Physik: Messung der Helligkeit

Gehört zu: Physik
Siehe auch: SI-Einheiten, Himmelshelligkeit, Größenklassen, Flächenhelligkeit
Benutzt: LateX Plugin für WordPress, Fotos von Google Drive, Grafiken aus der Wikipedia

Stand: 19.12.2022

Messung der Helligkeit

Google Drive: 20240502 Astronomische Helligkeiten

Maßeinheiten für die Helligkeit

In der Physik misst man die Helligkeit einer Lichtquelle in der SI-EinheitCandela” (Einheitenzeichen: cd).

Ausserdem kennt man noch: Lux und Lumen – was ist das denn das alles? Wir unterscheiden zwischen physikalischer Größe (z.B. Länge) und der Maßeinheit (z.B. Meter). Wir betrachten hier lichttechnische physikalische Größen und zwar:

  • Lichtstrom (flux) in Lumen – SI-Einheit – Formelzeichen Φv – Wieviel Licht (Lichtmenge) wird pro Zeiteinheit von einer Lichtquelle insgesamt abgegeben
  • Beleuchtungsstärke in Lux – SI-Einheit – Formelzeichen Ev -Wieviel Licht (Lichtmenge) trifft pro Zeiteinheit auf eine Fläche auf
  • Lichtstärke einer punktförmigen Lichtquelle in Candela – SI-Einheit – Formelzeichen Iv – Im Prinzip “Lichtstrom durch Raumwinkel”  (1 Candela = 1 Lumen pro Sterad)
  • Leuchtdichte einer flächigen Lichtquelle in cd/m² – Formelzeichen Lv -Wieviel Licht strahlt eine flächige Lichtquelle pro Flächeneinheit ab

Youtube Video:

Hintergründe und Problematik

Traditionell wurde die Lichtstärke in verschiedenen Ländern mit einfachen technischen Geräten definiert und gemessen: z.B. in Deutschland mit Hilfe der sog. Hefnerkerze (HK).

Die Generalkonferenz für Maß und Gewicht (CGPM) wollte diese lichttechnischen physikalischen Größen und ihre Messung neu wissenschaftlich festlegen und mit den anderen bereits definierten SI-Einheiten verbinden.

Früher gab es im Prinzip nur eine Technik, Licht zu erzeugen: die sog. Glühbirne. Da konnte man das abgegebene Licht von Glühbirnen einfach anhand der aufgenommenen elektischen Leistung (Watt) vergleichen. Heutzutage gibt es viele unterschiedliche Techniken, Licht zu erzeugen (Energiesparlampen, LEDs etc.) bei denen aus der gleichen aufgenommenen elektischen Leistung in Watt ganz unterschiedlich viel Licht (und damit unterschiedliche Helligkeit) erzeugt werden kann. Deswegen wird heuzutage (2021) bei jedem Leuchtmittel die Lichtmenge angegeben, die pro Sekunde abgegeben wird: das ist der sog. Lichtstrom gemessen in Lumen.

Um Helligkeiten in einer für menschliche Zwecke brauchbaren Form zu messen, benötigt man “augenrelevante” Größen (sog. photometrische Größen), um das Helligkeitsempfinden des menschlichen Auges zu berücksichtigen.

Die Generalkonferenz (CGPM) hatte sich also einigen Herausforderungen zu stellen:

  1. Exakte Definitionen, die von der Systematik her in das SI-System passen
  2. Kompatibilität bzw. Anbindung an ältere Maßeinheiten
  3. Berücksichtigung des Helligkeitsempfindens durch das menschliche Auge

Die Definitionen stammen von der 26. General Conference on Weights and Measures (CGPM) und wurden zum Mai 2019 inkraft gesetzt.

Es werden hier also eigenständige physikalische Größen mit ihren Einheiten neu definiert. Die Lichtstärke als neue SI-Basiseinheit, gemessen in Candela und der Lichtstrom und die Beleuchtungsstärke als zwei abgeleitete SI-Einheiten, gemessen in Lumen und Lux. Die Leuchtdichte dagegen wird nicht zur SI-Einheit erhoben.

Die Lichtmenge

Bleibt die generelle Frage “Was ist genau mit Lichtmenge gemeint?”. Im Prinzip ist die “Lichtmenge” eine Engergiemenge, wobei so eine Energiemenge einerseits klar und eindeutig physikalisch gemessen werden kann (in Joule) und eine Energiemenge pro Zeiteinheit  in Joule pro Sekunde, also in Watt. Das nennt man die “Strahlungsleistung” mit dem Formelzeichen Φe.

Das menschliche Auge empfindet Licht bei unterschiedlichen Wellenlängen unterschiedlich stark. Zur photometrischen Definition betrachten wir deswegen (zunächst) monochromatisches Licht der Frequenz 540 1012 Hz (ca. 555 nm). Als Lichtstärke 1 Candela ist dann definiert eine Strahlungsleistung von 1/683 W pro Sterad. Bei anderen Lichtwellenlängen kommt dann eine sog. “phototopic luminosity function” K(λ) ins Spiel, die aber für andere Wellenlängen nicht weiter genormt ist.

Die physikalischen Größen Lichtstrom und Beleuchtungsstärke sollen geeignet sein, für die Bemessung menschlicher Angelegenheiten (z.B. Helligkeit von Leuchtmitteln, Beleuchtung von Arbeitsplätzen,…) deshalb wird die Helligkeitswahrnehmung von Licht verschiedener Wellenlängen durch das menschliche Auge hier eingebaut:
\( \Phi_v = K(\lambda) \cdot \Phi_e \) wobei K(555 nm) = 683 Lumen/Watt

Abbildung 1: Lichtstrom von 5000 Lumen bei einem industriellen Leuchtmittel (Google Drive: DK_20210608_Lumen.jpg)

Wenn man die Lichtmenge als Energiemenge in Joule misst, entspricht einem Fluss von 1 Joule pro Sekunde (= 1 Watt) ein Lichtstrom von 683 Lumen bei einer Lichtwellenlänge von 555 nm.

Ursprünglich wollte die 26. General Conference on Weights and Measures (CGPM) als SI-Basiseinheit nicht mehr die Candela nehmen, sondern das Lumen. Dieses Vorhaben wurde aber zurückgestellt, um die offizielle Verabschiedung nicht hinauszuzögern. Im Folgenden stelle ich das Lumen schon als SI-Basiseinheit dar und das Candela als davon abgeleitet – ich finde, das ist einfacher…

Helligkeitsempfindlichkeit des Auges

Wenn wir von den radiometrischen (pysikalischen) Einheiten zu den photometrischen übergehen wollen, müssen wir das Helligkeitsempfinden des Auges berücksichtigen. Unser Auge nimmt Licht, also elektromagnetische Strahlung, im Bereich von ca. 400 nm bis 700 nm wahr mit einer maximalen Empfindlichkeit bei etwa 555 nm.

Abbildung 2: Spektrale Helligkeitsempfindlichkeit (Wikipedia: V-lambda-phot-scot.svg)

λ

In rot ist das Tagessehen, in blau das Nachtsehen dargestellt.
In Deutschland ist die rote Kurve in DIN 5031 genormt.
Mit dieser relativen spektralen Empfindlichkeit V(λ) wird unsere oben genannte Kurve:

K(λ) =  V(λ) * 683 lm/W

Wobei die 683 von der CGPM so gewählt wurde, das die alte Definition von Lumen bzw. Candela gut mit dieser neuen Definition übereinstimmt.

Der Lichtstrom

Tabelle 1: Strahlungsleistung und Lichtstrom

physikalisch (radiometrisch) photometrisch (biologisch)
Physikalische Größe Strahlungsleistung Lichtstrom
Formelzeichen Φe Φv
Messeinheit Watt (W) Lumen (lm)
Definition als SI-Basiseinheit ./. Eine monochromatische (λ=555 nm) Lichtquelle mit einer Strahlungsleistung von 1/683 Watt gibt einen Lichtstrom von 1 Lumen ab.
oder abgeleitete Definition ./. 1 lm = 1 cd sr

Die Lichtstärke

Tabelle 2: Strahlstärke und Lichtstärke

physikalisch (radiometrisch) photometrisch (biologisch)
Physikalische Größe Strahlstärke Lichtstärke
Formelzeichen Ie Iv
Messeinheit Watt/Sterad (W/sr) Candela (cd)
Definition als SI-Basiseinheit ./. Eine monochromatische (λ=555 nm) Lichtquelle mit einer Strahlungsleistung von 1/683 Watt in einen Raumwinkel von 1 sr hat eine Lichtstärke von Candela
oder abgeleitete Definition ./. 1 cd = 1 lm sr-1

Die Beleuchtungsstärke

Tabelle 3: Strahlstärke und Lichtstärke

physikalisch (radiometrisch) photometrisch (biologisch)
Physikalische Größe Bestrahlungsstärke Beleuchtungsstärke
Formelzeichen Ee Ev
Messeinheit Watt/m² Lux (lx)
Abgeleitete Definition ./. 1 lx = 1 lm m-2

Die Leuchtdichte

Die Leuchtdichte drückt aus wieviel Licht (z.B. Candela) eine flächige Lichtquelle pro Fläche (z.B. m²) abstrahlt.

In der Astronomie spricht man von der Flächenhelligkeit.

Tabelle 4: Strahldichte und Leuchtdichte

physikalisch (radiometrisch) photometrisch (biologisch)
Physikalische Größe Strahldichte Leuchtdichte
Formelzeichen Le Lv
Messeinheit Watt/m² sr cd / m²
Definition ./. ./.

Hintergrund und Schlussfolgerungen

Lumen und Photonen

Der Lichtstrom von 1 Lumen mit λ=555 nm erzeugt also einen Energiestrom (Strahlungsleistung) von 1/683 Joule pro Sekunde = 1,4641 10-3 J/s.

Der Wellenlänge λ=555 nm entspricht eine Frequenz von ν =  c/λ = 540 1012 Hz.

Ein Photon der Wellenlänge λ=555 nm hat eine Energie von E = h * ν = h * 540 1012 Hz = 6,62607 * 540 * 10-22 J = 3,579 * 10-19 J

Dem Lichtstrom von 1 Lumen bei einer Wellenlänge von 555 nm entspricht also ein Photonenstrom von 1,4641 10-3 / 3,579 10-19 = 4,09 1015 Photonen pro Sekunde.

Der Raumwinkel (Einheit: Sterad)

Ein Raumwinkel ist die Oberfläche dividiert durch die Entfernung zum Quadrat. Ein voller Raumwinkel ist also die Kugeloberfläche dividiert durch den Kugelradius zum Quadrat.

\( Kugeloberfläche = 4 \pi r^2 \\\ \)

Damit ist der volle Raumwinkel also:

\( \Omega = 4 \pi = 12,56637 sr\)

Der physikalische Größe “Raumwinkel” ist (eigentlich) dimensionslos. Man nimmt aber gerne als Einheitenzeichen “sr” um damit anzudeuten welche physikalische Größe gemeint ist.

In der Astronomie verwendet man ab und zu auch gerne die Winkeleinheiten Grad, Bogenminute und Bogensekunde und kommt damit auf:

\( 1 \enspace Quadratgrad = (\frac{2 \pi}{360})^2 = 3,0462 10^{-4} sr \)

und

\( 1 \enspace Quadratbogenminute = 1 \enspace arcmin^2 = (\frac{2 \pi}{360 \cdot 60})^2 = 8,46159 10^{-8} sr   \)

sowie

\( 1 \enspace Quadratbogensekunde = 1 \enspace arcsec^2 = (\frac{2 \pi}{360 \cdot 60 \cdot 60})^2 = 2,35044 10^{-11} sr   \)

Umrechnung Candela – Lumen

Lichtstärke (cd) und Lichtstrom (lm) beziehen sich auf einen Sender (eine Lichtquelle) – Die Beleuchtungsstärke (Lux) bezieht sich auf das, was bei einem Empfänger ankommt.

Die in Candela gemessene “Lichtstärke” und der in Lumen gemessene “Lichtstrom” sind über den Raumwinkel, in den das Licht abgestrahlt wird mit einander verbunden.

Der Lichtstrom (in Lumen) ist die gesamte Lichtmenge, die eine Lichtquelle in alle Richtungen – also in den vollen Raumwinkel von 12,56637 sr (= 4 π) – ausstrahlt; während die Lichtstärke (in Candela) einer Lichtquelle bezogen wird auf den – normalerweise kleineren – Raumwinkel, in den die Lichtquelle die Lichtmenge tatsächlich abstrahlt.

\( Lichtstärke = \frac{Lichtstrom}{Raumwinkel} \)

Ein Lichtstrom von 12,56637 Lumen würde in eine Lichtstärke von 12,56637 / 12,56637 = 1 Candela bewirken.

Lichtverschmutzung / Himmelshelligkeit

Die Qualität (Dunkelheit) des Sternhimmels messen wir ja mit dem SQM in Einheiten von Magnituden pro Quadratbogensekunde. Die Website http://clearoutside.com zeigt die Himmelsqualität neben der SQM-Zahl auch in Einheiten von Milli-Candela pro Quadratmeter an – also als “Leuchtdichte“; beispielsweise war dort heute für meinen Standort in Hamburg eine Himmelsqualität von SQM 18,61 bzw. 3,88 mcd/m² angezeigt.

Jetzt müssten wir nur noch die traditionellen Magnituden in Candela umrechnen. Also die Frage, wie war nocheinmal die “Magnitude” physikalisch definiert?

Von einem Stern der scheinbaren Helligkeit m geht ein Lichtstrom (gemessen in Lumen) aus von:

\( \Phi_v = 10^{(-m-14.2064)/2.5} Lumen \\\ \)

Diese Umrechnung verwenden wir auch bei den Betrachtungen zur Belichtungszeit von Astrofotos.

 

Physik: Ideales Gas – Thermodynamik

Gehört zu: Thermodynamik
Siehe auch: GeoGebra, Hertzsprung-Russel-Diagramm, Hydrostatisches Gleichgewicht, Wäremepumpe
Benutzt: WordPress-Plugin Latex, Grafiken von Github, Grafik von Wikipedia

Stand: 16.10.2022

Ideales Gas

ist ein hinreichend verdünntes Gas, sodass ausser bei Kollisionen von Molekülen (als elasischer Stoß) keinerlei Wechselwirkung zwischen ihnen geschieht.
Das bedeutet u.a., dass wir weit entfernt von Phasenübergängen (fest – flüssig – gasförmig) sein müssen.

Zur Idealisierung gehört auch, dass die Gasmoleküle als Punktmassen verstanden werden können. D.h. für die Bewegung hat man nur die drei Freiheitsgrade der Translation, keine Rotation und keine Oszillation.

Neben dem hier beschriebenen “Idealen Gas” gibt es natürlich auch ein Nichtideales Gas und auch ein Entartetes Gas und noch schlimmer ein Relativistisches entartetes Gas. Diese Begriffe werden gerne bei der Untersuchung von sog. Elektronengas benutzt.

Bei einem “Idealen Gas” gilt als Zustandsgleichung die sog. “Ideale Gasgleichung” (s.u.). Bei einem entarteten Gas hängt die Zustandsgröße Druck nicht mehr von der Temperatur ab, sondern nur noch von der Dichte.

Links:

Boyle-Mariotte

Robert Boyle und Edme Mariotte fanden unabhängig von einander 1662 bzw. 1676  das nach ihnen benannte Boyle-Mariotte’sche Gesetz:

\( p \cdot V = const. \\\ \)

Wobei die Temperatur konstant gehalten wird (und auch die Stoffmenge) und zwar dadurch dass man die Veränderungen im Volumen ganz langsam durchführt, sodass immer wieder das thermodynamisches Gleichgewicht mit der Umgebung erhalten bleibt.

Siehe auch: GeoGebra

Abbildung 1: Das Boyle-Mariottesche Gesetz  (Github: Boyle-Marriot-Gesetz.svg)

Boyle-Marriot-Gesetz.svg

Boyle-Marriot-Gesetz (GeoGebra Classic)

Gay-Lussac

Wenn man nun den Druck konstant hält (und auch die Stoffmenge gleich bleibt) und dann die Temperatur variiert, bekommt man das Gay-Lussac (1787-1850) Gesetz.
Lord Kelvin (1824-1907) hatte 1848 die absolute Temperaturskala vorgeschlagen, wodurch sich das Gay-Lussac’sche Gesetz sehr einfach in seiner heutigen Form schreiben lässt:

\( \frac{V}{T} = const. \\\ \)

Wobei hier T die absolute Temperatur ist …

Siehe auch: GeoGebra

Abbildung 2: Das Gay-Lussacsche Gesetz (Github: Gay-Lyssac-Gesetz.svg)

Gay-Lussac-Gesetz.svg

Gay-Lussac-Gesetz – Dietrich Kracht 21.3.2021 GeoGebra Classic

Amontos

Der fanzösische Physiker Guillaume Amontos (1663-1705) entdeckte schon sehr früh die Proportionalität von Druck und Temperatur – bei konstantem Volumen und konstanter Stoffmenge.

\( \frac{p}{T} = const. \)

Avogadro

Auf Amadeo Avogadro (1776-1856) geht zurück:

\( \frac{V}{n} = const. \\ \)

Wenn man also den Druck und die Temperatur konstant hält, ist das Volumen V proportional zur Stoffmenge n.

Ideale Gasgleichung

Zusammengefasst (Boyle-Mariotte, Gay Lussac, Amontis, Avogadro), ergibt sich:

\( \frac{p \cdot V}{n \cdot T} = const. \\\)

Etwas umgeschrieben ist das die berühmte Zustandsgleichung für ideale Gase:

\( p \cdot V = n \cdot R \cdot T   \\ \)

Dabei ist p der Druck, V das Volumen, n die Stoffmenge (messen wir in mol), R die allgemeine Gaskonstante (8,3145 Joule/(mol*Kelvin)) ist und T die absolute Temperatur ist.
Interessant dabei ist, dass dies unabhängig von der Art des Gases ist – also Helium, Stickstoff etc.  Es muss einfach nur ein “ideales Gas” sein. Umgekehrt sagen wir, ein Gas ist dann “ideal”, wenn es dieser Gleichung genügt.

Wenn wir die Stoffmenge n mit der Avogadroschen Zahl N (6,02214076 1023 mol-1) in eine Teilchenzahl N umrechnen, also:

\( N = N_A \cdot n \)

bekommen wir als Gasgleichung (mit der Avogadroschen Zahl):

\( p \cdot V = N \cdot \frac{R}{N_A} \cdot T   \\\ \)

Später werden wir sehen, dass \( \frac{R}{N_A} = k_B \) die sagenhafte Boltzmann-Konstante ist.

Anwendung der idealen Gasgleichung

Masse und Stoffmenge

Häufig kommt es vor, dass wir die Masse kennen und daraus aber die Stoffmenge ermitteln müssen.

Hilfreich ist dabei die mittlere molare Masse des betrachteten Gases:

\( \mu = \frac{Masse}{Stoffmenge} \\\)   (also in kg/mol)

Die Masse von Atomen bekommt man aus dem Periodensystem (in sog. Atomaren Einheiten). Allerdings steht dort das Mittel aus den in der Natur vorkommenden Isotopen, gewichtet mit ihren natürlichen Häufigkeiten.
Für Moleküle muss man die Massen der enthaltenen Atome addieren. Die so ermittelte Atommasse eines Moleküls ist in sehr guter Näherung die Masse von einem Mol in Gramm (Beispiele s.u.).

Abbildung 3: Periodensystem der Elemente (aus Google gemeinfrei https://de.wikipedia.org/wiki/Periodensystem)

Die Atommasse wird in sog. “atomaren Einheiten” mit dem Formelzeichen “u” angegeben. 1 u ist definiert als 1/12 der Masse eines isolierten  12C-Atoms im Grundzustand.
Wenn wir die Masse eines 12C-Atoms messen, erhalten wir damit die Umrechnung in Gramm:

\( 1u = 1,66053906660*10^{-24}g \)

Um die Molare Masse eines Stoffes zu ermitteln, müssen uns fragen, welche Masse 1 mol des betrachteten Stoffes hat. Dazu ermitteln wir die Masse (Atommasse) eines Moleküls und multiplizieren die mit der Anzahl Moleküle in 1 mol, also mit der Avogadroschen Zahl NA = 6,02214076*1023 mol-1.

Die folgenden Beispiele wurden angeregt durch:

Abbildung 4: Ideale Gasgleichung

Beispiel: Methan CH4

Aus dem Periodensystem bekommen wir die Atommassen.
Ein Kohlenstoffatom (C) hat die Atommasse 12,011u  (gewichtetes Mittel der natürlichen C-Isotope)
Vier Wasserstoffatome (H) haben die Atommasse 4 x 1,0080u
Zusammen hat also ein Molekül Methan eine Atommasse von 16,033u = 26,62343782*10-24 g
Multipliziert mit der Avogadroschen Zahl (der Anzahl Molekülen in 1 mol), ergibt das: 16,033 g

Was sagt uns das?

Erstens sehen wir, dass die neue Definition der Einheit mol im SI-System von 2019 “1 mol = eine Stoffportion bestehend aus NA Teilchen” gut übereinstimmt mit der alten Definition “1 mol = Atommasse in Gramm”.

Zweitens können wir jetzt mit der Gasgleichung ausrechnen, wieviel Volumen unser Methan unter “Laborbedingungen” (20° C und 1 atm) einnimmt.

Als Beispiel nehmen wir:

  • Masse Methan: m = 0,1 g
  • Molare Masse Methan: M= 16,003 g/mol
  • Stoffmenge Methan: n = 0,1/16,033 mol =0,00625 mol
  • Temperatur: T = 293,15 K  (20° C)
  • Druck: p = 101,325 kPa = 101325 Pa = 101325 N m-2 (1 atm)
  • Gaskonstante R = 8,314 J mol-1 K-1

Dann können wir mit der idealen Gasgleichung das Volumen berechnen:

\( V = \frac{n \cdot R \cdot T}{p} = \frac{0,00625 \cdot 8,314 \cdot 293,15}{101325} m^3 = 0,000157 m^3\\\)

Das Methan nimmt also unter Laborbedingungen ein Volumen von 0,157 Liter ein.

Kinetische Energie

Wenn wir die Kinetik der Moleküle betrachten, also die Bewegungen, entsteht der Druck durch Impulsübertrag auf die Aussenwand des Gefäßes.

Das Gesetz von Bernoulli sagt dafür:

\( p = \frac{1}{3} \cdot n \cdot \mu \cdot <v^2> \\\ \)

wobei n hier die Teilchendichte, also Anzahl Teilchen pro Volumen, ist und die spitzen Klammern für den Mittelwert stehen..

Wenn wir diese Gleichung mit V multiplizieren, erhält man:

\( p \cdot V = \frac{1}{3} \cdot N \cdot \mu \cdot <v^2> = \frac{2}{3} \cdot N \cdot <E_{kin}> \\\ \)

wobei N die Anzahl der Teilchen ist.

Die mittlere kinetische Energie eines Moleküls eines Idealen Gases (also nur translatorische Bewegung in drei Freiheitsgraden) ist:

\( <E_{kin}> = \frac{3}{2} \cdot k_B \cdot T \\\ \)

Ausblick:

  • Auf dieser Basis wird die physikalische Größe “Temperatur” dann als “thermodynamische Temperatur” beliebiger Substanzen wirklich definiert.
  • Zusätzlich zum Mittelwert von Geschwindigkeiten bzw quadrierten Geschwindigkeiten wird auch noch die Breite der Verteilung von Interesse sein, was uns zur Maxwell-Verteilung führen wird…

Flüssigkeiten

Ein weitergehendes Konzept ist das von Flüssigkeiten. Die werden im physikalischen Teilgebiet Hydrodynamik behandelt. Von einer Flüssigkeit spicht man, wenn die mittlere freie Weglänge der Teilchen sehr, sehr klein gegenüber der Größe des betrachteten Systems ist.

Das Jeans-Kriterium

Das Jeans-Kriterium, benannt nach James Jeans (1877-1946), soll ja angeben, unter welchen Bedingungen eine Gaswolke im Universum unter dem Einfluss ihrer Gravitation kontrahiert, dabei wärmer wird und ggf. eine Kernfusion “zündet”.

Zur Abschätzung der kritischen Jeans-Masse bieten sich zwei Wege an:

  1. Druck: Gasdruck = Gravitationsdruck
  2. Energie: Potentielle Energie = Kinetische Energie

Vergleiche hierzu auch: Hydrostatisches Gleichgewicht

Gasdruck

Wir betrachten eine kugelförmige (Radius R) homogene Gaswolke der Masse M.

Der Gasdruck ist nach der idealen Gasgleichung (s.o.):

\( p = \frac{N}{V} \cdot \frac{R}{N_A} \cdot T \\\ \)

Ein Teilchen (Gasmolekül) habe nun die Masse μ. Dann gilt für die Masse:

\( M = N_A \cdot n \cdot \mu = N \cdot \mu \\\ \)

Die Dichte der Gaswolke ist demnach:

\( \rho = \frac{M}{V} = \frac{N \cdot \mu}{V} = \frac{N}{V} \mu \\\ \)

Also ist

\( \frac{N}{V} = \frac{\rho}{\mu} \)

Wenn wir das oben einsetzen ergibt sich:

\(\Large p_{Gas} = \frac{\rho}{\mu} \cdot k_B \cdot T \\\ \)

Gravitationsdruck

Der Gravitationsdruck ist (will ich noch richtig ausrechnen, mit Integral und so):

\( \Large p_{grav} = \frac{3 G M^2}{8 \pi r^4} \\\ \)

Jeans-Masse

Wann ist der Gravitationsdruck mindestens genauso groß wie der Gasdruck?

\( M_{Jeans} = \sqrt{\frac{6}{\pi}} \sqrt{\frac{1}{\rho} (\frac{k_B T}{G \mu})^3}\\\ \)

Für eine Gaswolke aus atomaren Wasserstoff ergibt sich mit doppelt logarithmischen Skalen folgendes Bild:

Abbildung 5: Die Jeans-Masse (Github: JeansMasse.svg)

JeansMasse.svg

Jeans-Masse Dietrich Kracht 24.3.2021

Beispielsweise können wir ablesen: Eine Gaswolke (atomarer Wasserstoff) von 10 Sonnenmassen würde bei einer Dichte von 10-16 kg/m³ und einer Temperatur von 10 K anfangen sich unter ihrer eigenen Gravitation zusammen zu ziehen…

Physik: Stoffmenge

Gehört zu: SI-Einheiten
Siehe auch: Thermodynamik

Die physikalische Größe “Stoffmenge”

Die physikalische Größe Stoffmenge wird in Mol gemessen. Auf der Schule (ca. 1960) hatte ich gelernt: 1 Mol ist das Atomgewicht in Gramm.

Im SI-System ist als Maßeinheit für die Stoffmenge das Mol festgelegt.

1971: Ein Mol ist die Menge einer Substanz, in der gleichviel Moleküle sind, wie in 12 g von Kohlenstoff 12C.

2019: Eine Stoffmenge von 1 Mol (= 1 mol) enthält die durch die Avogadro-Konstante (NA = 6.02214076 * 1023 mol−1) festgelegte Teilchenzahl. Die Avogadro-Konstante ist der Proportionalitätsfaktor zwischen der Stoffmenge und der Teilchenzahl N(X). Teilchen können hier Atome, Ionen, Moleküle, Formeleinheiten oder auch Elektronen sein. Formelzeichen und Teilchenart X werden zusammen als nX oder n(X) angegeben.

Avogadro

Der italienische Physiker Amedeo Avogadro (1776-1856)  erkannte bereits 1811, dass gleiche Volumina verschiedener idealer Gase bei gleichem Druck und gleicher Temperatur die gleiche Anzahl Moleküle enthalten. Dies nennt man das Avogadrosche Gesetz.

Die Anzahl der Moleküle in einer Stoffmenge von 1 mol nennt man die Avogadro-Konstante. Die SI-Einheit 1 Mol wurde so festgelegt, das die Avogadrosche Zahl exakt:

NA = 6.02214076 * 1023 mol−1

beträgt.

Wenn man die Stoffmenge n einer Gaswolke kennt, kann man also die Teilchenzahl N in dieser Gaswolke berechnen als:

\( N = N_A \cdot n \\\ \)

Anwendung in der Chemie

Bei chemischen Reaktionen schreibt mal ja als Reaktionsgleichung auf, mit welchen Molekülen eine chemische Reaktion abläuft. Beispielsweise wird aus Aluminiumcarbid und Wasser Methan und Aluminiumhydroxid:

\( Al_4C_3 + 12 H_2O \to 3 CH_4 + 4 Al(OH)_3 \)

Was die Stoffmengen betrifft heist das, dass aus 1 Mol Aluminiumcarbid durch Zugabe von Wasser 3 Mol Methan entstehen.

Entnommen aus dem Youtube-Video: https://www.youtube.com/watch?v=dGsxo05xR7g

Die molare Masse M eines Stoffes ist die Masse pro Stoffmenge oder, anders gesagt, der Proportionalitätsfaktor zwischen Masse m und Stoffmenge n.

\( m = M \cdot n \\\ \)

Die SI-Einheit ist kg/mol; in der Chemie ist g/mol üblich.

Anwendung in der Thermodynamik

In der Thermodynamik haben wir die Ideale Gasgleichung…

Physik: Kernfusion – Nukleosynthese

Gehört zu: Physik
Siehe auch: Sonne, Atomphysik, Weisser Zwerg, Kosmologie, Hertzsprung-Russel-Diagramm
Benutzt: WordPress-Plugin Latex, Bilder von Wikimedia, Fotos von Google Archiv

Stand: 20.12.2022 (Hertzsprung-Russel-Diagramm)

Kernfusion – Nukleosynthese

Durch die Verschmelzung (Fusion) leicherer Atomkerne (z.B. Wasserstoff) zu schwereren Atomkernen (z.B. Helium) kann Energie gewonnen werden, da ein kleiner Teil der Masse in Energie umgewandelt wird; nach der berühmten Formel von Einstein:

\( E = m \cdot c^2 \)

Damit solche Prozesse ablaufen können, sind ziemlich hohe Temperaturen bzw. Drücke erforderlich. Solche Bedingungen herrschen regelmäßg in Inneren von Sternen (Stellare Nukleosynthese) und bei Supernova-Explosionen, sollen aber auch kurz nach dem Urknall und noch vor der Bildung von Sternen geherrscht haben. Letzteres nennt man die Primordiale Nukleosynthese.

Durch Fusion wird Energie gewonnen, solange die Bindungsenegie pro Nukleon mit zunehmender Nukleonenzahl im Atomkern größer wird; also bis zum Eisen (Fe), wie die Grafik zeigt. Mit schwereren Atomkernen kann man dann Energie nur durch Spaltung gewinnen.

Im Inneren von Sternen finden solche Kernfusionsprozesse statt. Man spricht gerne auch vom “Brennen”; damit ist aber immer eine Kernfusion gemeint.

Abbildung 1: Bindungsenegie pro Nukleon (Wikimedia: Binding_energy_curve_-_common_isotopes-de.svg)

https://upload.wikimedia.org/wikipedia/commons/b/bc/Binding_energy_curve_-_common_isotopes-de.svg

Mittlere Bindungsenergie pro Nukleon in Abhänggkeit von der Größe des Atomkerns (Copyright Wikimedia)

Primordiale Nukleosynthese

Nach dem sog. Standardmodell der Kosmologie haben sich kurz nach dem Urknall aus einem Quark-Gluon-Plasma zuerst Protonen und Neutronen in gleicher Anzahl gebildet.

Freie Neutronen zerfallen im sog. Beta-Zerfall in ein Proton und ein Elektron mit einer Halbwertszeit von ca. 10 Minuten:

\( n \to p + e^- + \bar{\nu_e} \)

Etwa 5 Minuten nach dem Urknall sind die Temperatur und die Teilchendichte im Universum durch die Expansion so weit abgesunken, dass eine weitere Helium-Synthese (aus Wasserstoffkernen bilden sich Heliumkerne 4He) nicht mehr möglich ist. Die Reaktionsketten laufen nur so lange, bis das Plasma entsprechend abgekühlt ist. Damit endet die Phase der Primordialen Nukleosynthese.

Beim Endzustand der Primordialen Nukleosynthese errechnet man die Anteile von Wasserstoffkernen bzw. Heliumkernen von 75% bzw. 25% (Massenanteile).

Kernfusion im Inneren von Sternen (Stellare Nukleosynthese)

Damit es zur Verschmelzung von Atomkernen kommt, muss die Abstoßungskraft der elektrisch ja gleichartig (positiv) geladenen Kerne überwunden werden. Dazu benötigt das Plasma eine hohe Temperatur und einen hohen Druck. Die Fusion von Wasserstoff zu Helium “zündet”, wenn im Inneren des Sterns die notwendige Temperatur von ca. 10 Millionen Kelvin erreicht sind.

Bei entsprechend höheren Temperaturen “zünden” auch Fusionsprozesse mit anderen Elementen wie die nachfolgende Tabelle zeigt. Dort ist ein Stern mit 40-facher Sonnenmasse zugrunde gelegt.

Tabelle 1: Kernfusionsprozesse in Sternen

Ausgangsmaterial Prozesse Endprodukte “Asche” Temperatur
Mio Kelvin
Min. Masse Dauer bei 40 Sonnenmassen
Wasserstoff p-p-Prozess Helium 10-40 0,08 10 Mio Jahre
Helium 3 Alpha Kohlenstoff 100-190 0,25 1 Mio Jahre
Kohlenstoff Sauerstoff, Neon, Magnesium 500-740 4,0 10.000 Jahre
Neon Sauerstoff, Magnesium 1.600 10 Jahre
Sauerstoff Silizium 2.100 5 Jahre
Silizium Eisen 3.400 1 Woche

Wenn der Wasserstoff vollständig zu Helium fusioniert wurde, fällt diese Energiequelle weg. Der Stern kontrahiert etwas und die Temperatur im Inneren steigt an.  Es kann zunächst zu einem sog. Schalenbrennen kommen, wo Wasserstoff in einer Schale zu Helium fusioniert wird. Durch das Schalenbrennen steigt der innere Strahlungsdruck wieder stark an und der Stern dehnt sich aus zum sog. “Riesen”.
Wenn dann die Temperatur im Inneren (im Kern) ausreicht, kann die nächste Fusionstufe “zünden” und das Helium im Kern kann zu Kohlenstoff fusioniert werden

Wenn die Temperatur nicht ausreicht, um weitere Kernfusionen zu “zünden”, kann der Stern keine Energie mehr erzeugen und kollabiert zum Weissen Zwerg, der nur noch langsam seine vorhandene Wärmeenegie abgibt…

Bei unserer Sonne endet diese Serie mit dem sog. Heliumbrennen im Kern. Der Kohlenstoffkern kann nicht mehr weiter “zünden”, da die erforderliche Temperatur nicht erreicht wird.

Bei massereichen Sternen wird durch die Kontraktion die Temperatur soweit erhöht, das dann das Helium ein einer Schale um den Kern “züdet”, also dort Helium zu Kohlenstoff fusioniert, wo es heiss genug ist. Wir haben dann ein typisches Helium-Schalenbrennen.

Abbildung 2: Schalenbrennen in einem AGB-Stern (Google Drive: agb-schematic.jpg)


Copyright: Falk Herwig, University of Victoria http://www.astro.uvic.ca/~fherwig/sevol.html

http://www.astro.uvic.ca/~fherwig/sevol.html

Temperatur und kinetische Energie

Gemäß SI-System ist die thermodynamische Temperatur (T) durch die mittlere thermische Enegie (E) eines freien Teilchens definiert:

\( E_{therm} = k_B \cdot T \\\)

Wobei die Bolzmankonstante festgelegt wird zu:

kB = 1,38064852 10-23 J/K

bzw. in eV:

kB = 8,61733262 10-5 eV/K

Bei einem punkförmigen Teilchen verteilt sich die mittlere kinetische Engergie zu gleichen Anteilen auf seine 3 Freiheitsgrade:

\( \langle E_{kin} \rangle = \frac{3}{2} \cdot E_{therm} = \frac{3}{2} \cdot k_B \cdot T \\\)

Für die Entwicklungs des Universums vom Urknall bis zur Kosmischen Hintergrundstrahlung bedeutet dies:

(Quelle: https://de.wikipedia.org/wiki/Primordiale_Nukleosynthese)

Tabelle 2: Abkühlung des frühen Universums

Zeit nach Urknall Temperatur Kinetische Energie Bemerkung
1/100 Sekunde 10 Milliarden K 1,3 MeV Quarks kondensieren zu Protonen und Neutronen 1:1
1 Sekunde 600 Millionen K 80 keV erstmals können sich (instabile) Deuteronen bilden
60 Sekunden 60 Millionen K 8 keV stabile Bildung von Deuteronen
105215 K 13,6 eV Waserstoffatome vollständig ionisiert (Grundzustand)
380000 Jahre 3000 K 0,4 eV Rekombination: kosmische Hintergrundstrahlung entsteht

 

Physik: Die Heisenbergsche Unschärferelation

Gehört zu: Physik
Siehe auch: Quantenphysik, Wellenfunktion

Stand: 7.3.2021

Die Heisenbergsche Unschärferelation

Werner Heisenberg (1901-1976) gilt als Begründer der mathematischen Quantenmechanik.

Berühmt geworden ist seine sog. Unschärferelation (uncertainty principle).  Die Aussage der Quantenphysik ist, dass zwei komplementäre Eigenschaften eines Teilchens nicht gleichzeitig beliebig genau bestimmbar sind. Das bekannteste Beispiel für ein Paar solcher Eigenschaften sind Ort und Impuls.

\( \Delta x \cdot \Delta p \geq \frac{h}{4 \pi} \\ \)

Dabei ist die Messung des Impulses (Teilcheneigenschft) gleichzusetzen mit der Messung der Wellenlänge (Welleneigenschaft); s. unten De Broglie.

Die Heisenbergsche Unschärferelation hat nichts mit der Messgenauigkeit oder Beeinflussungen einer Messung durch Messvorrichtungen zu tun, sie ergibt sich aus dem Welle-Teilchen-Dualismus: Ein Teilchen hat danach sowohl Teilchen-Eigenschaften als auch Wellen-Eigenschaften. Die Wellennatur der Materie selbst führt zur Unbestimmtheit ihrer Teilcheneigenschaften.

Man beschreibt ein Teilchen dann als Wellenpaket, bei dem wir eine Wahrscheinlichkeitsverteilungen für die Messung physikalischer Größen (sog. Observable) haben. Mit solchen Schreibweisen wie Δx ist in Wirklichkeit die Standardabeichung σ der Verteilung von x gemeint.

Materiewellen

Louis de Boglie (1892-1987) beschreibt den Welle-Teilchen-Dualismus ja durch sein berühmte Formel:

\( p = \frac{h}{\lambda} \\ \)

Die Messung des Impulses ist also gleichzusetzen mit der Messung der Wellenlänge. Wenn ich aber die Wellenlänge genau messe, ist der Ort der Welle sehr unbestimmt.

Komplementäre Eigenschaften im Sinne Heisenbergs sind z.B.

  • Ort und Impuls (Geschwindigkeit)
  • Energie und Zeit
  • xxx

Physik: Quantenmechanik – Materiewellen

Gehört zu: Physik
Siehe auch:   Quantenphysik , Quantenfeldtheorie, Potential
Benutzt: Videos von Youtube

Stand: 25.09.2024 (photoelektrischer Effekt, Compton-Streuung, Kopenhagener Deutung)

Quantenmechanik: Materiewellen

Die Idee eines Welle-Teilchen-Dualismus entstand Anfang des 20. Jahrhunderts weil einige Experimente mit elektromagnetischer Strahlung (z.B. Licht) sich nicht allein aus der bis dahin geltenden Wellennatur des Lichts (siehe das berühmte Doppelspalt-Experiment von Young 1802) erklären liessen.

Experimente, die nur durch den Teilchencharakter von Licht gut erklärt werden konnten waren (u.a.):

  • Der photoelektrische Effekt
  • Die Compton-Streuung

Louis de Broglie (1892-1987) postulierte im Jahre 1924 den Welle-Teilchen-Dualismus. Das war die kühne Idee, dass jedes Materieteilchen gleichzeitig auch einen Wellencharakter haben muss;  z.B. auch Elektronen.

Aus der Planck-Formel:

\( E = h \nu \)

und der Einsteinschen Energie-Masse-Äquivalenz:

\( E = m c^2 \)

ergibt sich rein rechnerisch die berühmte De-Broglie-Wellenlänge eines Teilchens der Masse m bzw. einem Impuls von p bei einer Geschwindigkeit von c.:

\( \lambda = \Large\frac{h}{p} \)

Einstein: Energie-Masse-Äquivalenz

Genaugenommen ist die aus der speziellen Relativitätstheorie bekannte Formel:

\( E = m c^2 \)

nur eine Näherung. Richtg müsste es heissen:

\( E^2 = m^2 c^4 + c^2 p^2 \)

So erfordert es die Einstein’sche Spezielle Relativitätstheorie.

Die Lösungen sind periodische ebene Wellen.

In der Quantenfeldtheorie (QFT). muss dann jedes Elementarteilchen diese Gleichung erfüllen; denn in der QFT berückrichtigen wir ja erstmals die Spezielle Reletivitätstheorie (was wir in der Quantenmechanik ja nicht taten).

De Broglie Wellenlänge

Gemäß des Welle-Teilchen-Dualismus kann ein Teilchen mit dem Impuls p auch als Welle (Materiewelle) der De-Broglie-Wellenlänge

\( \lambda = \frac{h}{p} \)

aufgefasst werden.

Der Quantenmechaniker verwendet statt der Wellenlänge gern die sog. Wellenzahl:

\( k = \frac{2 \pi}{\lambda} \)

und statt des originären Planck’schen Wirkungsquantums h, gerne das sog. reduzierte Wirkungsquantum:

\( \hbar = \frac{h}{2 \pi} \)

Damit können wir den Impuls also schreiben als: \( p = \hbar k \)

bzw. die Wellenzahl als: \( k = \frac{p}{\hbar} \)

und kommen damit zur einer ebene Welle:

\( \Psi(x) = e^{i k x} \)

Die Wellenfunktion

Materieteilchen haben demnach auch einen Wellencharakter. Diese Wellen nennt man “Materiewellen“, die durch Wellenlänge (s.o.) und insgesamt durch eine Wellenfunktion beschrieben werden. Man kann sich dann fragen, was da eigentlich als Welle schwingt. Eine Interpretation der Materiewellen ist, das es Wahscheinlichkeitswellen sind (s. Kopenhagener Deutung).

Wenn demnach Materieteilchen auch Wellencharakter haben können, fragt man sich natürlich nach einer “klassischen” Wellenfunktion als Lösung einer Wellengleichung. Ernst Schroedinger fand später dazu seine berühmte Schroedinger-Gleichung.

Physik: Arbeit, Energie und Wirkung

Gehört zu: Physik
Siehe auch: Linienelement, Lagrange, Newton

Stand: 25.02.2023

Die physikalische Größen Arbeit, Energie und Wirkung

Diese physikalischen Größen kennen wir in der Mechanik. Später in der Thermodynamik (Wärmelehre) und in der Quantenmechanik werden wir einiges davon gebrauchen.

Die physikalische Größe “Arbeit”

Arbeit, so haben wir in der Schule gelernt, ist Kraft mal Weg.

Das übliche Formelzeichen für Arbeit ist W (work) und die SI-Einheit das Joule: 1 J = 1 Nm = 1 kg  m2/s2.

\( W = F \cdot s \\ \)

Gemeint ist immer die Kraftkomponente in Richtung des Weges. Genau genommen also das Skalarprodukt der Vektoren:

\( W = \vec{F} \cdot \vec{s} = || F || \cdot ||s|| \cdot \cos(\angle \left( \vec{F}, \vec{s} \right))    \\ \)

Wenn der Weg nicht geradeaus ist, sondern entlang einer Kurve von s1 nach s2, müssen wir entlang dieser Kurve integrieren.

\( \Large W = \int_{s_1}^{s_2} \vec{F}(\vec{s}) \cdot d\vec{s} \\ \)

Das ist analog zur bereits besprochenen Länge so einer Kurve im Raum. Das hatten wir ja schon (siehe: Linienelement) erklärt:
Im allgemeinen Fall nehmen wir eine parametrisierte Kurve α: [a,b] -> Rn  und definieren als Länge L der Kurve α:

\( L_\alpha(a,b) = \int_a^b ||\alpha^\prime(t)|| dt \\\ \)

Historische gesehen, war diese Definition der physikalischen Größe “Arbeit” ursprünglich umstritten: Decartes wollte Arbeit als Kraft mal Zeit definieren, aber die Definition als Kraft mal Weg von Leibniz hat sich durchgesetzt.

Arbeit kann in verschiedener Weise eingesetzt werden z.B. als Arbeit zur Bescheunigung eines Körpers oder als Arbeit zur Ortsveränderung in einem Kraftfeld oder …

Die physikalische Größe “Energie”

Die Energie in einem mechanischen System kann in Arbeit umgesetzt werden, bedeutet also eine Art “Arbeitsfähigkeit”…

Kinetische Energie

Die Kinetische Energie nennt man auch “Bewegungsenergie”, weil sie mit der Geschwindigkeit eines Massepunkts zusammenhängt.
Wenn ich einen Massepunkt von einer Anfangsgeschwindigkeit v=v0 (in einem Inertialsystem gemessen) durch Einwirkung einer konstanten Kraft (Größe und Richtung konstant) auf eine Endgeschwindigkeit v=v1 bringe, habe ich eine Arbeit geleistet, die nun in dem Massepunkt als sog. Kinetische Energie steckt.

Die Kraft war:  \(  F = m \cdot a \)

Der Weg war: \(  s = \frac{1}{2} a t^2 \)

Damit ist die geleistete Arbeit:

\( W = m \cdot a \cdot \frac{1}{2} \cdot a \cdot t^2 = \frac{1}{2} \cdot m \cdot a^2 t^2 \\ \)

Wenn man nun einsetzt: v = a t erhält man:

\( W = \frac{1}{2} \cdot m \cdot v^2 \\ \)

Diese Arbeit steckt nun am Ende der Krafteinwirkung als “Kinetische Energie” in dem schneller bewegten Massepunkt. Beispiel: Eine geworfene Bowlingkugel enthält Kinetische Energie, die wir benutzen, um die Pins am Ende der Bahn umzustoßen.

Potentielle Energie

Die Potentielle Energie nennt man auch “Energie der Lage”. Damit ein Massepunkt seine Lage verändert, brauchen wir Kräfte, die auf den Massepunkt einwirken; denn ohne solche Kräfte verharrt der Massepunkt in Ruhe. Wenn an jedem Ort im Raum (Ortsvektor r) eine Kraft wirkt, sprechen wir von einem Kraftfeld F(r).

Die Frage ist nun, welche Arbeit (gegen dieses Kraftfeld) geleistet werden muss, um einen Massepunkt m von einem Punkt r1 zu einem Punkt r2 zu verschieben.
Wir nehmen dazu eine (glatte) Kurve α, die von r1 nach r2 führt; beispielsweise parametrisiert als α: [0,1] -> Rn  mit α(0) = r1 und α(1) = r2.

Die geleistete Arbeit ist dann ja Kraft mal Weg, aufsummiert über diese Kurve – als Integral:

\( \Large W_\alpha = \int_0^1 \vec{F}(\vec{r})  \cdot d\vec{r}  \\\ \)

Diese Arbeit steckt nun am Ende der Ortsveränderung als “Potentielle Energie” in der neuen Lage des Massepunkts im Kraftfeld. Beispiel: Ein Stausee enthält viel Potentielle Energie, die man benutzen kann, um Strom (elektrische Energie) zu erzeugen.

Wenn diese Arbeit für alle Wege, die von r1 nach r2 führen, die gleiche ist, sprechen wir von einem konservativen Kraftfeld und können die physikalische Größe Potenzial definieren. Ein Beispiel für so ein konservatives Kraftfeld ist die Gravitation.

Die physikalische Größe “Wirkung”

Die physikalische Größe “Wirkung” (englisch: action) ist definiert als Arbeit, die entlang eines Weges in einer Zeitspanne geleistet wird.

Als Wirkung haben wir:

\(  \Large S = \int_a^b (E_{kin} – E_{pot}) dt  \)

 

Physik: Newtonsche Mechanik

Gehört zu: Physik, Himmelsmechanik
Siehe auch: Gravitation, Potential, Algebren, Lagrange-Formalismus, Keplersche Gesetze, Phasenraum
Benutzt WordPress-Plugin MathJax-Latex

Stand: 02.06.2024 (Schrödinger, Lagrange)

Newtons Gesetze

In der Newtonschen Mechanik wird “alles” durch die Wirkung von Kräften erklärt.

Aus der Schule kennen wir: Kraft = Masse mal Beschleunigung

Das bedeutet, dass wenn wir an einer Masse eine beschleunigte Bewegung messen, so erklären wir diese beschleunigte Bewegung als Wirkung einer Kraft.

Im SI-System ist dementsprechend die Maßeinheit für die physikalische Größe “Kraft” das Newton (1 Newton= 1 N = 1 kg m /s2).

Newton formulierte 1687 die bekannten drei “Gesetze”:

  1. Ein kräftefreier Körper bleibt in Ruhe oder bewegt sich geradlinig mit konstanter Geschwindigkeit.  “Trägheitsgesetz”
  2. Kraft gleich Masse mal Beschleunigung: \( \vec{F} = m \cdot \dot{\vec{v}}  \)   “Aktionsprinzip”
  3. Kraft gleich Gegenkraft.   “Actio gleich Reactio”

Diese Gesetze bilden das Fundament der Klassischen Mechanik.

Das obige Newtonsche Aktionsprinzip wird auch Impulssatz genannt, weil der Impuls \(\vec{p}=m \cdot \vec{v}\) ist; also
\( \vec{F} = \dot{\vec{p}}  \)

Diese Newtonsche Mechnik arbeitet gern mit Vektoren und Cartesischen Koordinaten. Bei anderen Koordinatensystemen (z.B. Polar, Sphärisch) werden diese Newtonschen Gleichungen schnell “sperrig”. Da versucht die Lagrange-Mechanik einen anderen Ansatz.

Intertialsysteme

Diese drei Newtonschen Gesetze (auch Axiome genannt) gelten in sog. Inertialsystemen, das sind Bezugssysteme, die sich gradlining mit gleichbleibender Geschwindigkeit gegeneinander bewegen.
Besser definieren wir, dass ein Intertialsystem genau ein Bezugssystem ist, in dem diese drei Newtonschen Gesetze gelten. Alle gleichförmig (auch “ruhende”) und natürlich gradlinig dazu bewegten Bezugssysteme sind dann auch Intertialsysteme.

Der so definierte Kraftbegriff gilt relativ zu einem benutzten Bezugssystem. Da die Beschleunigung eines Körpers in allen Inertialsystemen gleich ist, ist auch die Kraft auf diesen Körper in allen Inertialsystemen gleich.
Sobald ich aber ein Nicht-Intertialsystem benutze (z.B. geradlinig beschleunigte oder rotierende Bezugssysteme), muss ich fürchterlich aufpassen. Dort beobachte ich Beschleunigungen, die in Inertialsystem gar nicht auftreten und denen man dann auch Kräfte zuordnet, die dann aber Scheinkräfte (Trägheitskräfte) genannt werden.
Beispiel 1: (Geradlinig beschleunigtes Bezugssystem): Andruck bei Bescheunigung im Auto auch bei Geradeausfahrt.
Beispiel 2: (Rotierendes Bezugsystem): Zentrifugalkraft, Corioliskraft.

Bewegungsgleichungen

Man möchte ja die räumliche und zeitliche Entwicklung eines mechanischen Systems (die Bewegung eines Teilchens) unter Einwirkung äußerer Einflüsse (z.B. eines Kraftfelds) beschreiben. Im Allgemeinen sucht man also:

Ortsvektor in Abhängigkeit von der Zeit: \( \vec{s}(t) \)
Geschwindigkeitsvektor in Abängigkeit von der Zeit:  \( \vec{v}(t) \)

Wobei gegeben ist ein Kraftfeld: \( F(r,t) \)

Man findet diese beiden Funktionen als Lösung von sog. Bewegungsgleichungen, die z.B. diese äußeren Einflüsse (z.B. das Kraftfeld) beschreiben. Ausgangspunkt ist dabei immer das Newtonsche Gesetz (s.o.):

\( \vec{F} = m \cdot \dot{\vec{v}}  \)

Nur bei ganz kleinen Teilchen ist die Quantenmechanik (Schrödinger-Gleichung) gefragt.

Das Gravitationsgesetz

Im Jahre 1668, formulierte Isaac Newton (1642-1727) das berühmte Gravitationsgesetz:

\( F = G \frac{m \cdot M}{r^2}  \)

aus dem sich auch die Keplerschen Gesetze herleiten lassen…

Das Besonere der Erkenntnis von Newton ist nicht nur die Formulierung als eine einzige Formel, sondern auch, dass die Gravitationskraft zwischen allen Körpern im Universum wirkt. Beispielsweise kreisen die Jupitermonde gemäß diesem Gesetz um den Jupiter und ebenfalls kreisen Doppelsterne etc. aufgrund der Gravitation umeinander…

Massen erzeugen also eine “Gravitation”, die man auch als Schwerefeld bezeichnet. Dieses ist ein konservatives Kraftfeld und kann demzufolge auch durch sein Potiential beschrieben werden.

Isaac Newton hat auch sehr viel über das Licht geforscht. Stichworte dazu wären: Teilreflektion, Newtonsche Ringe,…

Die Größe der Gravitationskonstante \( \gamma \) wurde erst viel später durch das berühmte Experiment “Gravitationswaage” von Henry Cavendish (1731-1810) bestimmt.

In der Wikipedia finden wir:

\( \Large G = (6{,}674\,30\pm 0{,}000\,15)\cdot 10^{-11}\,\mathrm {\frac {m^{3}}{kg\cdot s^{2}}} \)

 

Beispiel: Freier Fall nach Newton

Der äußere Einfluss ist hier die Erdanziehung, die auf eine punktförmige Masse m eine Kraft \( \vec{F} = m \cdot \vec{g} \) ausübt; wobei wir die Gravitationsbeschleunigung \( \vec{g} \) idealisiert mit konstanter Größe und konstanter Richtung annehmen.

Die Fragestellung ist nun, wie sich ein Massepunkt, der zur Zeit t=0 die Anfangsbedingungen s(0)=0 und v(0)=0 erfüllt, in der Zeit weiter bewegt.
Die Bewegungsgleichung hierfür ist:  \( m \cdot \dot{\vec{v}}(t) = m \cdot \vec{g} \)

Die Lösung dieser Bewegungsgleichung erfolgt durch Integration. Zusammen mit den Anfangsbedingungen ergibt sich:

\( \vec{v}(t) = \vec{g} \cdot t \)
\( \vec{s}(t) = \frac{1}{2} \vec{g} \cdot t^2 \)

Neben der klassischen graphischen Darstellung dieser beiden Funktionen können wir auch einen sog. Phasenraum verwenden.

 

Physik: Krümmung der Raumzeit

Gehört zu: Physik
Siehe auch: Relativitätstheorie, Vektorraum, Gravitation, Schwarze Löcher, Metrik, Koordinatensysteme

Krümmung der Raumzeit

Die Allgemeine Relativitätstheorie (ART) basiert auf dem Postulat der Äquivalenz von Gravitation und Beschleunigung.

Aus diesem Äquivalenzprinzip ergibt sich die Lichtablenkung in Gravitationsfeldern.

Wenn man trotzdem davon ausgehen möchte, dass das Licht immer den kürzesten Weg nimmt, muss die Gravitation den Raum (besser die Raumzeit) entsprechend krümmen, sodass eine Metrik entsteht bei der der kürzeste Weg zwischen zwei Punkten nicht unbedingt die Euklidische gerade Linie ist.

Wir wollen hier zunächsteinmal den Begriff der “Krümmung” ganz allgemein diskutieren.

Umgangssprachlich denkt man bei “Krümmung”, dass sich etwas in eine zusätzliche Dimension krümmt (s.u. die vielen Beispiele). Bei der von Einstein postulierten Krümmung der vierdimensionalen Raumzeit wird aber für diese Krümmung keine 5. Dimension gebraucht. Die vierdimensionale Raumzeit ist nach Einstein  “in sich” gekrümmt; d.h. wir haben einen anderen Abstandsbegriff (eine andere Metrik, ein anderes Linienelement).

Krümmung bei Euklidischer Metrik

Unter der Krümmung eines geometrischen Objekts versteht man die Abweichung von einem geraden Verlauf; dazu bedarf es (mindestens) einer weiteren Dimension in die die Krümmung verläuft oder der Begriff “gerade” muss umdefiniert werden. Eine Kurve verläuft “gerade” wenn beim Durchlaufen mit konstanter Geschwindigkeit, keine Beschleunigungen “seitwärts”, sonder höchstens in der Normalen auftreten.

Wir betrachten eine Gerade. Solange sie wirklich geradeaus verläuft ist sie nicht gekrümmt. Wenn sie eine Kurve nach links (oder rechts) macht, haben wir eine Krümmung – und wir brauchen dafür (mindestens) eine zweite Dimension. Die Stärke der Krümmung kann mehr oder weniger sanft oder kräftiger sein. Wir messen die Stärke der Krümmung an einer Stelle durch einen sog. Krümmungskreis. Das ist ein Kreis, der sich in dem betrachteten Punkt am besten an die Kurve anschmiegt. Ein großer Krümmungskreis bedeutet eine kleine Krümmung ein kleiner Krümmungskreis ein starke Krümmung. Der Kehrwert des Radius ist das Maß für die Krümmungsstärke.

Die andere Frage ist, welche geometrischen Objekte sind es, die da “gekrümmt” werden?  Im einfachsten Fall ist es eine eindimensionale Linie in einer zweidimensionalen Ebene; also z.B. ein Funktionsgraph oder eine sog. Kurve. Kurven sind in diesem Zusammenhang sehr interessant als Teilmenge eines Vektorraums, die durch eine Abbildung von einem reellen Intervall in den Vektorraum  als sog. “parametrisierte” Kurve dargestellt werden kann. Das “Umparametrisieren” ist dann eine Äquivalenzrelation zwischen parametrisierten Kurven. Eine “Kurve” kann dann als Äquivalenzklasse solcher parametrisierten Kurven verstanden werden. Als Repräsentant einer Äquivalenzklasse nimmt man dann gerne eine nach Bogenlänge parametrisierte Kurve.

Wenn wir uns mit Kurven beschäftigen und speziell dann mit der Länge einer Kurve oder der Krümmung von Kurven, haben wir es mit Differentialgeometrie zu tun.
Dazu gibt es eine Reihe von sehr schönen Youtube-Videos:

Schritt 1: Krümmung einer Linie in der Ebene

Wenn das betrachtete Objekt ein Funktionsgraph von beispielsweise y = f(x) in der Ebene ist, können wir die Krümmung leicht berechnen:

Für eine zweimal differenzierbare Funktion  y = f(x) ergibt sich der Krümmungsradius an einem Punkt x zu:

\( \Large  r(x) = \left\vert \frac{(1+(f^\prime(x))^2)^\frac{3}{2}}{f^{\prime\prime}(x)} \right\vert  \)

Als Beispiel nehmen wir mal eine Parabel f(x) = 0,5 * x2
Dazu haben wir die Ableitungen:
f(x) = x
f(x) = 1
Der Krümmungsradius beispielsweise am Punkt x0 = 0 beträgt dann laut obiger Formel:

\( \Large r(x_0) = \frac{(1+{x_0}^2)^{\frac{3}{2}}}{1} = 1 \\\ \)

Und zur Probe nehmen wir noch x=1:

\( \Large r(1) = \frac{(1+1^2)^{\frac{3}{2}}}{1} = 2^\frac{3}{2} = 2 \sqrt{2} \)

Dieses Beispiel habe ich entnommen aus https://www.ingenieurkurse.de/hoehere-mathematik-analysis-gewoehnliche-differentialgleichungen/kurveneigenschaften-im-ebenen-raum/kruemmung/kruemmungsradius.html
Es wird grafisch veranschaulicht durch:

Schritt 2: Krümmung einer Kurve in der Ebene

Wenn das betrachtete Objekt eine “richtige” Kurve in der Ebene ist, wird die Krümmung anders berechnet.

Als “richtige” Kurve (in der Ebene) betrachten wir von der obigen Parabel das Kurvenstück von x=-1 bis x=1. Als Parametrisierte Kurve, wobei der Parameter t auch von -1 bis 1 laufen möge, (was wir uns z.B. als Zeit vorstellen könnten) sieht das dann so aus:

\( \Large \alpha(t) = \left( \begin{array}{c} t \\\ \frac{1}{2}t^2  \end{array}\right)  \\\  \)

Um die Krümmung zu brechnen ermitteln wir zuerst:

\( \Large \alpha^\prime(t) = \left( \begin{array}{c} 1 \\\ t  \end{array}\right)  \)

womit dann:

\( \Large ||\alpha^\prime(t)||^2 =  1 +  t^2   \\\  \)

und mit:

\( \Large \alpha^{\prime\prime}(t) = \left( \begin{array}{c}  0 \\\ 1  \end{array}\right)  \)

ergibt sich:

\( \Large det(\alpha^\prime(t), \alpha^{\prime\prime}(t)) = 1  \\\ \)

und damit ergibt sich dann die Krümmung zu:

\( \Large \kappa_\alpha(t) = \frac{1}{(1 + t^2 )^\frac{3}{2}}  \)

Bei t=0 ist dann die Krümmung:

\( \Large \kappa_\alpha(0) = 1 \\\  \)

und zur Probe nehmen wir noch t=1:

\( \Large \kappa_\alpha(1) = \frac{1}{2 \sqrt{2}} \\\ \)

Weil t=x ist, stimmt das mit den Berechnungen des Krümmungsradius (s.o. Schritt 1) exakt überein.

Schritt 3: Krümmung einer Fläche im Raum

Analog können wir uns gekrümmte Flächen im Raum vorstellen. Hier kann allerdings der Krümmungsradius in unterschiedlichen Richtungen unterschiedlich sein. Inetwa so die wir das von einem Gradienten kennen.

Auch in diesem Fall stellen wir uns das ganz klassisch geometrisch vor als Krümmung in eine weitere Dimension.

Krümmung per Nicht-Euklidischer Metrik

In der Allgemenen Relativitätstheorie spricht man auch von “Krümmung” z.B. Krümmung des Raumes oder Krümmung der Raumzeit.

Hier basiert die “Krümmung” nicht auf einer zusätzlichen Dimension, sondern auf einer speziellen Metrik in ein und demselben Raum. Unter “Metrik” versteht man ja eine Vorschrift, die zwei Punkten in dem betreffenden Raum einen Abstand zuordnet.  So eine Metrik definiert dann auch automatische die Längen von Linien…

Geodätische Linie

Die Linie, die die kürzeste Verbindung zwischen zwei Punkten bildet, nennt man Geodät oder auch Geodätische LInie. Auf der Erdoberfläche kennen wir das z.B. bei der Seefahrt oder Luftfahrt wenn wir beispielsweise die Flugroute von London nach Los Angeles betrachten:

Geodätische LInie Moskau - Los Angeles

Das Licht läuft immer auf einer Geodäte, nimmt also die kürzeste Verbindung. Das kann “gekrümmt” aussehen…

Krümmung ohne zusätzliche Dimension

Für eine solche Krümmung benötigen wir aber nicht zwingend eine zusätzliche Dimension. Die Krümmung kann auch “in sich” durch andere Abstandsgesetze (= Metriken) bewirkt werden.
Siehe Schwarzschild-Metrik

 

Physik: Magnetisches Feld

Gehört zu: Physik
Siehe auch: Elektrisches Feld, Vektorraum, SI-Einheiten

Das Magnetische Feld

Analogie zum Elektrischen Feld

Schon seit Jahrhunderten kennt man den Kompass, dessen Magnetnadel sich in die Richtung des Magnetfeldes der Erde ausrichtet.

Ein “Magnet” erzeugt ein Magnetfeld. Wenn ich in ein solches Magnetfeld einen kleinen “Probemagneten” einbringe, so übt das magnetische Feld eine magnetische Kraft auf diesn kelinen “Probemagneten” aus…
Dann hätte man in Analogie zum elektrischen Feld:

Magnetische Feldstärke = Magnetische Kraft /  Magnetische Probeladung

Magnetfelder können verursacht werden durch:

  • magnetische Materialien, etwa einen Dauermagneten,
  • elektrische Ströme, z. B. eine stromdurchflossene Spule oder
  • zeitliche Änderung eines elektrischen Feldes.

Die Definition eines magnetischen Feldes \( \vec{B} \) kann man durch folgende Formel erreichen:

\( \vec{F} = q \cdot \vec{v} \times \vec{B} \)

Dabei bewegt sich eine elektrische Ladung (q) mit der Geschwindigkeit \( \vec{v} \) und erfährt eine Kraft von \( \vec{F} \), die durch das Magnetfeld \( \vec{B} \) hervorgerufen wird.

Historisch gesehen gibt es den Begriff der “Feldstärke” beim Magnetfeld nicht. Wir haben aber eine Größe “Magnetische Flußdichte”, die soetwas ähnliches ist.

Eine besonders einfache Situation ist ein gerader elektrischer Leiter, der von einem konstanten elektrischen Strom durchflossen wird – das wurde schon von Hans Christian Oersted (1777-1851) untersucht. Für einen Strom der Stärke I durch den Leiter bekommen wir im Abstand r ein Magnetfeld von:

\( \vec{B} = \Large \frac{\mu \cdot I}{2 \pi \cdot r} \)

Fragen / Probleme

  • in welchen Masseinheiten misst man ein Magnetfeld  (Tesla, Gauß,…) ?
  • Eigentlich haben wir nur magnetische Dipole

Die sog. Lorentzkraft – Elektromagnetismus

Auf eine mit der Geschwindigkeit v bewegte elektrische Ladung q wirkt im elektromagnetischen Feld eine Kraft. Für diese sog. Lorentzkraft haben wir die Formel:

\( \vec{F} = q \cdot (\vec{E} + (\vec{v} \times \vec{B})) \)

Wo bei E die elektrische Feldstärke und B die magnetische Feldstärke (historisch: Flussdichte) sind.

Und dann gibt es noch einen Dynamo und ein Induktionsgesetz….