Astrofotografie: Plate solve and label your images with PixInsight (aus Evernote)

Gehört zu: Astro-Software
Siehe auch: Bildbearbeitung, Regim, Plate Solving
Benutzt: Fotos aus Google Archiv

Stand: 25. Juni 2021

Astrofotografie mit der Software PixInsight

PixInsight (liebevoll auch “PI” abgekürzt) ist eine sehr mächtige Software zur Bildbearbeitung in der Astrofotografie.

Leider kostet PixInsight ein wenig, dafür leistet es auch eine ganze Menge.

PixInsight Tutorials

Youtube: https://www.youtube.com/watch?v=CI6z5Ozkb8s&feature=youtu.be

Noch etwas: http://astroimages.weebly.com/pixinsight-tutorial.html

PixInsight Installation

Aktuell (Januar 2010) ist die Version 1.8.7

Kosten:  230 Euro plus Mehrwertsteuer

PixInsight wird auf Linux entwickelt und es gibt Versionen für Windows und MacOS

Download: https://pixinsight.com/downloads/index.html

PixInsight Funktionen

Plate Solving mit PixInsight

Quelle: http://www.cloudynights.com/topic/495580-plate-solve-and-label-your-images-with-pixinsight/

Plate solve and label your images with PixInsight

Forgive me if you already know about this feature of PixInsight, but I was unaware of it.   These two scripts can plate solve and label your images.

  • ImageSolver (under image analysis)
  • Annotateimage (under render)

And there is even some directions to go with the plate solver.  You must give an approximate RA and DEC (it can’t do it blind) and when it is done, it writes the info to the image file.  Then use the annotater to label the image.  Pretty amazing.  See the attached examples.  In the following post, I show an example of the labeled image.
Edited by G. Hatfield, 26 March 2015 – 02:01 PM.

PixInsight Testversion für 45 Tage besorgt

Aus dem Kamera-Dropdown haben wir nun “File Open dialog” ausgewählt. Der Setup-Button hat dann keine Funktion, aber wenn man jetzt auf den Button “Capture and Solve” drückt, kann man ein bereits vorhandenes Astrofoto auswaäheln, was dann “gesolved” wird……

Nach Ablauf der 45 Tage kommt dann leider dieses Bild:

Abbildung 1: Software PixInsight nach 45 Tagen (Google Archiv: PixInsight45.jpg)

PixInsight Authentification Error

PixInsight Authentification Error (45 day Trial period)

PixInsight Image Solver Testfall #1

  • File > Open:  ShapCap Captures > 2016-04-17 > Capture > 22_45_53 > 0001.fits
  • Image > STF AutoStretch
  • Script > Image Analysis > Image Solver

Parameter setzen für Image Plate Solver Script…

Abbildung 2: Software PixInsight: Image Plate Solver Script (Google Archiv: PixInsight-02.jpg)

PixInsight Image Plate Solve Script

PixInsight Image Plate Solve Script

Nach wenigen  Sekunden liefert PixInsight das Ergebnis:

Abbildung 3: Software PixInsight: Plate Solving Ergebnisse (Google Archiv: PixInsight-03.jpg)

PixInsight Plate Solver Results

PixInsight Plate Solver Results

Ergebnis von PixInsight: RA:  13h 46m 06,474s   Dec: 63° 23′ 13,50″   Field of View: 21° 55′ x 16° 26′  Rotation:  3,728° Focal  12.38 mm

PixInsight: Annotate Image

Mit dem Script “Anotate Image” kann man das Ganze nun durch Beschriftung des Bildes schön sichtbar machen.

Script > Render > AnnotateImage

Abbildung 4: PixInsight: AnnotateImage (Google Archiv: 0001_Annotated.jpg)

PixInsight Annotated

PixInsight Annotated

#10 G. Hatfield

Posted 28 March 2015 – 03:15 PM

I’ve learned a couple of things.

First, I was having trouble getting the plate solve script to work on some of my images.  I would put in the focal length of my scope and the pixel size of the camera, but it would “blow up” and not solve the image.  Then it occurred to me that the images I was using had been reduced in size. When I put in a corrected image scale (i.e., corrected for the fact that I had reduced the image size by 2/3, from 5094 x 3414 pixels to 1728 x 1158 pixels) it worked on every image.  So my “native” image scale, which is about 1.38 arcsec/pixel, had to be entered as 4 arcsec/pixel for the resized (not cropped) image.

Also the search function works very well.  I was looking up the RA and DEC in SkyX, but the search function will find these values for most objects even when the common name is used.

Sometimes the labeling from the Tycho-2 catalog can overwhelm the image.  If you highlight this catalog a filter can be applied to limit the stars to a particular mag range.

George

Edited by G. Hatfield, 28 March 2015 – 03:19 PM.

I’ve learned a couple of things.

First, I was having trouble getting the plate solve script to work on some of my images.  I would put in the focal length of my scope and the pixel size of the camera, but it would “blow up” and not solve the image.  Then it occurred to me that the images I was using had been reduced in size. When I put in a corrected image scale (i.e., corrected for the fact that I had reduced the image size by 2/3, from 5094 x 3414 pixels to 1728 x 1158 pixels) it worked on every image.  So my “native” image scale, which is about 1.38 arcsec/pixel, had to be entered as 4 arcsec/pixel for the resized (not cropped) image.

Also the search function works very well.  I was looking up the RA and DEC in SkyX, but the search function will find these values for most objects even when the common name is used.

Sometimes the labeling from the Tycho-2 catalog can overwhelm the image.  If you highlight this catalog a filter can be applied to limit the stars to a particular mag range.

George

Today, while working on the Orion Nebula, I also realized the same issue of pixel size for an image that was cropped/enlarged. It’s pretty finicky with the tolerance of the input! I suppose it forces better cataloging of image attributes. Like they say, garbage in garbage out!

Thanks for sharing.

Ciao,

Ml

Edited by HxPI, 28 March 2015 – 03:31 PM.

#12 G. Hatfield

I recently learned another critical factor in setting this up.  The limit magnitude must be set to about 18 for it to work in some instances.  In fact, if you do that and set the RA and DEC correctly it will often work with everything else with defaults.

George

So Astrometry.net knows how to plate solve **without** RA/DEC and FOV/Scale hints (Blind Solver). So why does PI require these hints and not blind solve also?

You have the bizarre situation if you pick up an old image that you have forgotten where it was in the sky and want to annotate it you have send if off to Astrometry.net for analysis to be able to tell PI where it actually is and at what scale?

I think the Astrobin guys did an excellent job piggy-backing on Astrometry.net web services to support their annotation tool. I wonder if you can call up Astrometry.net via PI in a similar manner to seed the location/scale info into the PI annotator?? Anyone know?

Edited by Tonk, 16 April 2015 – 08:18 AM.

#14 coinboy1

Tonk, on 16 Apr 2015 – 3:09 PM, said:

So Astrometry.net knows how to plate solve **without** RA/DEC and FOV/Scale hints (Blind Solver). So why does PI require these hints and not blind solve also?

You have the bizarre situation if you pick up an old image that you have forgotten where it was in the sky and want to annotate it you have send if off to Astrometry.net for analysis to be able to tell PI where it actually is and at what scale?

I think the Astrobin guys did an excellent job piggy-backing on Astrometry.net web services to support their annotation tool. I wonder if you can call up Astrometry.net via PI in a similar manner to seed the location/scale info into the PI annotator?? Anyone know?

You can upoad an image to Astrometry.net and then download the plate solved .fts file that has the headers embedded.  Feed that to PI Annotate script.

Edited by bmhjr, 04 December 2015 – 03:20 PM.

Astrofotografie und die Gewinde T2, OAZ, M42, S-Mount, M12, C-Mount, CS-Mount, E-Mount, Fotogewinde

Gehört zu: Astronomie
Siehe auch: Foto-Objektive, ZWO ASI294MC Pro

Stand: 6.6.2021

Gewinde bei der Astrofotografie

In welchen Fällen braucht man Gewinde-Kenntnisse?

Wenn man zwei Teile zusammenschrauben will, muss das Außengewinde (male thread) an dem einen Teil mit dem Innengewinde (female thread) des anderen Teils übereinstimmen. Wenn die Gewindemaße verschieden sind, kann man nach einem Adapter suchen. Oft kann auch die Länge eines solchen Adapters kritisch sein (z.B. Auflagemaß zwischen Linse und Sensor).

Anwendungsfälle sind beispielsweise:

  • Wenn man eine Digitalkamera an einem Teleskop befestigen will
  • Wenn man ein seine Digitalkamera mit einem alten (fremden) Fotoobjektiv betreiben will
  • Wenn man irgendetwas (z.B. Filter) in seinen Okularauszug (OAZ) schrauben will
  • Wenn man ein (alternatives) Objektiv für seine WebCam sucht
  • Wenn man einen Filter oder einen Gegenlichtblende vor sein Kamera-Objektiv schrauben will
  • Wenn man seine Kamera, Kugelgelenk und Foto-Stativ verbinden will

T2-Gewinde

Immer wieder kommt ein T2-Gewinde vor. Dies wird spezifiziert als: M42 x 0,75.
Das bedeutet, es einen Durchmesser von 42mm und eine Ganghöhe von 0,75mm pro Umdrehung.
T2-Gewinde sind so eine Art Standard in der Astrofotografie, wenn man zwei Teile verbinden will.

Beispiel: Ich habe an meinem Teleskop einen Okularauszug (OAZ) von 1,25 Zoll und will daran eine Kamera befestigen.

Nichts einfacher als das: Ein Adapter 1,25 Zoll auf T2-Gewinde muss her. Das T2 kann man dann per weiterem Adpter an seine  Digitalkamera schrauben z.B. mit T2-Olympus oder T2-M42 oder T2-NEX oder….

M42-Gewinde

Ein M42-Gewinde ist ähnlich dem T2-Gewinde hat aber M42 x 1,0  (also eine Ganghöhe von 1 mm pro Umdrehung und nicht 0,75 mm wie beim T2).
So ein M42-Innengewinde befindet sich an vielen alten Foto-Objektiven (z.B. Takumar 135, Zenitar 16mm) und auch an der sog. Russentonne (Rubinar Macro 5,6/500).

Über einen M42-NEX-Adapter kann ich meine Digitalkamera mit E-Mount dransetzen.

Ich kann aber auch meinen ganz kurzen Adaper M42-T2 verwenden und daran meinen Adapter T2-auf-1,25 Zoll Okularauszug schrauben. Dann kann ich meine astronomischen Okulare zusammen mit dem Foto-Objektiv (auch Russentonne) sozusagen als Spektiv verwenden.

M48-Gewinde – sog. “Filtergewinde”

Mit dem Begriff “Filtergewinde” ist meist ein M48 x 0,75 Gewinde gemeint.

Wo findet man ein solches “Filtergewinde”?

  • Aussengewinde an meinem Flattener/Reducer (SKFlat80) befindet sich Kamera-seitig ein M48 Aussengewinde (male).
    Daran möchte ich einerseits meine Canon DSLR anschießen und andererseit meine neue Zwo ASI294MC Pro
  • Innengewinde in einem 2 Zoll Okularstutzen sollte sein “E48” d.h. 47,8mm * 0,75 Innengewinde (z.B. für M48 Hyperion Filterhalter)
  • Innengewinde in einem 1,25 Zoll Okularstutzen: M28,5 * 0,5  oder M28,5 * 0,6
  • Innengewinde vorn  an einem Foto-Objektiv
    • Takumar 135mm – M49
  • …..

Siehe auch: Filter für die Astrofotografie

Fotogewinde 1/4 Zoll und 3/8 Zoll

Kameras haben unten normalterweise in 1/4 Zoll Innengewinde.
Daran kann man beispielsweise eine Schnellwechselplatte oder ein Kugelgelenk mit 1/4 Zoll Schraube (=Aussengewinde) befestigen.

Fotostative haben oben normalerweise eine 3/8 Zoll Gewindestange (=Aussengewinde).
Um das zu befestigen braucht man einen kleinen 1/4 Zoll auf 3/8 Zoll Adapterring.

S-Mount

Im Zusammenhang mit Webcams wird als “S-Mount” gerne ein Gewinde mit M12 x 0.5 bezeichnet.

The S-mount is a standard lens mount used in various surveillance CCTV cameras and Webcams. It uses a male metric M12 thread with 0.5 mm pitch on the lens and a corresponding female thread on the lens mount (also: M12 x 0,5); thus an S-mount lens is sometimes called an “M12 lens”.

So ein Gewinde hat z.B. die Phillips ToUCam an der Objektivlinse. Man kan also leicht andere Objektivlinsen benutzen, wenn die ein S-Mount-Gewinde haben.

C-Mount, CS-Mount

Neuere CCTV-Kameras (Box-Kameras) verwenden den sog. C-Mount bzw. CS-Mount. Beide haben einen Durchmesser von 1 Zoll und eine Steigung von 1/32 Zoll. Der Unterschied zwischen C-Mount und CS-Mount ist das sog. Auflagemaß; d.h. der Abstand zwischen Linse und Sensor;

  • C-Mount 17,526 mm
  • CS-Mount 12,5 mm

Der C-Mount ist ein genormter Gewindeanschluss für (Bewegtbild-)Kameraobjektive im professionellen Bereich. Der Außendurchmesser des Gewindes beträgt 1 Zoll (2,54 cm), die Gewindesteigung beträgt 1/32 Zoll. Das Auflagemaß zwischen dem Flansch des Objektivgewindes und der Bildebene entspricht 17,526 mm (0,69 Zoll) bzw. 12,5mm beim CS-Mount. Der C-Mount ist von der SMPTE mit der Norm SMPTE 76-1996 genormt und wird nach der ANSI B1.1 Gewindenorm auch als „1-32 UN 2A“ bezeichnet.

Adapter für meine Sony NEX-5R

Der kameraseitege Anschluss bei der Sony NEX-5R nennt sich E-Mount.

  • M42-NEX-Adapter: um mein Fotoobjektiv Takumar 135 (oder mein Zenitar 16mm) mit der Sony NEX zu verwenden
  • OM-NEX-Adapter: um mein Fotoobjektiv Olympus ZUIKO 50mm mit der Sony NEX zu verwenden
  • Kiwi LMA-FD_EM-Adapter: um mein Fotoobjektiv Vivitar 24mm mit der Sony NEX zu verwenden

Adapter für meine Canon EOS 600D

Die Canon EOS 600D hat kameraseitig ein sog. Canon-Bajonet

  • M42-xyz, um die Kamera mit meinem Fotoobjektiv XYZ zu verwenden
  • T2-Ring, um die Kamera mit meinem Teleskop Orion ED80/600 zu verwenden

Verweise

T2-Adapter am Okularauszug

GuideScope50 mit T2-Anschluss

Webcams für die Astrofotografie

WebCam Altair GPCAM MT9M034M

WebCam Philips ToUCam Pro II

Russentonne mit M42-Anschluss

Consulting: Kanban (aus Evernote)

Gehört zu: Consulting
Siehe auch: Projektmanagement

Projektmanagement mit Kanban

Kanban heisst soviel wie “Karte” oder “Pinnwand”. Als Technik/Prinzip geht Kanban ursprünglich (nach dem Zweiten Weltkrieg) auf Toyota in Japan zurück, wo es mit einer Just-in-Time  Fertigung in Verbindung stand.

Heute (2015) wird es von Beratern und Softwareanbietern ( http://www.projectplace.com ) als Methode des Projektmanagement bzw. Zeit-Management neu verkauft.
Eine Kanban-Pinnwand hat im einfachsten Fall drei senkrechte Spalten mit den Titeln
  • In Planung   (To Do)
  • In Arbeit     (In Progress)
  • Fertig         (Done)
wo die Aktivitäten bzw. Arbeitsschritte öffentlich sichtbar aufgeteilt werden indem man sie als Kärtchen auf die Pinnwand heftet.
Man kann mehrere solche Pinnwände zu verschiedenen Themenbereichen nutzen.

Anwendungen und Nutzen von Kanban

Kanban kann man einzeln nur für sich selbst anwenden, sozusagen als “To-Do-List” Board, oder auch zur Förderung der Arbeiten und Aktivitäten eine einem Team.
Es wird behauptet, solche Kanban-Boards würden der Visualisierung dienen und damit die Produktivität steigern.
Man sagt, Kanban-Boards fördern die offene Kommunikation.
Man sagt, Kanban-Boads fördern die Selbstorganisation von Team und reduzieren dadurch den Management-Overhead…
Neuerdings wird sogar behauptet, Kanban sei “agile” (Agiles Manifest, SCRUM,…).

Software für Kanban

 Heutzutage macht man das natürlich nicht mehr mit realen anfassbaren Pinnwänden, sondern DIGITAL z.B. auf dem iPad (z.B. App: Trello) und über Internet bzw. Cloud.
Dadurch ist eine Real-Time-Kommunikation in geografisch verteilen Arbeitsgruppen möglich.

Astrofotografie für Einsteiger: Welche Objekte kann ich fotografieren?

Gehört zu: Astronomie
siehe auch: Sternhaufen, Galaxien, Sternbilder, Nebel, Helligkeit, Flächenhelligkeit, Kugelsternhaufen, Asterismen, Zodiakallicht

Stand: 1.2.2022

Fragestellung: Welche Objekte?

Als Anfänger in der Astrofotografie suche ich nach ersten Beobachtungsobjekten, die ich mit meiner einfachen Ausrüstung erfolgreich fotografieren kann, um beeindruckende “Pretty Pictures” zu erhalten auf die ich stolz sein kann.

  • Welche Himmelsobjekte kann ich mit meiner Gerätschaft sinnvoll und erfolgreich fotografieren?
  • Was ist möglich? Was bringt mir persönlich ein Erfolgserlebnis?
  • Von welchem Ort aus kann ich das beobachten?
  • Zu welcher Zeit kann ich das beobachten?

Gute Anregungen bekommt man, wenn man einfach einmal anschaut, was andere  fotografiert haben z.B. bei Astrobin: welche schönen Beobachtungsbjekte haben andere mit f=135mm fotografiert?

Links

Typische Beobachtungsobjekte

Tabelle 1: Erste Beobachtungsobjekte für meine Überlegungen etwa folgende:

Objekt Größe Helligkeit Typ Bemerkungen
LMC  11° x 9° Galaxie  Südliche Hemisphäre
Polarlicht  90° Atmoshäre  Weitwinkel f=24mm, und Video
Milchstrasse  180° Galaxie  Mosaik mit f=24mm
Meteor  10°-15° Atmoshäre  schnell bewegt
Sternbilder Sternbild  Einzelne Serne
M31  189′ x 62′  13,5m Fläche Galaxie  Andromeda Galaxis
Plejaden  110′  2,86-5,65m Offener Sternhaufen  Einzelne Sterne – Offener Haufen
Sonne  30′  sehr hell Planetary  Solarfilter erforderlich
Mond  30′  hell Planetary

Arten von Beobachtungsobjekten

Um die Beobachtungmöglichkeiten mit meinen Instrumenten und an meinem Standort (Lichtverschmutzung, Hamburg Innenstadt) zu beurteilen und ggf. zu planen (Beobachtungsplanung) ist es sinnvoll eine Gruppierung nach für die Beobachtung relevanten Eigenschaften vorzu nehmen:

Grundlagen: Größe, Helligkeit und Bewegung

Je nach dem, über was für Gerät man verfügt und wie die Sichtbedingungen sind, sind ganz verschiedene Beobachtungsobjekte möglich bzw. nicht möglich.

Drei Punkte sind von primärer Bedeutung:

  • Größe des Objekts – z.B. der Andromedanebel ist 189 x 62 Bogenminuten groß. Wenn man ihn komplett fotografieren will, braucht man kurze Brennweiten (s.u.). Planeten sind sehr klein und benötigen längere Brennweiten
  • Helligkeit des Objekts – Sonne und Mond sind immer hell genug, Fixsterne sind punktförmig und auch hell (aber: Grenzgröße), flächenhafte Objekte erfordern besondere Überlegungen
  • Bewegung des Objekts:  Meteore, Strichspuraufnahmen vs. Aufnahmen mit Nachführung

Größe (Fläche) eines Objekts – Gesichtsfeld

Ich möchte das betreffende Objekt komplett auf mein Foto bekommen und es soll sich natürlich schön “fett” in der Mitte zeigen. Also muss mein Gesichtsfeld (FoV Field of View) zum Objekt passen.

Die Größe des Gesichtsfelds ergibt sich aus der Sensorgröße der Kamera (APS-C: 23,5 x 15,6 mm) und der Brennweite meiner Optik.

Tabelle 2: Größe des Gesichtsfeldes (FoV)

Sensorgröße mm
(APS-C)
Brennweite mm Gesichtsfeld Mögliche Objekte
23,5 x  15,6 700  115′ x 76′  Sonne, Mond
600  2,2° x 1,5°
400  3,4° x 2,2°  M31 Andromeda
300  4,5° x 3,0°  M31 Andromeda, Asterismen
 135  9,9° x 6,6°  Sternbild Lyra, Große Magellansche Wolke
 50  40° x 27°  Sternbilder
24  52° x 36°  Milchstraße, Polarlicht
16 72° x 52°  Meteorstöme

Helligkeit eines Objekts

Punktförmige Lichtquelle

Die Helligkeit eines astronomischen Objekts so wie es bei uns zu beobachten ist (“scheinbare Helligkeit“), ist physikalisch eigentlich nichts anderes als der ankommende Lichtstrom auf der Fläche der Aufnahme-Optik (gemessen in lux).

Die scheinbare Helligkeit eines punktförmigen Objekts (Stern) misst der Astronom in “Magnituden”, abgekürzt “m” oder auch “mag”. Diese astronomische Skala ist  logarithmisch skaliert und definiert historisch die hellen Sterne mit 1. Größenklasse (1 mag) und die gerade noch sichtbaren Sterne mit 6. Größenklasse (6 mag), wobei der Helligkeitsunterschied ein Faktor 100 sein soll.

  • Ein Stern der Größenklasse 1 möge einen Lichtstrom von Φ1m bei uns abliefern, ein Stern der Größenklasse 6 einen Lichtstrom von Φ6m.
  • Dann ist die Skalierung festgelegt durch:   Φ1m6m = 100
  • Als logarithmische Skala ergibt sich daraus:  m1 – m2 = -5 * lg(  Φ12 ) / lg (100) = -2,5 * lg(  Φ12 )

Praktisches Beispiel: Gewinn an Größenklassen mit einem 70mm Refraktor gegenüber dem bloßen Auge:

  • Die Lichtströme sind proportional der Größe der lichtsammelnden Fläche; also Φ12 = 70*70/5*5 (Annahme: Augenpupille 5mm, Austrittspupille des Refraktors <= 5mm).
  • Das ergibt einen Gewinn an Größenklassen von:  2,5 * lg(702/52) = 2,5 * lg 196 = 5,73
  • Wenn ich mit bloßem Auge eine Grenzgröße von 5 mag hätte, würde ein 70mm-Teleskop eine Grenzgröße von 10,73 mag haben.

Physikalische Maßeinheit für den Lichtstrom: lux

Umrechnung:  mag = -2.5*lg(Φ) – 14.2064            where Φ is in lux.

Tabelle 3: Beispiel zur Umrechnung Lux in Magnituden

Φ [lux] mag
2,077*10-6 0,00m
8,268*10-7 1,00m
8,268*10-9 6,00m

Flächige Lichtquelle

Bei einem flächigen Objekt hat man eine “Gesamthelligkeit” und eine “Leuchtdichte” Lv (auch Flächenhelligkeit, engl. Luminance)

Physikalische Maßeinheit:  cd / m2

Astronomische Maßeinheit:  mag/arcsec2 bzw. mag/arcmin2

Oder auch: Die Einheit S10 beschreibt die Helligkeit als Anzahl von Sternen der Helligkeit 10 mag innerhalb eines Quadratgrads.

Beispiel: Schwächste Helligkeit des Nachthimmels unter optimalen Bedingungen: 21,6 mag/arcsec² = 2,5 · 10−4 cd/m² = 370 S10  (Wikipedia)

Helligkeit: http://astrofotografie.hohmann-edv.de/grundlagen/flaechenhelligkeit.php

Die Firma Unihedron vertreibt ein Gerät, mit dem man die Himmelshelligeit messen kann (SQM = Sky Quality Meter)  Laut Beipackzettel von Unihedron ist [cd/m²] = 10.8 * 104 * 10(-0,4 * [mag / arcsec2])

http://unihedron.com/projects/sqm-l/Instruction_sheet.pdf

Tabelle 4: Beispiel zu Umrechnung SQM in Lv

SQM [mag/ arcsec2] Lv [cd/m²]
22 0,172 * 10-3
21 0,432 * 10-3
20 1,084 * 10-3
19 2,723 * 10-3
18 6,840 * 10-3

Beobachtungsobjekt: Sterne

Ohne NachführungStrichspuren.

Mit Nachführung:

Beobachtungsobjekt: Sternbilder

Ich finde es auch beeindruckend, mal ein ganzes Sternbild zu fotografieren; z.B. den Großen Wagen, die Leier, den Orion oder auch etwas nicht so bekanntes wie z.B. den Kepheus oder etwas schwieriges wie z.B. den Schützen – oder im Süden das berühmte Kreuz des Südens.

Man nennt das “Wide Field” Astrofotografie…

Beobachtungsobekt: Asterismen (Sternmuster)

Von besonderem Reiz finde ich es auch, sog. Asterismen zu fotografieren, das sind kleinere Sternmuster, bei denen die Herausforderung schon ist, sie überhaupt zu finden. Man braucht dann schon ein Teleobjektiv, weil so ein Objekt relativ klein ist, aber es sind punktförmige Sterne (keine flächigen Nebel oder so), die ich also aus der lichtverschmutzten Stadt trotzdem gut fotografieren kann.

Beispiele:

  • Little Cassiopeia
  • Little Orion
  • Kemble’s Kaskade

Beobachtungsobjekt: Sternhaufen

Sternhaufen kann ich noch ganz gut aus der lichtverschmutzten Stadt fotografieren, weil sie nur eine Ansammlung von punktförmigen Sternen sind.

Hierzu habe ich einen eigenen Artikel “Sternhaufen” geschrieben.

Beobachtungsobjekt: Galaxien

Es gibt relativ große Objekte, so ist z.B. der Andromedanebel (M31)  scheinbare Größe 189×62 Bogenminuten, Gesamthelligkeit 3,4m, Flächenhelligkeit 13,5m

Sonderfall: Unsere Milchstraße

Sonderfall: Die Große Magellansche Wolke (LMC)

Hierzu habe ich einen eigenen Artikel “Galaxien” geschrieben.

Beobachtungsobjekt: Emissionsnebel, Reflexionsnebel, Planetarische Nebel etc.

Emissionsnebel kan man meist auch gut bei Lichtverschmutzung fotografieren, wenn Narrowband-Filter helfen.

Beobachtungsobjekte in unserem Sonnensystem

Die klassischen Beobachtungsobjekte in unserem Sonnnensystem sind die Planeten. Dazu kommen Kleinplaneten, Kometen, Meteorströme, das Zodiakallicht und natürlich der Mond und die Sonne.

Beobachtungsobjekt: Meteorströme

z.B. die Perseiden

Da man nicht weiss, wann und wo am Himmel der nächste Meteor (Sternschnuppe)  erscheinen wird, wird man wohl zu einem Weitwinkelobjektiv greifen und auch etwas länger belichten (z.B. 30 s).

Ein Meteor ist meist recht hell, aber er bewegt sich schnell. Daher erscheint ein Meteor auf einem Foto meist dunkler als die Sterne, weil letztere ja still stehen und ihr Licht für die Dauer der Belichtung z.B. 30sec auf einen Punkt gesammelt wird, während der Meteor in z.B. 1 Sekunde durch das ganze Bild rauscht und damit auf einem Punkt nur wenig Licht hinterlässt.

Beobachtungsobjekt: Planeten & Kleinplaneten

Ein Ziel bei Aufnahmen von Planeten oder Kleinplaneten kann sein, sie einfach nur fotografisch nachzuweisen z.B. auf mehreren Aufnahmen des gleichen Gebiets, wo sie sich dann durch ihre Bewegung verraten. Dafür sind mittelgroße Gesichtsfeder mit entsprechender Vergrößerung angebracht.

Ein anderes Ziel kann sein, einen Planeten als Scheibchen mit detaillierterer Struktur zu zeigen z.B. Jupiter mit seinen Wolkenbändern. Dafür wären starke Vergrößerungen mit entsprechend kleinem Gesichtsfeld erforderlich. Auch gibt es dafür spezielle Aufnahmetechniken…..

Beobachtungsobjekt: Die Sonne & Sonnenfinsternisse & Transits & Halo

Die Sonne muss durch starke Filter stark abgeschwächt werden…

Eine Halo-Erscheinung kann ich mit einem Weitwinkel-Objektiv fotografieren

Beobachtungsobjekt: Der Mond & Mondfinsternisse

Zur Dokumentation einer Mondfinsterniss reicht mein 70/700mm Lidlscope

Um Details auf der Mondoberfläche fotografieren zu können, müsste ich wohl zu längere Brennweiten greifen…

Beobachtungsobjekt: Zodiakallicht

Siehe:   Zodiakallicht

Beobachtungsobjekt: Kometen

Schöne große Kometen gab es leider in meiner aktiven Astrozeit nicht. Etwas war schon möglich; siehe: Komenten

Beobachtungsobjekte die zu unserer Erde gehören sind

Beobachtungsobjekt: Nordlicht

Meine ersten Beobachtungen des Nordlichts konne ich 2014 vom Flugzeug aus machen.

Beobachtungsobjekt: Leuchtende Nachtwolken

Im Sommer kann man in Hamburg mit etwas Glück bzw. Beharrlichkeit auch Leuchtende Nachtwolken “NLC” sehen…

Beobachtungsobjekt: Erdsatelliten

Künstliche Erdsatelliten, Iridium-Flash, geostationäre Erdsatelliten, ISS,…

Beobachtungsobjekte: Sonstige

Wetterballons, Erdschattenbogen,…

 

Astrofotografie mit der Software qDslrDashboard 2016

Gehört zu: Astrofotografie

Astrofotografie: Fernbedienung der Kamera vom Windows-Computer

Als Amatuer-Astrofotograf mit beschränkten Mitteln möchte ich Astrofotografien mit meiner Digitalkamera (Sony-NEX-5R , Canon EOS 600Da) per Fernsteuerung über meinen Windows-Computer machen, um Fotos zu erhalten, die das Beobachtungsobjekt mittig im Bild (“Framing”), scharfeinstellt (“Focussing”) und richtig belichtet auf meinem Windows-Computer zeigen.

Das bedeuet im Einzelnen:

  • Das Beobachtungsobjekt muss in die Mitte des Gesichtsfelds eingestellt werden   (-> Goto, -> Alignment, -> Sucher -> Live View)
  • Das Beobachtungsobjekt muss scharf gestellt werden  (-> Fokussierung)
  • Belichtungszeit und ISO-Empfindlichkeit müssen gut eingestellt werden (-> Fernbedienung)
  • Ein Wakeln beim Auslösen soll vermieden werden (-> Fernbedienung)
  • Das fertige Foto muss auf den Windows-Computer transferriert werden

Fernbedienung /Fernauslöser für die Astrofotografie

qDslrDashboard ist eine Software, mit der man Digital-Kameras (Nikon, Canon, Sony) fernsteuern kann.

Eine Besonderheit ist die Unterstützung von Sony, die sonst kaum zu finden ist. Wobei die Sony-Unterstützung ausschließlich über WLAN (WiFi) möglich ist und nicht über USB-Kabel.

qDlsrDashboard gibt es für  iOS, Android und für Windows; d.h. ich kann es auf meinem normalen Notebook laufenlassen, wo ich auch andere Astro-Software drauf habe und auch die Bildqualität schnell und gut prüfen kann.

Angefangen habe ich das Thema Fernbedienung mit der von Sony gelieferten Software “Play Memories Mobile” (App für iPad).

Stromversorgung für das Notebook

Für die mobile Astrofotografie muss ich dann allerdings auch mein Notebook mitnehmen und ggf.  für eine Stromversorgung über längere Zeit sorgen; entweder mit Ersatzakku oder mit entsprechendem Netzteil.

Stichworte: Kfz Notebook Netzteil 19V 3,4 A / Firstcom Universal 12-19 V /  https://www.amazon.de/Firstcom-Universal-Notebook-Netzteil-Fujitsu/dp/B016KN9Q96

Die wichtigsten Astro-Funktionen von qDslrDashboard

  • Verbinden von qDslrDashboard mit der Sony-Kamera über WLAN: Klicken auf “Sony”
  • Einstellen eines Gitternetzes mit Kreuz im Bildmittelpunkt  (z.B. für Alignment)
  • Live View
  • Einstellen ISO, Belichtungszeit, Fokus
  • Einzel-Fotos
  • Foto-Serie
  • Kontrolle der Fotos auf dem Notebook

Mein Kochbuch für qDslrDashboard

  1. Verbindung Kamera-Notebook per WLAN herstellen
    1. Andere evtl. störende WLANs in der Nähe ausschalten
    2. Sony NEX-5R WLAN Access Point anschalten
    3. Auf Windows-Notebook WLAN-Verbindung zu diesem Access Point herstellen (Achtung: “Kein Internet” ist richtig hier)
  2. qDslrDashboard starten
    1. Mit Sony-Kamera verbinden:   Leiste oben -> auf “Sony” drücken
    2. Live View einschalten: Leiste links -> oberstes Symbol “LV”
    3. Belichtungszeit und ISO-Wert ungefähr einstellen (bis ein Bild sichtbar wird)  -> unterer Bildrand links
    4. Grid 2×2 anschalten: Leiste links, 2. Symbol von oben “Einstellungen”; dann in Zeile “Live View Display” auf “Grid 2:2” klicken
    5. Ordner für Speicherung der Fotos (JPG) definieren: Rechte Leiste: Oberes Symbol (3 Schieberegler), Leiste oben: zweites Symbol von rechts (Hammer und Schraubendreher gekreuzt)  “Folder for local images”… d:\var\pictures
  3. Ein Foto mit qDslrDashboard schießen
    1. Linke Leiste, zweites Symbol von oben klicken (abwarten bis Belichtungszeit abgelaufen, erst dann macht es “klick”)
  4. Foto mit der Software “All Sky Plate Solver” analysieren…

Internet: Vector Graphics in HTML

Gehört zu: Vektorgrafik
Siehe auch: HTML, SVG, WordPress

Vektorgrafiken in HTML-Seiten

Auch in HTML-Seiten möchte man ja ab und zu auch schöne Vektorgrafiken einbauen – nicht nur Pixel-Bilder.

Je nach Format (SVG, SWF, ODG, VSD, PPT,…) sind da unterschiedliche Lösungen möglich, wo bei schon das Upload solcher Grafiken ein Problemchen sein kann.

Upload von SVG-Grafiken

Bei WordPress muss man den Dateityp “SVG” zulassen zum Upload z.B. durch Installation des WordPress-Plugins “SVG Support”. Dies habe ich in Graphis in WordPress beschieben.

Bei Flickr geht es so:…

Bei Google Photos geht es so: …..

SVG Grafik in eine HTML-Seite einbinden

SVG Browser Support heute

Kein Web-Browser unterstützt den aktuellen SVG-Standard in vollem Umfang.

Mozilla Firefox hat sehr gute SVG-Unterstützung.

Microsoft Internet Explorer und Edge nur mittelmäßige SVG-Unterstützung. Contine reading

Computer: WordPress: Graphics SVG, PPT, ODG, VSD, SWF

Gehört zu: WordPress
Siehe auch: WordPress Plugins, SVG Grafiken, InkScape, Google Drive, GitHub

Grafiken in WordPress: SVG, PPT, ODG, VSD, SWF

Auch in WordPress-Artikeln und -Seiten möchte man ja ab und zu auch schöne Vektorgrafiken einbauen – nicht nur Pixel-Bilder.

Dabei ergeben sich mindestens zwei Fragen:

  • Grafik-Formate: Wie erstelle ich eine Grafik? Kann WordPress die Grafik darstellen?
  • Grafik-Speicherung: Wo werden die Dateien gespeichert?   (WordPress-Host, Flickr, Google, OneDrive,…?)

Für Grafiken, auch Diagramme oder Zeichnungen genannt, gibt es verschiedene Formate:

  • SVG Scalable Vector Grafics
  • PPT Microsoft PowerPoint
  • ODG Grafikformat aus LibreOffice Draw
  • VSD Microsoft Visio – konvertiert zu SVG
  • SWF Adobe Flash – veraltet
  • FLA Freehand

Bei der Speicherung der Grafiken sind je nach Format (SVG, SWF, ODG, VSD, PPT,…) unterschiedliche Lösungen möglich, wo bei schon das Upload solcher Grafiken ein Problemchen sein kann.

Graphics Format SVG

Ich kann ganz einfach SVG-Dateien erstellen, die in WordPress-Artikel eingebunden werden können.

SVG Graphics erstellen

Zum Erstellen und Bearbeiten von SVG-Grafiken benutze ich die Software:

  • InkScape
  • LibreOffice Draw

Einzelheiten dazu unter: InkScape und …

Sonderzeiche z.B. griechische Buchstaben können in Textfeldern als Unicode eingegeben werden. Dazu nimmt man die Tasten: Strg+U -> 4-stelliger Unicode -> Enter. Beispielsweise: delta = 03B4, phi = 03C6,…

SVG Graphics einbinden in WordPress per PlugIn

Eine SVG-Grafik kann einfach über im IMG-Tag in HTML eingebunden werden. In WordPress wird das wie folgt unterstützt.

Das Plugin “SVG Support” ermöglicht es, SVG-Dateien in die WordPress Media Library hochzuladen…

Wenn die SVG-Dateien dann in der Media Library stehen, kann man die “normal” d.h. wie andere Bilder auch, in WordPress-Artikel einbinden.

Die Speicherung der SVG-Dateien erfolgt in diesem Falle also innerhalb von WordPress in der WordPress Media Library d.h. beim Web-Hoster.

Abbildung 1: Beispiel einer SVG-Grafik (WordPress Media Library: Agility.svg)

SVG Upload

Source: https://wordpress.org/support/topic/svg-upload-not-allowed

SVG upload not allowed?? (9 posts)

  1. I’m trying to put an SVG image into a post, but I can’t upload it.

    “Harajuku map.svgz” has failed to upload due to an error
    Sorry, this file type is not permitted for security reasons.

    What gives?! It’s just an image!

  2. You can overcome the security warning by adding this to your current themes functions.php file.

    add_filter('upload_mimes', 'custom_upload_mimes');
    
    function custom_upload_mimes ( $existing_mimes=array() ) {
    
    	// add the file extension to the array
    
    	$existing_mimes['svg'] = 'mime/type';
    
            // call the modified list of extensions
    
    	return $existing_mimes;
    
    }

    Then you should be able to upload files with an .svg extension

     

SVG Graphics in Google Drive speichern

Man kann SVG-Grafiken aber auch woanders als beim WordPress-Hoster in der dortigen WordPress-Media-Library speichen, z.B. auf Google Drive.

Dateien von Google Drive kann man mit dem WordPress-Plugin “Google Drive Embedder” dann wiederum in WordPress-Posts einbinden.

SVG Graphics in GitHub speichern

Man kann SVG-Grafiken aber auch auf GitHub speichern.

Solche SVG-Dateien von GitHub kann man dann einfach in WordPress-Posts einbinden über “Add Media” und “URL”.

Graphics Format PPT

xyz

Graphics Format ODG

xyz

Graphics Format VSD

VSD-Grafiken stammen aus Microsoft Visio. Ich konnte viele Grafiken aus PPTs leicht als VSD-Grafiken kopieren und abspeichern (dank an Microsoft).

Heute konnte ich feststellen, dass LibreOffice Draw solche VSD-Dateien direkt öffnen kann. Wir können sie aus LibreOffice Draw dann Exportieren als SVG bzw. abspeichern als ODG.

Alle VSD-Dateien wurden so konvertiert. Stand 13.2.2020.

Graphics Format SWF

Dieses Format ist veraltet und wird auf meinem WordPress durch SVG ersetzt.

Plugin Method

Source: http://www.wpbeginner.com/wp-tutorials/how-to-embed-swf-in-wordpress-posts/

First, you need to download and install Easy Flash Embed Plugin for WordPress. This plugin is so simple that no settings are even added to your admin menu. All you have to do is used a shortcode when you are creating your posts like this:

1 [swf src="http://www.example.com/my-flash-file.swf" width=300 height=100]

Simply replace the src attribute with a link to your flash file and adjust height and width accordingly.

Download Easy Flash Embed plugin.

[swf src=”/wp-content/uploads/2016/08/Agility.swf” width=300 height=300]

Agility

Code Method

For those of you who would like more control over your code we are now going to show you how to embed flash files directly into your WordPress posts, pages, or even themes. Although people have come up with numerous methods for doing this over the years the easiest and most standards compliant way is to use the <object> element.

The final code looks like this:

01 <object id="flashcontent"
02         classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
03         width="550px"
04         height="400px">
05   <param name="movie" value="mymovie.swf" />
06  
07   <!--[if !IE]>-->
08   <object type="application/x-shockwave-flash"
09           data="mymovie.swf"
10           width="550px"
11           height="400px">
12   <!--<![endif]-->
13  
14     <p>
15       Fallback or 'alternate' content goes here.
16       This content will only be visible if the SWF fails to load.
17     </p>
18  
19   <!--[if !IE]>-->
20   </object>
21   <!--<![endif]-->
22  
23 </object>

Note that you are using 2 <object> elements. The outer element is targeting Internet Explorer while the inner element is for all the other browsers. You can change your fallback text if necessary. You can also add extra <param> options like wmode or allowScriptAccess.

P.S. you should always use wmode=transparent, so your embed doesn’t override existing content such as a floating bar. Check out our article on how to prevent Youtube oEmbed from overriding content.

Computer: Gebrauchte Festplatte verkaufen

Gehört zu: Festplatten

Verkauf meiner ausgemusterten Festplatten

Von Zeit zu Zeit kommen bei meinen Computern neue Festplatten dazu und die alten müssen dann, wenn alles migriert ist, ausgemustert werden.

Zur Zeit habe ich im Altbestand:

  1. 3,5 Zoll, SATA, Seagate Baracuda LP 2TB  – “Disk4”
  2. 3,5 Zoll, SATA, Seagate Baracuda LP 2TB  – “Disk 3”
  3. 3,5 Zoll, SATA, Seagate Baracuda LP 2TB – “Backup 02”

Das Problem

Gebrauchten Festplatten sollten vorbereitet werden, um gut verkauft zu werden:

  1. Externer Anschluss der gebrauchten Festplatte per USB
  2. Mein alter Inhalt muss sauber gelöscht sein
  3. Die Platte sollte dann mit einem Tool auf Fehlerfreiheit überprüft werden (meist herstellerabhängig)
  4. Dann muss man ein sinnvolles Preisangebot machen

Meine Lösung

Externer Anschluss per USB

Das mache ich mit einem Teil von der Firma WinTech namens “Direct Multi-purpose Insert” Model SAK-50 (K-100), was ich mal vor Jahren bei Atelco erstanden habe.

www.wintech-products.de

Löschen der Platte

Das mache ich mit dem Tool “CC Cleaner”. Zur Zeit habe ich die Version v5.18 installiert. Da muss man unter “Tools” den “Drive Wiper” auswählen und schon gehts los.

Für eine 2TB Platte dauert das so 14 bis 15 Stunden. Am besten stellt man die Energiespar-Optionen des Computers so ein, dass nicht nach 30 Minuten abgeschaltet wird, sondern “Energiesparmodus nach: niemals”.

Testen der Platte

Beim Verkauf gebrauchter Festplatten fragen einige potentielle Käufer, ob die Platte denn fehlerfrei sein. Das kann man mit einem entsprechenden Disk-Tool feststellen und dokumentieren.

Ich hatte es erst mit dem Seagate-Programm “SeaTools for Windows” versucht, aber da die per USB angeschlossene Platte nicht ansprechen können. Nun nehme ich  “CrystalDiskInfo” das hat gut funktioniert.

Preisangebot

  • Neupreis: Eine Info wäre der momentane Neupreis. Bei Heise-Preisvergleich findet man eine mittleren preis von ca. 185,– Euro.
  • Abschlag für gebraucht: Wieviel Abschlag muss man bei gebrauchten Festplatten rechnen? Auf der Website www.gebraucht-kaufen.at sehe ich diese Platte gebraucht für 119 – 129 Euro. Also rechnen wir mal 124/185 = 67% – Wenn wir die Platte schnell und privat loswerden wollen vielleicht 50% – also ca 92,50
  • Zustand/Qualität:
    • Bei einem 1A Zustand und einem Alter von weniger als einem Jahr würde ich kaum weiter mit dem Preis herunter gehen.
    • Bei einem 1A Zustand und einem höheren Alter vielleicht 40% des heutigen Neupreises – also ca. 74.– Euro
    • Bei leichten Fehlern, je nach dem 30% bis 10% des heutigen Neupreises – also 55,50 bis 18,50 Euro

 

Astronomie: LOFAR Station in Norderstedt – Digitale Radioastronomie

Gehört zu: Astronomie
Benutzt:  Fotos aus Google Archiv

Stand: 25.04.2023

LOFAR – Digitale Radioastronomie

Vortrag zu LOFAR

17.6.2015 Sternwarte Bergedorf, Prof. Brüggen: Radioastronomie mit LOFAR

17.8.2016 Sternwarte Bergedorf, Dr. Engels

Was ist LOFAR?

LOFAR = Low Frequency Array

LOFAR-Zentrum: Firma Astron in den Niederlanden

LOFAR-Stationen in England, Frankreich, Schweden und Deutschland

Abbildung 1: Landkarte der LOFAR Teleskope (Google Archiv: LOFAR-international-stations-on-map-Europe.jpg)

LOFAR Landkarte

LOFAR Stationen in Europa (Cpoyright: Astron)

Eine LOFAR-Station besteht aus einem Feld von kleinen einfachen Dipol-Antennen. LOFAR-Stationen sind über ganz Europa verteilt, wodurch  eine Basis von vielen hundert Kilometern entsteht.

Die Signale der Stationen werden zusammen mit exakten Timestamps von Rubidium-Atom-Uhren digitalisiert  und über 10 Gbit/s Glasfaser über Jülich zur Zentrale in den Niederlanden geschickt, wo sie real-time mit Hilfe eines Supercomputers “BlueGene” von IBM ( PetaFLOP-Bereich) per Software ausgewertet werden.

Die inferometrische Auswertung per Software setzt die Signale der Stationen unter Berücksichtigung der verschiedenen Laufzeiten phasengerecht zu einem Signal zusammen, das von der  Auflösung einem Teleskop der Größe der Basis entspricht. Das nennt das auch “Aperture synthesis”. Dadurch wird  eine Auflösung (Bildschärfe) im Bereich einer Bogensekunde erreicht, was vor LOFAR bei diesen Wellenlängen (Bereich von 1,5 Metern oder mehr) nicht möglich war.

Obwohl die Dipol-Antennen eine feste Ausrichtung haben (keine beweglichen Teile), können verschiedene Richtungen am Himmel über software-mäßige Verarbeitung des digitalen Signals angepeilt werden (sog. “Multi Beaming”).

https://lofar.physik.uni-bielefeld.de/index.php/en/     https://www.glowconsortium.de/index.php/en/lofar-about http://www.astro.ru.nl/~falcke/LOFAR/lofar_artikel.htm

LOFAR-Station Norderstedt

Die LOFAR-Station in Norderstedt befindet sich in der keinen Straße Harthagen und ist seit Januar 2015 in Betrieb.

Die Einweihungsfeier soll am 9.9.2015 um 11 Uhr stattfinden.

Abbildung 2: LOFAR Station in Norderstedt (Google Archiv: Lofar_20150618_05475_stitch.jpg)

LOFAR Norderstedt

LOFAR Norderstedt

LOFAR-Station in Effelsberg

Besuch beim Radioteleskop Effelsberg

LOFAR Forschungsauftrag – Key Science Projects

Epoch of Reionization  ––  Die sog. Epoch of Reionization (EoR) begann vor 13,2 GigaYears mit einer Rotverschiebung von  z=10. Das heisst, die 21cm Radiostrahlung des neutralen Wasserstoffs  kommt mit einer Wellenlänge von 2,1m bei uns an.

Deep Extragalactic Surveys – Hochempfindliche Kartierung aller Radioquellen (Galaxien, Schwarze Löcher etc.) am Himmel

Transient Sources – Radioquellen, die eine kurzzeitliche Variabilität aufweisen

Kosmische Magnetfelder – Stellare und galaktische Magnetfelder

Ulta high cosmic rays – Partikel mit hoher Energie (1015 – 1020 eV), die auch sog. “Air Shower” hervorrufen (Synchrotron Strahlung, Elektronen mit fast Lichtgeschwindigkeit (relativistisch))

Solar Physics and Space Weather – Die Sonne als Radioquelle mit e.g. Flares, Coronar Mass Ejections etc.

Hintergrund: Epochen der Entwicklung des Universums

  • Urknall
  • Inflation
  • Dark Ages – noch keine Sterne, “nur” neutraler Wasserstoff mit 21cm Radio-Strahlung
  • Epoch of Reionization  – erste Sterne d.h. erstmals Licht im Universum, die Strahlung ionisiert den Wasserstoff
  • Development of Galaxies

http://www.lofar.org/astronomy/eor-ksp/epoch-reionization

http://www.weltderphysik.de/gebiet/astro/teleskope-und-satelliten/lofar/

http://map.gsfc.nasa.gov/media/060915/index.html

Andere Projekte

  • Südafrika: SALT = Southern African Large Telescope  in Sutherland
  • SKA: Square Kilometre Array  (LOFAR sollte ein vorbereitendes Projekt für SKA sein)
    • Teil in Westaustralien
    • Teil in Südafrika