einstellen und speichern

Sehr gut:

  • Menü -> Einstellungen -> Beobachtungsort
  • Es können mehrere Orte eingegeben und mit Zeitzone gespeichert werden. Auch kann der Horizont für jeden Ort lokal in einer sog. “Horizontdatei” (s.u.) angegeben werden

Beobachtungszeit und -datum einstellen

  • Menü -> Einstellungen -> Datum, Zeit
  • Mit Zeitzone

Navigieren und orientieren am (virtuellen) Sternenhimmel

Geht ganz gut

  • Zoomen (FoV): OK  mit  Mausrad (oder Leiste am rechten Rand)
  • Ausschnitt schieben:  OK mit der Maus  (Shift & Ziehen)
  • Himmelsrichtung (Nord, Ost, Süd, West): OK (über Symbol auf Leiste am rechten Rand und Menü: Karte -> Horizontansicht)
  • Einblenden von Koordinatennetzen: OK (über Symbole auf  Leiste am linken Rand und Menü: Karte -> Koordinatensysteme)
  • Beschriften von Himmelsobjekten s.u.

Welche Himmelsobjekte sollen angezeigt werden?

Menü: Karte -> Zeige Objekte  (Sterne, Deep Sky, Bilder, Nebel, Planeten, Asteroiden, Kometen, Milchstraße)

Sterne

  • Grenzhelligkeit: Menü: Einstellungen -> Karte, Koordinaten  -> Objektfilter -> Visuelle Grenzgröße
  • Allerdings müssen die anzuzeigenden Sterne in einem eingebundenen Sternkatalog (s.u.) enthalten sein.

Kometen

In Cartes du Ciel: Menüleiste -> Einstellungen ->Sonnensystem -> Reiter Komet -> Lade MPC Datei -> Lade MPC-Format Datei ->Herunterladen.

Man kann auch eine lokale Datei in CdC importieren (Daten vom MPC: https://minorplanetcenter.net//iau/Ephemerides/Comets/Soft00Cmt.txt)

 Zodiakallicht ???

Erdsatelliten (Künstliche Satelliten)

Da muss man in der oberen Leiste auf das Symbol “Ephemeris Calendar” klicken.

  • Bahnelemente
    • Obere Leiste: Symbol “Ephemerieden” (Kalender) -> Erdsatelliten
      In diesem Fenster dann:

      • Schaltfläche “TLE herunterladen”
      • Datum vom/bis eingeben
      • Schaltfläche “Aktualisieren”
  • Anzeige
    • In der Liste der jetzt angezeigten Satelliten Doppel-Klick auf die Zeile mit dem Satelliten, den man sehen möchte.
    • Datum und Uhrzeit springen dann um und die Spur des Satelliten wird gezeigt (ggf. Horizont am Beobachtungsort ausschalten).
    • Durch Klicken auf die Schaltfläche “Reset Chart” schaltet CdC wieder zurück auf Datum und Uhrzeit, die man vorher hatte.

To download the latest data you must register with www.space-track.org/login.pl There is a download button which will do the download automatically…

Suchen von Himmelsobjekten

  • Obere Symbolleiste:
    • Suchfeld
    • Lupe-Symbol   — gute Suche nach verschiedenen Objekttypen

Beschriftungen

  • Menü: Einstellungen -> Anzeige -> Beschriftungen
  • Beschriften von Himmelsobjekten:
    • Ja, prinzipiell über Menü -> Karte -> Beschriftungen (Ja/Nein)
    • Dann:                        Menü -> Einstellungen -> Anzeige -> Beschriftungen -> Objekt beschriften -> …
  • Da  schalte ich manchmal “Deep Sky Objekte” aus, wenn ich denen in einer Beobachtungsliste eine besondere Beschriftung gegeben habe; z.B.  NGC 5139 –> Omega Centauri.

Koordinaten-Netze

  • Menü: Einstellungen -> Karte, Koordinaten -> Koordinatensysteme   (auch Äquinoktikum z.B. J2000)
  • Menü: Einstellungen -> Karte, Koordinaten -> Reiter “Rasterabstand”

Winkelabstände messen

  • Anschalten: Menü -> Ansicht -> Abstandsmessung   (oder durch Klicken auf das Symbol “Abstandsmessung” in der zweiten Leiste von oben)
  • Messen: Mausklick auf Anfangspunkt, Maus ziehen, Maus loslassen auf Endpunkt.
  • Ergebnis: in der unteren Leiste
  • Ausschalten: Menü -> Ansicht -> Abstandsmessung      (nicht vergessen !!!)

Gesichtsfeld-Rahmen (Sensorfeld bzw. Okular)

  • Definiton: Menü -> Einstellungen -> Anzeige-> Reiter “Okulare” bzw. “Kamerafelder”   (oder: Einstellungen -> Alle Konfigurationsoptionen -> Anzeige …)
  • Selektion: Zunächst sind die anzuzeigenden bzw. nicht anzuzeigenden Okulare oder Kamerafelder auszuwählen: Menü -> Einstellungen -> Alle Konfigurationsoptionen -> Anzeige ->Kamerafeld (CCD)   (Achtung: es können mehrere Kamerafelder gleichzeitig angezeigt werden)
  • Aktivieren:  Dann Anzeige aktivieren durch Klicken auf das Symbol “Okulare/Kamerafelder anzeigen” in der zweiten Leiste von oben

Das Ganze muss noch gespeichert werden, anderenfalls ist alles beim nächsten Aufruf von Cartes du Ciel futsch!

  • Also: Menü –> Einstellungen –> Konfiguration jetzt speichern…
    Oder: Menü –> Einstellungen –> Konfiguration beim Beenden Speichern  (Haken setzten)

Liste von Beobachtungsobjekten

Beobachtungsliste (Observation List):

  • Öffnen der Beobachtungsliste
    • Menü: Ansicht -> Beobachtungsliste
    • Klicken auf das Symbol “”Beobachtungsliste” in der oberen Symbolleiste
  • Laden einer vorhandenen Beobachtungsliste
  • Editieren: Doppel-Klick auf Feld in Beobachtungsliste und ändern
  • Hinzufügen von Objekten: nur über eine Sternkarte mit Rechts-Klick auf das Objekt.
  • Muss man abspeichern (Text-Datei), sonst ist die Beobachtungsliste weg: Schaltfläche “Speichern”
  • Neue Beobachtungsliste: Schaltfläche “Löschen” erstellt eine neue, leere Beobachtungsliste
  • Die zuletzt benutzte Beobachtungsliste ist die “aktive” (z.B. für die Anzeige von Beschriftungen)

Hinzufügen zur Beobachtungsliste (Beispiel: Chi Per)

Abbildung 1: CdC –> Rechte Maustaste auf Stern Chi Per –> Popup “Beobachtungsliste” -> Popup “Füge Chi Per zur Beobachtungsliste” (Google Drive: Cartes-du-Ciel-19.jpg)


Cartes du Ciel Beobachtungsliste

Beobachtungskalender

????????

Sternkataloge einbinden

Sternkataloge werden im Ordner “cat” innerhalb des CdC-Installationsordners abgelegt.

Danach muss man die Sternkataloge “aktivieren” durch: Menü: Einstellungen -> Katalog… -> CdC Sterne

CdC Menüleiste -> Einstellungen ->  Katalog -> CdC Sterne -> Sterne -> Hacken in Kästchen Tycho2 Catalog -> eintragen in Feld Dateipfad: “cat\tycho2”

Abbildung 2: Cartes du Ciel: Einstellungen – Katalog  (Google Drive: Cartes-du-Ciel-22.jpg)


Cartes du Ciel: Katalog Tycho 2

Damit das so geht, müssen natürlich zunächst die entsprechenden Katalog-Dateien auf dem Computer vorhanden sein. Ich wollte z.B. Objekte aus dem Sharpless-Katalog anzeigen lassen. Das SH2-Feld im Reiter “CdC Deep Sky” bei Cartes du Ciel wurde aber rot, wohl weil unter cat\sh2 keine Katalog-Dateien installiert waren.

Also zuerst die Katalog-Daten holen z.B. bei SourceForge von:
https://downloads.sourceforge.net/project/skychart/2-catalogs/Nebulea/skychart-data-dso-4.0-3431-windows.exe

Sternkarten ausdrucken

Es können mehrere Sternkarten definiert, gespeichert und gedruckt werden:    sehr gut

Das Drucken von Sternkarten geht bei Cartes du Ciel ganz einfach:

  • Wir positionieren die CdC-Anzeige auf einen Himmelsausschnitt (siehe “Navigation”).
  • Mit Menü -> Datei -> Seitenansicht können wir kontrollieren, ob der Himmelsausschnitt so wie beabsichtigt ist
  • Bei Menü -> Datei -> Drucker einrichten könen wir noch Hoch- oder Querformat einstellen
  • Am besten speichern wir den eingestellten Himmelsausschnitt mit: Menü -> Datei -> Karte speichern
  • Dann wird mit Menü -> Datei -> Drucken der Druck des Himmelsausschnittes als Sternkarte gestartet (evtl. noch als PDF drucken)

Horizontdatei

Der Horizot wird eingeblendet durch:  Einstellungen -> Beobachtungsort -> Horizont

Eine Horizontdatei ist eine Textdatei, die für jedes Azimut die Höhe des lokalen Horizonts angibt. Daraus bildet Cartes du Ciel einen Polygonzug.

Format der Horizontdatei:

Pro Zeile wird mit aufsteigendem Azimut (beginnend bei 0 als Norden) als Zahlenpaar Azimut und Höhe angegeben, wobei Kommentarzeilen mit “#” beginnen.

Beispiel:

# Horizont auf der Terasse in Eimsbuettel
00 25
05 27
24 30
64 29
82 24
103 28
120 30
135 30
138 30
150 80
180 85
200 85
220 85
240 85
250 85
270 85
290 80
300 80
306 30
309 30
322 30
332 27
351 22
360 25

Speicherort einer Horizontdatei

Gespeichert werden die Horizontdateien im Ordner: d:\bin\Ciel\data\horizon

Wobei d:\bin\Ciel bei mir der Installationsordner von Cartes du Ciel ist.
Um die Horizontdatei im o.g. Ordner abzuspeichern müssen natürlich die passenden Schreib-/Lese-Rechte vorhanden sein, was in neueren Windows-Versionen manchmal merkwürdig sein kann.

Einstellen einer Horizontdatei

Für jeden Beobachtungsort kann eine Horizontdatei eingestellt werden: Menü -> Einstellungen -> Beobachtungsort -> Horizont

Teleskopsteuerung

Verbindung von Montierung zum Computer

Zur Steuerung der Montierung und damit des Teleskops muss die Montierung in geeigneter Weise mit dem Computer verbunden werden, auf dem dann die Software Cartes du Ciel läuft.

Wie eine solche Verbindung hergestellt wird, kann von Montierung zu Montierung unterschiedlich sein und ich habe das in den jeweiligen Artikeln über die spezifische Montierung beschrieben:

Teleskopsteuerung mit Cartes du Ciel

Wenn ich nun mit Cartes du Ciel mein Teleskop steueren will, muss ich nachdem die Verbindung hergestellt wude (s.o.) einige Einstellungen in Cartes du Ciel vornehmen.

Äquinoktikum 2000.0 einstellen

Das Äquinoktikum (J2000) muss in Cartes du Ciel und im ASCOM-Treiber korrekt und identisch eingestellt sein:

Bei Cartes du Ciel einstellen:  Menü -> Einstellungen -> Karte, Koordinaten…

Bildbeschreibung: CdC Menüleiste –> Einstellungen –> Karte, Koordinaten –> Koordinatensystem: Radiobutton “Äquatoriale Koordinaten” & Koordinaten-Typ Radiobutton ” Mittleres J2000 (…)” & Schaltfläche “OK”

Abbildung 3: Cartes du Ciel: Koordinaten (Google Drive: Cartes-du-Ciel-11.jpg)


Cartes du Ciel: Epoche J2000

Das gleiche Äquinoktikum (J2000) im ASCOM-Treiber: einstellen; z.B. EQMOD  ASCOM SETUP

Abbildung 4: ASCOM SETUP -> Drop-Down “Epoch”: J2000  & Schaltfläche “OK” (Google Drive: Cartes-du-Ciel-12.jpg)


Cartes du Ciel: Epoche J2000 in EQMOD

 Im EQMOD ASCOM Setup einstellen:

  • Epoche : J2000
  • EQMOD Port Details: Port COMx (wie im Windows Gerätemanager erkannt)
  • Schaltfläche “OK”

Teleskop-Verbindung: Erster Schritt in CdC
Als Interface “ASCOM” auswählen: Menü -> Teleskop -> Teleskopeinstellungen…

Beschreibung:  CdC Menüleiste –> Teleskop –> Teleskopeinstellungen –> Reiter “Teleskop” –> Teleskop Interface auswählen: Radio-Button “ASCOM”

Abbildung 5: Cartes du Ciel -> Teleskopenstellungen (Google Drive: CdC-01.jpg)


Cartes du Ciel: Teleskopsteuerung über ASCOM

Teleskop-Verbindung: Zweiter Schritt in CdC

Menü -> Teleskop -> Teleskop verbinden…

Das sieht je nach Teleskop leicht anders aus.

Variante 1 “HEQ5 Pro mit ASCOM-Treiber EQMOD”

Bildbeschreibung:

  • CdC Menüleiste –> Teleskop –> Teleskop verbinden –> Dialogbox “ASCOM Teleskopschnittselle: Schaltfläche “Auswählen”
    • Treiberauswahl “EQMOD.Telescope”
  • In der Dialogbox “ASCOM Telescope Chooser” –> Drop-Down “EQMOD ASCOM HEQ5/6”  & Schaltfläche “OK”
  • CdC Menüleiste –> Teleskop –> Teleskop verbinden –> Dialogbox “ASCOM Teleskopschnittstelle”:
    • Treiberauswahl “EQMOD.Telescope” & Schaltfläche “Konfigurieren”
    • Dialogbox: EQMOD ASCOM Setup (wie oben): COM-Schnittstelle einstellen und Schaltfläche “OK”

Abbildung 6: Cartes du Ciel: Teleskopschnittstelle (Google Drive: Cartes-du-Ciel-01.jpg)


Cartes du Ciel: Teleskop verbinden

Variante 2: iOptron SmartEQ Pro mit ASCOM-Treiber von iOptron

Bildbeschreibung:

  • CdC Menüleiste –> Teleskop –> Teleskop verbinden  –> Schaltfläche “Auswählen”
    • ASCOM Telescope Choose
  • CdC Menüleiste –> Teleskop –> Teleskop verbinden  –> Schaltfläche “Konfigurieren”

Abbildung 7: Cartes du Ciel -> ASCOM Teleskopschnittstelle (Google Drive: CdC-03.jpg)


Cartes du Ciel: ASCOM Teleskop Chooser

Variante 3: Astro-Physics mit ASCOM-Treiber

Für Astro-Physics-Montierungen gibt es einen spezifischen ASCOM-Treiber.

Variante 4: FS-2-Steuerung mit ASCOM-Treiber

Falls man eine Montierung mit FS-2 Steuerung hat, geht man über “POTH

Funktionen der Teleskopsteuerung in CdC: Goto

Die Hauptfunktion der Teleskopsteuerung ist das sog. “Goto”. Dazu selektiert man auf der von CdC angezeigten Sternkarte ein Objekt. Über das Kontextmenü (rechte Maustaste) kann man dann mit “Gehe zu Objekt <name>” klicken und das Teleskop sollte nun das Objekt anfahren (Goto)…

Abbildung 8: CdC Mit der Maus auf einen Stern (z.B. Gam UMi) zeigen und Rechtsklick -> Popup: “Teleskop” -> Popup: “Gehe zu Objekt Gam UMi” (Google Drive: CdC-04.jpg)


Cartes du Ciel: Telescope Goto

Voraussetzung für die Goto-Funktion ist, dass das Teleskop “weiss” wohin es am Anfang genau zeigt. Es ist also ein irgendwie geartetes “Goto Alignment” erforderlich. Dies kann ein klassisches 3-Star-Alignment mit der Handbox der Montierung sein, oder aber wir machen es über die Computersteuerung und nutzen dabei die SYNC-Funktion des EQMOD-Treibers.

Das klassische 3-Star-Alignment (auch Goto Alignment) wird mit der Handbox gemacht. Das kann ich nur mit einem guten Sucher-Fernrohr machen. Speziell der erste Schritt beim Goto-Alignment startet ja von einem nicht genau definierten Anfangspunkt, der “Home Position“, entsprechend ungenau ist das Goto auf den ersten Alignment-Stern. Diesen ersten Alignment-Stern  muss ich ja erst einmal am Himmel  identifizieren und dann ins Gesichtsfeld bekommen und ihn schließlich noch genau in die Mitte des Gesichtsfeldes einstellen. Das Gesichtsfeld mit einem APS-C-Sensor an meinem Teleskop Orion ED 80/600 ist: 2,2° x 1,5°

Funktionen der Teleskopsteuerung in CdC: SYNC

Für meine Montierung HEQ5 Pro wird eine SYNC-Funktion durch den EQMOD-Treiber ermöglicht. Voraussetzung für ein SYNC ist

  1. Ich bin mit Goto auf das Objekt gefahren
  2. Ich habe es mit den Steuerungstasten in die Mitte des Gesichtsfeldes (z.B. der angeschlossenen DLSR mit 10-fach Zoom) eingestellt.

Dann kann ich in der Software Cartes du Ciel auf SYNC drücken.

Beispiel

Also erst ein Goto auf Epsilon Cas: Klick mit rechter Maustaste auf Eps Cas

Abbildung 9: CdC Mausklick rechts auf einen Stern (z.B. Eps Cas) -> Popup “Teleskop” -> Popup “Zu Objekt schwenken Eps Cas” (Google Drive: Cartes-du-Ciel-20.jpg)


Cartes du Ciel: Goto Eps Cas

Dann ein Sync auf Epsilon Cas: Menü -> Teleskop -> Sync

Abbildung 10: CdC Menüleiste –> Teleskop –> Drop-Down: “Sync” (Google Drive: Cartes-du-Ciel-13.jpg)


Cartes du Ciel: Telescope Sync

Dann eine Bestätigung, dass das Teleskop auch tatsächlich – ggf. nach manuelle Feinkorrektur –  auf Epsilon Cas zeigt
Wenn diese Aufforderung zu Bestätigung kommt, weiss man, dass wirklich ein SYNC durchgeführt wird. Manchmal sind nämlich die Übersetzungen ind Deutsche etwas merkwürdig, sodass man den SYNC-Befehl nicht auf Anhieb findet.

Abbildung 11: Dialogbox “Bestätigung” -> Bitte bestätigen Sie, dass das Teleskop auf Eps Cas ausgerichtet ist. -> Schaltfläche “Ja” (Google Drive: Cartes-du-Ciel-14.jpg)


Cartes du Ciel Bestätigung Eps Cas Sync

Nun erst wird der SYNC wirklich gemacht.

Alignment Points / Pointing Model

Im EQMOD-Treiber kann ich mir jetzt den (die) gesetzten Alignment-Point(s) anzeigen lassen:  EQMOD “aufklappen” (Schaltfläche  “>>>”):

Abbildung 12: EQMOD-Fenster: Schaltfläche “Schraubenschlüssel >>>” klicken (Google Drive: Cartes-du-Ciel-15.jpg)


Cartes du Ciel: EQMOD Alignment Points

Dann sieht man im nach rechts aufklappenden erweiterten EQMOD-Fenster im Bereich “Alignment / Sync” unter “Point Count” (rechter Pfeil) die Anzahl der gesetzten Alignment-Points und man kann sich durch klicken auf “Point List” (linker Pfeil) die Liste der Alignment-Points im Detail anzeigen lassen.

Abbildung 13: EQMOD Alignment/Sync (Google Drive: Cartes-du-Ciel-16.jpg)


Cartes du Ciel: EQMOD Alignment/Sync

Liste der Alignment Points im Detail:

Abbildung 14: EQMOD erweiteres Setup -> Im Bereich “Alignment/Sync” klicken auf die kleine Schaltfläche, die wie ein Notizblock aussieht (Google Drive: EQMOD_ASCOM_Alignment_List.jpg)


Cartes du Ciel: EQMOD Alignment/Sync

Ich habe dann noch weitere Sterne (in meinem begrenzten Himmelsausschnitt) angefahren und darauf weitere Alignment Points gesetzt: Eta Per und Phi And

Abbildung 15: EQMOD erweiteres Setup -> Im Bereich “Alignment/Sync” klicken auf die kleine Schaltfläche, die wie ein Notizblock aussieht (Google Drive: Cartes-du-Ciel-18.jpg)


EQMOD: Alignment Point List Editor

Diese Art des Goto Alignments (also mit SYNC über Software) wird speziell durch den EQMOD-Treiber ermöglicht. Wenn man das nutzen möchte, ist es also empfehlenswert, sich eine Montierung auszusuchen, die EQMOD kann (z.B. die Sykwatcher HEQ5 Pro).

Die SYNC-Funktion setzt voraus, dass das Gesichtsfeld meines Teleskops auf ein bekanntes Objekt mittig positioniert wird. Die genauen Himmels-Koordinaten sind damit bekannt. Himmels-Koordinaten und aktuelle Position des Teleskops fliessen dann in den weiteren Goto-Algorithmus des EQMOD (Pointing Modell) ein.

Statt eines “bekannten” Himmelsobjekts kann ich auch einfach mit dem Teleskop irgendwohin zeigen, ein Foto schießen und darauf ein Plate Solving anwenden – dann muss ich keinerlei Feinausrichtung im Gesichtfeld vornehmen und kann sofort ein SYNC machen – denn das Teleskop zeigt ja (noch immer) dahin, wo das Foto geschossen wurde und dessen Himmelskoordinaten (Bildmitte) das Plate Solving gerade ermittelt hat. Für diese komfortable Vorgehensweise beim Goto Alignment muss meine Software dann neben der Teleskopsteuerung auch noch die Kamera-Steuerung (Capture) und ein Plate Solving ermöglichen. Das mache ich beispielsweise mit der Software APT.

Zur Zeit verwende ich CdC und APT in Kombination: Goto mache ich gerne mit CdC, Plate Solving und Sync mit APT…

Astronomie: Afokale Fotografie

Gehört zu: Astrofotografie
Siehe auch: DSLR, SmartPhone, Okular
Benutzt:  Fotos von Google Drive

Stand:04.05.2023

Astrofotografie: fokal oder afokal?

Astrofotografie kann man heutzutage ganz einfach mit “normalen” digitalen Kameras DSLR (z.B. Canon, Sony, Panasonic u.a.) machen.

Eine sehr niedrige Einstiegschwelle bietet die sog. afokale Fotografie, wo eine Kamera mit ihrem Objektiv direkt hinter das Okular eines Fernrohrs gehalten wird; als Bild wird durch das Okular des Fernrohrs auf die Optik der Kamera projiziert.
Klassischerweise verwenden die “Profis” aber die sog. fokale Fotografie, wo die lichtempfindliche Fläche ( Sensor) in die Fokalebene des Hauptobjektivs (Fernrohr) plaziert wird – das könnte auch einfach ein Teleobjektiv der Kamera sein…

Also auf den Punkt gebracht:

  • fokal = ohne Okular, ohne weiteres Objektiv
  • afokal = mit Okular, mit oder ohne Kamera-Objektiv

Afokal kann ich also mit jeder sowieso vorhandenen Knipse (z.B. SmartPhone, digitale Kompaktkamera) durch ein Fernrohr fotografieren. Dabei muss ich nur das Vorderteil der Kamera ganz dicht und mittig an das Okular des Fernrohrs halten – besser man hat eine Haltevorrichtung, damit es nicht wackelt. Die Fokussierung könnte per Autofokus-Funktion der Kamera erfolgen.
Das beliebteste Objekt für afokale Astrofotografie ist der Mond.

Für die fokale Fotografie muss ich das Okular des Fernrohrs entfernen (kein Problem) und auch das Objektiv der Kamera muss weg. D.h. Kameras mit festsitzendem Objektiv sind für die fokale Fotografie ungeeignet. Wir benötigen eine Kamera mit entfernbarem Objektiv (Wechselobjektiv) und ein passendes Zwischenstück, dass das Kamera-Bajonet mit dem Okularauszug verbindet. Die Fokussierung erfolgt mit der Fokussiereinrichtung des Okularauszugs (OAZ).

Afokale Astrofotografie

Im einfachsten Fall hält man eine Kamera hinter das Okular.Das Problem ist nur noch wie die Kamera festgehalten wird.

Wenn man eine Kamera hat, bei der man das Kameraobjektiv abschrauben kann, ist auch – mit entsprechenden Schraubadapter – eine Okularprojektion möglich.

Haltevorrichtungen für afokale Astrototografie

Haltevorrichtung für SmartPhones (z.B. iPhone)

Astroshop Lens2Scope: http://www.astroshop.de/smartphone-adapter/lens2scope-smartphone-adapter-butterfly-smartphone-adapter-f-okulare-30-60mm/p,44213

Abbildung 1: Halter für ein SmartPhone am Okular (Google Drive: DK_20170321_00915a.jpg)


Smartphone Halter Butterfly

Haltevorrichtung für klassische Kameras

Orion SteadyPix Deluxe: https://www.amazon.de/5338-Orion-SteadyPix-Deluxe-Kamerahalterung/dp/B0069VXY7K

Abbildung 2: Halter für Kameras (Google Drive: Orion-Steady-Pix-Deluxe-Kamerahalterung.jpg)


Orion Steady Pix Deluxe – Copyright: Optronic Technologies, Inc, Watsonville, CA, USA

Teleskop-Express Digiklemme: http://www.teleskop-express.de/shop/product_info.php/info/p219_Digiklemme—Universelle-Befestigung-der-Digitalkamera.html

Abbildung 3: Halter von Teleskop Express (Google Drive: digiklemme1.jpg)


DigiKlemme – Copyright Teleskop Express

Okularprojektion

Meine in 2018 gekauften Okulare haben am Ende ein M43-Gewinde, wo man also mit einem M43-T2-Adapter wiederum eine DSLR-Kamera anschrauben kann….

Hallo MarcA

Astronomie: Kleinplaneten – Asteroiden – Ceres, Pallas, Juno, Vesta

Gehört zu: Das Sonnensystem
Siehe auch: Asteroiden
Benutzt:  Fotos aus Google Drive

Meine Fotos vom Asteroiden Vesta

Im Januar 2017 stand der Kleinplanet Vesta in Opposition und konnte von Hamburg aus gut beobachtet werden. Die scheinbare Helligkeit von Vesta liegt dabei so um 6,5 mag (am 30.1.2017) .

Eine Aufsuchkarte finden wir z.B. bei “Abenteuer Astronomie“: https://abenteuer-astronomie.de/18-januar-vesta-opposition/

Abbildung 1: Aufsuchkarte Vesta 2017 (Google Drive: Vesta2017BahnAbAs-678×381.jpg)


Vesta Aufsuchkarte 2017

Die scheinbare Bewegung von Vesta im Laufe einer Nacht liegt so etwa bei 7 Bogenminuten in 10 Stunden, wie man beispielsweise mit Hilfe von Stellarium abschätzen kann.

Wenn ich nun im Laufe einer Nacht mehrere Aufnahmen mit gleichem Bildmittelpunkt mache und sie dann übereinanderlege z.B. mt Deep Sky Stacker und der Maximum-Funktion, erhalte ich ein eindrucksvolles Gesamtbild von der Bewegung des Kleinplaneten Vesta.

In der Nacht vom 30.1. auf den 31.1.2017 habe ich mehrere Aufnahmen, gemacht. Drei davon (19:55, 23:42, 03:11 Uhr) sind gut geworden.
Das Gesichtsfeld beträgt etwa 47′ x 47′.

Abbildung 2: Eigene Fotos von Vesta (Google Drive: 920170131_Vesta_beschriftet.jpg)


Kleinplanet Vesta 2017: Foto Mayhill

Das Teleskop befindet sich in Mayhill, New Mexico, (also Remote) und ist ein Takahashi TAO150, f=1013mm, f/7.3 mit einem Imager SBIG ST-4000 XMC, 2048 x 2048 Pixel je 7,4 µ.

Jedes der drei Einzelfotos ist 120 Sekunden belichet.

Astrofotografie: Sternbilder – Weitwinkel – Wide Field

Gehört zu: Welche Objekte?
Siehe auch: Lichtverschmutzung, DSLR, Namibia
Benutzt:  Fotos von Google Drive

Status: 15.07.2024

Sternbilder mit Weitwinkel fotografieren

Ich möchte mit meiner einfachen Ausrüstung aus dem lichtverschmutzten Hamburg heraus eindrucksvolle Fotos machen und habe dafür als Beobachtungsobjekte ganze Sternbilder ausgemacht.

Einige Sternbild-Aufnahmen plane ich auch für Namibia 2024.

Welche Sternbilder stehen auf meinem Plan?

Tabelle 1: Beobachtungsplaung Sternbilder

ID Kürzel Name Warum? Erläuterungen Status
 Cas  Cassiopeia  Sichtbar von meiner Terrasse, sehr prägnant Fotografiert
 Cep  Cepheus  Sichtbar von meiner Terrasse, eher unscheinbar Fotografiert
 Crux  Kreuz des Südens  Klassiker der südlichen Hemisphäre Fotografiert
 Lyra  Leier  Schönes, einfaches kleines Sternbild Fotografiert
Peg Pegasus Großes Sternbild mit viel Hintergrund f=24mm von Handeloh  Idee
PsA Südlicher Fisch Fomalhaut, Dekl= -29° 37′ 03. Aug 2016 Neumond
02. Sep 2016 Neumond
30. Sep 2016 Neumond
30. Okt 2016 Neumond
29. Nov 2016 Neumond Dämmerung
22. Aug 2017 Neumond
 Idee
 Sgr  Schütze Selten zu beobachten, aber prägnante kleine Form.
Südlichster Stern Kaus Australis Dekl= -34° 23′
 29. Juni 2022 Namibia Fotografiert
Sco Skorpion Oberer Teil des Sternbilds (Antares und Scheren) ist ein klassiches Bild  22. Juni 2022 Namibia  Fotografiert
 Ori  Orion  Klassiker  Handeloh  Idee
 UMa  Großer Wagen  Klassiker, “Big Dipper” Fotografiert
 Lep  Hase  Selten fotografiert Dekl= -20°  Jan/Feb gut im Süden sichtbar  Idee
UMi Kleiner Wagen  f=50mm  Idee
Per  Perseus  Oktober/November  f=24mm  Idee
Dra  Draco  sehr groß, aber unscheinbar  f=24mm  Idee

Sterne größer rechnen

Auf solchen Weitwinkelaufnahmen, sind die Hauptsterne unter den vielen anderen Sternen kaum identifizierbar.

Um den optischen Eindruck eines Sternbilds richtig wiederzugeben, rechne ich diese Hauptsterne ein klein wenig größer. Das geht z.B. mit Photoshop wie folgt:

  1. Zoom
  2. Mit dem Werkzeug “Magic Wand” die Sterne markieren, die größer werden sollen (ab dem zweiten Stern mit Shift-Click).
  3. Enlarge Selection by 7 Pixels (Select -> Modify -> Expand By …)
  4. Soften the selection (Select -> Modify -> Feather -> Feather Radius …)
  5. Create Adjustment Layer for Brightness (Layer -> New Adjustment Layer…)

Quelle: Youtube Video von Ulrich Beinert:

Geschichtliches zu Sternbildern

Schon in frühesten Zeiten haben die Menschen in den Sternen am Himmel Muster gesehen, die sie dann als Figuren (Tiere, Menschen etc.) deuteten. Je nach Kulturkreis (China, Australien, Amerika, Hawaii, Europa,…) entstanden so unterschiedliche “Sternbilder”.

Bei uns in Europa dominierten die griechischen und arabischen Deutungen. Allerdings gab es auch da ein wenig “Wildwuchs”.

Bis die Internationale Astronomische Union (IAU) dann im Jahre 1922 verbindliche Festlegungen für 88 Sternbilder getroffen hat.

Dann erteilte die  IAU dem Belgier Eugene Delporte den Auftrag, die Grenzen zwischen den Sternbildern definitiv festzulegen. Delporte benutze dazu die äquatorialen Koordinaten (Rektaszension und Deklination) und zwar zur Epoche 1.1.1875. Diese Epoche wurde bereits von der “Uranometria Argentina” für den Südhimmel benutzt. Eugene Delporte vollendete seine Arbeiten zu den Sternbildgrenzen 1930 und diese wurden dann von der IAU ebenfalls beschlossen.

Auch Sterne sollten einen definitiven Namen haben. Dazu hat der deutschen Astronom Johann Bayer (1572–1625) eine nach ihm benannte  Systematik zur Bezeichnung von Sternen eingeführt. Diese Bayer-Bezeichnung besteht aus einem griechischen Buchstaben gefolgt vom Genitiv des lateinischen Namens des Sternbilds, in dem der Stern liegt, z. B. γ Lyrae („Gamma“ + Genitiv von „Lyra“) oder ζ Ursae Majoris („Zeta“ + Genitiv von „Ursa Major“).

Liste meiner Fotos

12.05.2016  Lyra – Leier

Sony NEX-5R xxxxx  ISO 800,   Stack of 6 pictures, each exposed 30 sec.

Abbildung 1: Sternbild Lyra (Google Drive: 20160512_Lyra.jpg)


Sternbild Leier (Lyra)

08. Feb. 2016 Southern Cross – Crux

This picture of the Southern Cross was taken at Kagga Kamma, South Africa with my Sony NEX-5R on a NanoTracker with a Vivitar f=24mm, f/1.4 at ISO 800.

This is a stack of 5 pictures each of 10 sec exposure time

Abbildung 2: Sternbild Kreuz des Südens (Google Drive: DK_20160208_0232-0236_Crux.jpg)


08.02.2016 Kagga Kamma: Sternbild Kreuz des Südens – Crux – f=50mm, Stitch 2 x 180 sec

22. April 2015 Ursa Major – Big Dipper

From my home in the middle of the city of Hamburg, I could take this picture of Ursa Major (Big Dipper).

Camera: Sony NEX-5R, Lens: Vivitar f=24mm, f/4, ISO 400, stack of 10 pictures each with an exposure time of 10 sec.

Abbildung 3: Sternbild Ursa Major (Google Drive: DK_20150422_BigDipper.jpg)


Sternbild Großer Wagen (Big Dipper)

15. Feb. 2012 Southern Cross – Crux

My very first try with the famous Southern Cross. At the left side from constellation Crux we can see the two “Pointer Stars” i.e. Alpha and Beta Centauri.
Taken at Tschukudu in the morning (02:49 UT) with my Panasonic DMC-FZ28 camera with the zoom lens at f=4.8mm

Abbildung 4: Sternbild Kreuz des Südens (Google Drive: DK_20120215_SouthernCross.jpg)


2012 Tschukudu: Sternbild Kreuz des Südens (Southern Cross)

Astrofotografie: Strichspuraufnahmen – Star Trails

Gehört zu: Astrofotos
Gehört zu: Welche Objekte?, Namibia

Benutzt: Fotos von Google Drive

Strichspuraufnahmen um den Himmelspol

Wenn man ein Astrofoto ohne Nachführung macht, werden die Sterne schnell zu Strichen, was man meistens nicht will.

Ein schönes “Pretty Picture” kann man aber so von den sich kreisförmig bewegenden Sternen rund um den Himmelspol machen. Solche Stern-Strichspuren nennt man auch “Star Trails“.

  • Man muss die Kamera auf ein Stativ schrauben und auf den Himmelspol richten
  • Das Gesichtsfeld  sollte soetwas wie “Weitwinkel” sein (z.B. 52° x 36°)
  • Die Belichtungszeit für eine einzelne Aufnahme sollte maximal (z.B. 30 sec)  sein (entsprechend das ISO ausprobieren)
  • Man braucht dann relativ viele Aufnahmen, die man über eine Serienbildfunktion der Kamera oder über ein “Intervallometer” bekommt. Es sollte eine Gesamtzeit von mindestens 2 Stunden erreicht werden…
  • Wenn man die Aufnahmen im Kasten hat, muß man sie noch mit einer geeigneten Software zu einem schönen Gesamtbild zusammenfügen. Ich nehme da “StarStaX“.

02.06.2018  Strichspuraufnahme vom Himmelssüdpol in Kiripotib, Namibia

Mit meiner DSLR Canon EOS 600D mit dem Zenitar 16mm Objektiv – 240 x 30 Sekunden, ISO 200, f/4

Abbildung 1: Strichspuraufnahme Himmelssüdpol (Google Drive: DK_20180604_0224-0463_ISO200_30s__27C_StarStaX_lücken_füllen_beschriftet.jpg)


Southern Star Trails, 4.6.2018 Kiripotib, 240×30 sec, ISO 200, f=16mm

04.06.2015  Zweiter Versuch einer Strichspuraufnahme im Norden

Mit der Sony NEX-5R und meinem Objektiv Vivitar f=24mm habe ich 90 Einzelbilder mit je 30 sec Belichtungszeit bei ISO 200 und f/4 gemacht.
Diese 90 Fotos habe ich mit der Software StarStaX zu dieser Gesamtaufnahme (Maximum-Funktion) zusammengesetzt.

Abbildung 2: Strichspuraufnahme Himmelsnordpol (Google Drive: DK_20150604_05307-05396_StarStaX_gap_filling_beschriftet.jpg)


Northern Startrails: Hamburg

28.05.2015  Erster Versuch einer Strichspuraufnahme im Norden

Mit der Sony NEX-5R und einem Objektiv Vivitar f=24mm habe ich 56 Einzelbilder mit 30 sec Belichtungszeit bei ISO 400 und f/4 gemacht. Diese 56 Fotos habe ich mit der Software StarStaX zu dieser Gesamtaufnahme (Maximum-Funktion) zusammengesetzt.
Hier sieht man Unterbrechungen der Sternspuren (star trails), die auf Wolken und Lücken bei meinen Aufnahmen wegen Problemen mit meinem Equipment…

Abbildung 3: Strichspuraufnahme Himmelsnordpol (Google Drive: StarStaX_DK_20150528_05229-05287_gap_filling.jpg)


Northern Stratrails: First try

Astrofotografie: Uranus

Gehört zu: Das Sonnensystem
Benutzt: Fotos aus Google Drive

Stand: 15.11.2019

Mein Wunsch: Der Uranus

Als Amateurastronom ohne Teleskop möchte ich auch einmal den Planeten Uranus fotografisch nachweisen.

Ein erstes Foto vom Uranus

Am 11.10.2015 um 20:21 UT konnte ich den Uranus in Handeloh ablichten. Kamera Sony NEX-5R mit Olympus G.ZUIKO f=50mm bei ISO 1600 und 30 sec Belichtungszeit (Nachführung: Skytracker ???, Blende ???) –

Ein Hubschrauber sauste durch das Bild.

Abbildung 1: Foto von Uranus mit Hubschrauber (Google Drive:  DK_20151011_Uranus_beschriftet.jpg)


Foto Uranus mit Hubschrauber 2015

Die Koordinaten des Bildmittelpunkts sind: 00h 51m 32s, +03° 45′ 27″ (J2000)
Der Uranus steht bei: 01h 08m 38s, +06° 34′ 17″ (J2000)
Kamerawinkel 160°

Ich müsste dann ein zweites Bild mit dem gleichen Bildausschnitt machen…

Ein zweites Foto vom Uranus

Im Dezember 2016 konnte ich mit dem Remote-Teleskop T13 (Takahashi Sky90, 90/417mm, FoV 97′ x 73′) in Siding Spring den Uranus drei Mal (20.12.2016 22:00, 21.12.2016 21:30, 22.12.2016 21:37) ablichten:

Abbildung 2: Foto von Uranus mit dem Remote-Teleskop T13 in Siding Spring (Google Drive: T13-dkracht-Uranus-20161220-20161222.jpg)


Uranus von Siding Spring, NSW

Links zum Uranus

Wiener Arbeitsgemeinschaft für Astronomie: http://www.waa.at/apo/uranus-neptun/main.html

Sichtbarkeit des Uranus

http://www.calsky.com  Planeten -> Uranus -> Sichbarkeitsgraph

Sichtbarkeitsdiagramm des Uranus  ausgeschnitten aus (Copyright): http://www.waa.at/apo/uranus-neptun/main.html

Abbildung 3: Sichtbarkeitsdiagramm des Uranus – Copyright WAA (Google Drive: Uranus2010-2018.jpg)


Uranus Sichtbarkeit 2010-2018 (Copyright WAA)