Physik: Ideales Gas – Thermodynamik

Gehört zu: Thermodynamik
Siehe auch: GeoGebra, Hertzsprung-Russel-Diagramm, Hydrostatisches Gleichgewicht, Wäremepumpe
Benutzt: WordPress-Plugin Latex, Grafiken von Github, Grafik von Wikipedia

Stand: 16.10.2022

Ideales Gas

ist ein hinreichend verdünntes Gas, sodass ausser bei Kollisionen von Molekülen (als elasischer Stoß) keinerlei Wechselwirkung zwischen ihnen geschieht.
Das bedeutet u.a., dass wir weit entfernt von Phasenübergängen (fest – flüssig – gasförmig) sein müssen.

Zur Idealisierung gehört auch, dass die Gasmoleküle als Punktmassen verstanden werden können. D.h. für die Bewegung hat man nur die drei Freiheitsgrade der Translation, keine Rotation und keine Oszillation.

Neben dem hier beschriebenen “Idealen Gas” gibt es natürlich auch ein Nichtideales Gas und auch ein Entartetes Gas und noch schlimmer ein Relativistisches entartetes Gas. Diese Begriffe werden gerne bei der Untersuchung von sog. Elektronengas benutzt.

Bei einem “Idealen Gas” gilt als Zustandsgleichung die sog. “Ideale Gasgleichung” (s.u.). Bei einem entarteten Gas hängt die Zustandsgröße Druck nicht mehr von der Temperatur ab, sondern nur noch von der Dichte.

Links:

Boyle-Mariotte

Robert Boyle und Edme Mariotte fanden unabhängig von einander 1662 bzw. 1676  das nach ihnen benannte Boyle-Mariotte’sche Gesetz:

\( p \cdot V = const. \\\ \)

Wobei die Temperatur konstant gehalten wird (und auch die Stoffmenge) und zwar dadurch dass man die Veränderungen im Volumen ganz langsam durchführt, sodass immer wieder das thermodynamisches Gleichgewicht mit der Umgebung erhalten bleibt.

Siehe auch: GeoGebra

Abbildung 1: Das Boyle-Mariottesche Gesetz  (Github: Boyle-Marriot-Gesetz.svg)

Boyle-Marriot-Gesetz.svg

Boyle-Marriot-Gesetz (GeoGebra Classic)

Gay-Lussac

Wenn man nun den Druck konstant hält (und auch die Stoffmenge gleich bleibt) und dann die Temperatur variiert, bekommt man das Gay-Lussac (1787-1850) Gesetz.
Lord Kelvin (1824-1907) hatte 1848 die absolute Temperaturskala vorgeschlagen, wodurch sich das Gay-Lussac’sche Gesetz sehr einfach in seiner heutigen Form schreiben lässt:

\( \frac{V}{T} = const. \\\ \)

Wobei hier T die absolute Temperatur ist …

Siehe auch: GeoGebra

Abbildung 2: Das Gay-Lussacsche Gesetz (Github: Gay-Lyssac-Gesetz.svg)

Gay-Lussac-Gesetz.svg

Gay-Lussac-Gesetz – Dietrich Kracht 21.3.2021 GeoGebra Classic

Amontos

Der fanzösische Physiker Guillaume Amontos (1663-1705) entdeckte schon sehr früh die Proportionalität von Druck und Temperatur – bei konstantem Volumen und konstanter Stoffmenge.

\( \frac{p}{T} = const. \)

Avogadro

Auf Amadeo Avogadro (1776-1856) geht zurück:

\( \frac{V}{n} = const. \\ \)

Wenn man also den Druck und die Temperatur konstant hält, ist das Volumen V proportional zur Stoffmenge n.

Ideale Gasgleichung

Zusammengefasst (Boyle-Mariotte, Gay Lussac, Amontis, Avogadro), ergibt sich:

\( \frac{p \cdot V}{n \cdot T} = const. \\\)

Etwas umgeschrieben ist das die berühmte Zustandsgleichung für ideale Gase:

\( p \cdot V = n \cdot R \cdot T   \\ \)

Dabei ist p der Druck, V das Volumen, n die Stoffmenge (messen wir in mol), R die allgemeine Gaskonstante (8,3145 Joule/(mol*Kelvin)) ist und T die absolute Temperatur ist.
Interessant dabei ist, dass dies unabhängig von der Art des Gases ist – also Helium, Stickstoff etc.  Es muss einfach nur ein “ideales Gas” sein. Umgekehrt sagen wir, ein Gas ist dann “ideal”, wenn es dieser Gleichung genügt.

Wenn wir die Stoffmenge n mit der Avogadroschen Zahl N (6,02214076 1023 mol-1) in eine Teilchenzahl N umrechnen, also:

\( N = N_A \cdot n \)

bekommen wir als Gasgleichung (mit der Avogadroschen Zahl):

\( p \cdot V = N \cdot \frac{R}{N_A} \cdot T   \\\ \)

Später werden wir sehen, dass \( \frac{R}{N_A} = k_B \) die sagenhafte Boltzmann-Konstante ist.

Anwendung der idealen Gasgleichung

Masse und Stoffmenge

Häufig kommt es vor, dass wir die Masse kennen und daraus aber die Stoffmenge ermitteln müssen.

Hilfreich ist dabei die mittlere molare Masse des betrachteten Gases:

\( \mu = \frac{Masse}{Stoffmenge} \\\)   (also in kg/mol)

Die Masse von Atomen bekommt man aus dem Periodensystem (in sog. Atomaren Einheiten). Allerdings steht dort das Mittel aus den in der Natur vorkommenden Isotopen, gewichtet mit ihren natürlichen Häufigkeiten.
Für Moleküle muss man die Massen der enthaltenen Atome addieren. Die so ermittelte Atommasse eines Moleküls ist in sehr guter Näherung die Masse von einem Mol in Gramm (Beispiele s.u.).

Abbildung 3: Periodensystem der Elemente (aus Google gemeinfrei https://de.wikipedia.org/wiki/Periodensystem)

Die Atommasse wird in sog. “atomaren Einheiten” mit dem Formelzeichen “u” angegeben. 1 u ist definiert als 1/12 der Masse eines isolierten  12C-Atoms im Grundzustand.
Wenn wir die Masse eines 12C-Atoms messen, erhalten wir damit die Umrechnung in Gramm:

\( 1u = 1,66053906660*10^{-24}g \)

Um die Molare Masse eines Stoffes zu ermitteln, müssen uns fragen, welche Masse 1 mol des betrachteten Stoffes hat. Dazu ermitteln wir die Masse (Atommasse) eines Moleküls und multiplizieren die mit der Anzahl Moleküle in 1 mol, also mit der Avogadroschen Zahl NA = 6,02214076*1023 mol-1.

Die folgenden Beispiele wurden angeregt durch:

Abbildung 4: Ideale Gasgleichung

Beispiel: Methan CH4

Aus dem Periodensystem bekommen wir die Atommassen.
Ein Kohlenstoffatom (C) hat die Atommasse 12,011u  (gewichtetes Mittel der natürlichen C-Isotope)
Vier Wasserstoffatome (H) haben die Atommasse 4 x 1,0080u
Zusammen hat also ein Molekül Methan eine Atommasse von 16,033u = 26,62343782*10-24 g
Multipliziert mit der Avogadroschen Zahl (der Anzahl Molekülen in 1 mol), ergibt das: 16,033 g

Was sagt uns das?

Erstens sehen wir, dass die neue Definition der Einheit mol im SI-System von 2019 “1 mol = eine Stoffportion bestehend aus NA Teilchen” gut übereinstimmt mit der alten Definition “1 mol = Atommasse in Gramm”.

Zweitens können wir jetzt mit der Gasgleichung ausrechnen, wieviel Volumen unser Methan unter “Laborbedingungen” (20° C und 1 atm) einnimmt.

Als Beispiel nehmen wir:

  • Masse Methan: m = 0,1 g
  • Molare Masse Methan: M= 16,003 g/mol
  • Stoffmenge Methan: n = 0,1/16,033 mol =0,00625 mol
  • Temperatur: T = 293,15 K  (20° C)
  • Druck: p = 101,325 kPa = 101325 Pa = 101325 N m-2 (1 atm)
  • Gaskonstante R = 8,314 J mol-1 K-1

Dann können wir mit der idealen Gasgleichung das Volumen berechnen:

\( V = \frac{n \cdot R \cdot T}{p} = \frac{0,00625 \cdot 8,314 \cdot 293,15}{101325} m^3 = 0,000157 m^3\\\)

Das Methan nimmt also unter Laborbedingungen ein Volumen von 0,157 Liter ein.

Kinetische Energie

Wenn wir die Kinetik der Moleküle betrachten, also die Bewegungen, entsteht der Druck durch Impulsübertrag auf die Aussenwand des Gefäßes.

Das Gesetz von Bernoulli sagt dafür:

\( p = \frac{1}{3} \cdot n \cdot \mu \cdot <v^2> \\\ \)

wobei n hier die Teilchendichte, also Anzahl Teilchen pro Volumen, ist und die spitzen Klammern für den Mittelwert stehen..

Wenn wir diese Gleichung mit V multiplizieren, erhält man:

\( p \cdot V = \frac{1}{3} \cdot N \cdot \mu \cdot <v^2> = \frac{2}{3} \cdot N \cdot <E_{kin}> \\\ \)

wobei N die Anzahl der Teilchen ist.

Die mittlere kinetische Energie eines Moleküls eines Idealen Gases (also nur translatorische Bewegung in drei Freiheitsgraden) ist:

\( <E_{kin}> = \frac{3}{2} \cdot k_B \cdot T \\\ \)

Ausblick:

  • Auf dieser Basis wird die physikalische Größe “Temperatur” dann als “thermodynamische Temperatur” beliebiger Substanzen wirklich definiert.
  • Zusätzlich zum Mittelwert von Geschwindigkeiten bzw quadrierten Geschwindigkeiten wird auch noch die Breite der Verteilung von Interesse sein, was uns zur Maxwell-Verteilung führen wird…

Flüssigkeiten

Ein weitergehendes Konzept ist das von Flüssigkeiten. Die werden im physikalischen Teilgebiet Hydrodynamik behandelt. Von einer Flüssigkeit spicht man, wenn die mittlere freie Weglänge der Teilchen sehr, sehr klein gegenüber der Größe des betrachteten Systems ist.

Das Jeans-Kriterium

Das Jeans-Kriterium, benannt nach James Jeans (1877-1946), soll ja angeben, unter welchen Bedingungen eine Gaswolke im Universum unter dem Einfluss ihrer Gravitation kontrahiert, dabei wärmer wird und ggf. eine Kernfusion “zündet”.

Zur Abschätzung der kritischen Jeans-Masse bieten sich zwei Wege an:

  1. Druck: Gasdruck = Gravitationsdruck
  2. Energie: Potentielle Energie = Kinetische Energie

Vergleiche hierzu auch: Hydrostatisches Gleichgewicht

Gasdruck

Wir betrachten eine kugelförmige (Radius R) homogene Gaswolke der Masse M.

Der Gasdruck ist nach der idealen Gasgleichung (s.o.):

\( p = \frac{N}{V} \cdot \frac{R}{N_A} \cdot T \\\ \)

Ein Teilchen (Gasmolekül) habe nun die Masse μ. Dann gilt für die Masse:

\( M = N_A \cdot n \cdot \mu = N \cdot \mu \\\ \)

Die Dichte der Gaswolke ist demnach:

\( \rho = \frac{M}{V} = \frac{N \cdot \mu}{V} = \frac{N}{V} \mu \\\ \)

Also ist

\( \frac{N}{V} = \frac{\rho}{\mu} \)

Wenn wir das oben einsetzen ergibt sich:

\(\Large p_{Gas} = \frac{\rho}{\mu} \cdot k_B \cdot T \\\ \)

Gravitationsdruck

Der Gravitationsdruck ist (will ich noch richtig ausrechnen, mit Integral und so):

\( \Large p_{grav} = \frac{3 G M^2}{8 \pi r^4} \\\ \)

Jeans-Masse

Wann ist der Gravitationsdruck mindestens genauso groß wie der Gasdruck?

\( M_{Jeans} = \sqrt{\frac{6}{\pi}} \sqrt{\frac{1}{\rho} (\frac{k_B T}{G \mu})^3}\\\ \)

Für eine Gaswolke aus atomaren Wasserstoff ergibt sich mit doppelt logarithmischen Skalen folgendes Bild:

Abbildung 5: Die Jeans-Masse (Github: JeansMasse.svg)

JeansMasse.svg

Jeans-Masse Dietrich Kracht 24.3.2021

Beispielsweise können wir ablesen: Eine Gaswolke (atomarer Wasserstoff) von 10 Sonnenmassen würde bei einer Dichte von 10-16 kg/m³ und einer Temperatur von 10 K anfangen sich unter ihrer eigenen Gravitation zusammen zu ziehen…

Physik: Stoffmenge

Gehört zu: SI-Einheiten
Siehe auch: Thermodynamik

Die physikalische Größe “Stoffmenge”

Die physikalische Größe Stoffmenge wird in Mol gemessen. Auf der Schule (ca. 1960) hatte ich gelernt: 1 Mol ist das Atomgewicht in Gramm.

Im SI-System ist als Maßeinheit für die Stoffmenge das Mol festgelegt.

1971: Ein Mol ist die Menge einer Substanz, in der gleichviel Moleküle sind, wie in 12 g von Kohlenstoff 12C.

2019: Eine Stoffmenge von 1 Mol (= 1 mol) enthält die durch die Avogadro-Konstante (NA = 6.02214076 * 1023 mol−1) festgelegte Teilchenzahl. Die Avogadro-Konstante ist der Proportionalitätsfaktor zwischen der Stoffmenge und der Teilchenzahl N(X). Teilchen können hier Atome, Ionen, Moleküle, Formeleinheiten oder auch Elektronen sein. Formelzeichen und Teilchenart X werden zusammen als nX oder n(X) angegeben.

Avogadro

Der italienische Physiker Amedeo Avogadro (1776-1856)  erkannte bereits 1811, dass gleiche Volumina verschiedener idealer Gase bei gleichem Druck und gleicher Temperatur die gleiche Anzahl Moleküle enthalten. Dies nennt man das Avogadrosche Gesetz.

Die Anzahl der Moleküle in einer Stoffmenge von 1 mol nennt man die Avogadro-Konstante. Die SI-Einheit 1 Mol wurde so festgelegt, das die Avogadrosche Zahl exakt:

NA = 6.02214076 * 1023 mol−1

beträgt.

Wenn man die Stoffmenge n einer Gaswolke kennt, kann man also die Teilchenzahl N in dieser Gaswolke berechnen als:

\( N = N_A \cdot n \\\ \)

Anwendung in der Chemie

Bei chemischen Reaktionen schreibt mal ja als Reaktionsgleichung auf, mit welchen Molekülen eine chemische Reaktion abläuft. Beispielsweise wird aus Aluminiumcarbid und Wasser Methan und Aluminiumhydroxid:

\( Al_4C_3 + 12 H_2O \to 3 CH_4 + 4 Al(OH)_3 \)

Was die Stoffmengen betrifft heist das, dass aus 1 Mol Aluminiumcarbid durch Zugabe von Wasser 3 Mol Methan entstehen.

Entnommen aus dem Youtube-Video: https://www.youtube.com/watch?v=dGsxo05xR7g

Die molare Masse M eines Stoffes ist die Masse pro Stoffmenge oder, anders gesagt, der Proportionalitätsfaktor zwischen Masse m und Stoffmenge n.

\( m = M \cdot n \\\ \)

Die SI-Einheit ist kg/mol; in der Chemie ist g/mol üblich.

Anwendung in der Thermodynamik

In der Thermodynamik haben wir die Ideale Gasgleichung…

Physik: Kernfusion – Nukleosynthese

Gehört zu: Physik
Siehe auch: Sonne, Atomphysik, Weisser Zwerg, Kosmologie, Hertzsprung-Russel-Diagramm
Benutzt: WordPress-Plugin Latex, Bilder von Wikimedia, Fotos von Google Archiv

Stand: 20.12.2022 (Hertzsprung-Russel-Diagramm)

Kernfusion – Nukleosynthese

Durch die Verschmelzung (Fusion) leicherer Atomkerne (z.B. Wasserstoff) zu schwereren Atomkernen (z.B. Helium) kann Energie gewonnen werden, da ein kleiner Teil der Masse in Energie umgewandelt wird; nach der berühmten Formel von Einstein:

\( E = m \cdot c^2 \)

Damit solche Prozesse ablaufen können, sind ziemlich hohe Temperaturen bzw. Drücke erforderlich. Solche Bedingungen herrschen regelmäßg in Inneren von Sternen (Stellare Nukleosynthese) und bei Supernova-Explosionen, sollen aber auch kurz nach dem Urknall und noch vor der Bildung von Sternen geherrscht haben. Letzteres nennt man die Primordiale Nukleosynthese.

Durch Fusion wird Energie gewonnen, solange die Bindungsenegie pro Nukleon mit zunehmender Nukleonenzahl im Atomkern größer wird; also bis zum Eisen (Fe), wie die Grafik zeigt. Mit schwereren Atomkernen kann man dann Energie nur durch Spaltung gewinnen.

Im Inneren von Sternen finden solche Kernfusionsprozesse statt. Man spricht gerne auch vom “Brennen”; damit ist aber immer eine Kernfusion gemeint.

Abbildung 1: Bindungsenegie pro Nukleon (Wikimedia: Binding_energy_curve_-_common_isotopes-de.svg)

https://upload.wikimedia.org/wikipedia/commons/b/bc/Binding_energy_curve_-_common_isotopes-de.svg

Mittlere Bindungsenergie pro Nukleon in Abhänggkeit von der Größe des Atomkerns (Copyright Wikimedia)

Primordiale Nukleosynthese

Nach dem sog. Standardmodell der Kosmologie haben sich kurz nach dem Urknall aus einem Quark-Gluon-Plasma zuerst Protonen und Neutronen in gleicher Anzahl gebildet.

Freie Neutronen zerfallen im sog. Beta-Zerfall in ein Proton und ein Elektron mit einer Halbwertszeit von ca. 10 Minuten:

\( n \to p + e^- + \bar{\nu_e} \)

Etwa 5 Minuten nach dem Urknall sind die Temperatur und die Teilchendichte im Universum durch die Expansion so weit abgesunken, dass eine weitere Helium-Synthese (aus Wasserstoffkernen bilden sich Heliumkerne 4He) nicht mehr möglich ist. Die Reaktionsketten laufen nur so lange, bis das Plasma entsprechend abgekühlt ist. Damit endet die Phase der Primordialen Nukleosynthese.

Beim Endzustand der Primordialen Nukleosynthese errechnet man die Anteile von Wasserstoffkernen bzw. Heliumkernen von 75% bzw. 25% (Massenanteile).

Kernfusion im Inneren von Sternen (Stellare Nukleosynthese)

Damit es zur Verschmelzung von Atomkernen kommt, muss die Abstoßungskraft der elektrisch ja gleichartig (positiv) geladenen Kerne überwunden werden. Dazu benötigt das Plasma eine hohe Temperatur und einen hohen Druck. Die Fusion von Wasserstoff zu Helium “zündet”, wenn im Inneren des Sterns die notwendige Temperatur von ca. 10 Millionen Kelvin erreicht sind.

Bei entsprechend höheren Temperaturen “zünden” auch Fusionsprozesse mit anderen Elementen wie die nachfolgende Tabelle zeigt. Dort ist ein Stern mit 40-facher Sonnenmasse zugrunde gelegt.

Tabelle 1: Kernfusionsprozesse in Sternen

Ausgangsmaterial Prozesse Endprodukte “Asche” Temperatur
Mio Kelvin
Min. Masse Dauer bei 40 Sonnenmassen
Wasserstoff p-p-Prozess Helium 10-40 0,08 10 Mio Jahre
Helium 3 Alpha Kohlenstoff 100-190 0,25 1 Mio Jahre
Kohlenstoff Sauerstoff, Neon, Magnesium 500-740 4,0 10.000 Jahre
Neon Sauerstoff, Magnesium 1.600 10 Jahre
Sauerstoff Silizium 2.100 5 Jahre
Silizium Eisen 3.400 1 Woche

Wenn der Wasserstoff vollständig zu Helium fusioniert wurde, fällt diese Energiequelle weg. Der Stern kontrahiert etwas und die Temperatur im Inneren steigt an.  Es kann zunächst zu einem sog. Schalenbrennen kommen, wo Wasserstoff in einer Schale zu Helium fusioniert wird. Durch das Schalenbrennen steigt der innere Strahlungsdruck wieder stark an und der Stern dehnt sich aus zum sog. “Riesen”.
Wenn dann die Temperatur im Inneren (im Kern) ausreicht, kann die nächste Fusionstufe “zünden” und das Helium im Kern kann zu Kohlenstoff fusioniert werden

Wenn die Temperatur nicht ausreicht, um weitere Kernfusionen zu “zünden”, kann der Stern keine Energie mehr erzeugen und kollabiert zum Weissen Zwerg, der nur noch langsam seine vorhandene Wärmeenegie abgibt…

Bei unserer Sonne endet diese Serie mit dem sog. Heliumbrennen im Kern. Der Kohlenstoffkern kann nicht mehr weiter “zünden”, da die erforderliche Temperatur nicht erreicht wird.

Bei massereichen Sternen wird durch die Kontraktion die Temperatur soweit erhöht, das dann das Helium ein einer Schale um den Kern “züdet”, also dort Helium zu Kohlenstoff fusioniert, wo es heiss genug ist. Wir haben dann ein typisches Helium-Schalenbrennen.

Abbildung 2: Schalenbrennen in einem AGB-Stern (Google Archiv: agb-schematic.jpg)

agb-schematic.jpg

Copyright: Falk Herwig, University of Victoria http://www.astro.uvic.ca/~fherwig/sevol.html

http://www.astro.uvic.ca/~fherwig/sevol.html

Temperatur und kinetische Energie

Gemäß SI-System ist die thermodynamische Temperatur (T) durch die mittlere thermische Enegie (E) eines freien Teilchens definiert:

\( E_{therm} = k_B \cdot T \\\)

Wobei die Bolzmankonstante festgelegt wird zu:

kB = 1,38064852 10-23 J/K

bzw. in eV:

kB = 8,61733262 10-5 eV/K

Bei einem punkförmigen Teilchen verteilt sich die mittlere kinetische Engergie zu gleichen Antelen auf seine 3 Freiheitsgrade:

\( \langle E_{kin} \rangle = \frac{3}{2} \cdot E_{therm} = \frac{3}{2} \cdot k_B \cdot T \\\)

Für die Entwicklungs des Universums vom Urknall bis zur Kosmischen Hintergrundstrahlung bedeutet dies:

(Quelle: https://de.wikipedia.org/wiki/Primordiale_Nukleosynthese)

Tabelle 2: Abkühlung des frühen Universums

Zeit nach Urknall Temperatur Kinetische Energie Bemerkung
1/100 Sekunde 10 Milliarden K 1,3 MeV Quarks kondensieren zu Protonen und Neutronen 1:1
1 Sekunde 600 Millionen K 80 keV erstmals können sich (instabile) Deuteronen bilden
60 Sekunden 60 Millionen K 8 keV stabile Bildung von Deuteronen
105215 K 13,6 eV Waserstoffatome vollständig ionisiert (Grundzustand)
380000 Jahre 3000 K 0,4 eV Rekombination: kosmische Hintergrundstrahlung entsteht

 

Physik: Die Heisenbergsche Unschärferelation

Gehört zu: Physik
Siehe auch: Quantenphysik, Wellenfunktion

Die Heisenbergsche Unschärferelation

Werner Heisenberg (1901-1976) gilt als Begründer der mathematischen Quantenmechanik.

Berühmt geworden ist seine sog. Unschärferelation (uncertainty principle).  Das ist die Aussage der Quantenphysik, dass zwei komplementäre Eigenschaften eines Teilchens nicht gleichzeitig beliebig genau bestimmbar sind. Das bekannteste Beispiel für ein Paar solcher Eigenschaften sind Ort und Impuls.

\( \Delta x \cdot \Delta p \geq \frac{h}{4 \pi} \\ \)

Die heisenbergsche Unschärferelation hat nichts mit der Messgenauigkeit oder Beeinflussungen einer Messung durch Messvorrichtungen zu tun, sie ergibt sich aus dem Welle-Teilchen-Dualismus: Ein Teilchen hat danach sowohl Teilchen-Eigenschaften als auch Wellen-Eigenschaften. Die Wellennatur der Materie selbst führt zur Unbestimmtheit ihrer Teilcheneigenschaften.

Louis de Boglie (1892-1987) beschreibt den Welle-Teilchen-Dualismus ja durch sein berühmte Formel:

\( p = \frac{h}{\lambda} \\ \)

Die Messung des Impulses ist also gleichzusetzen mit der Messung der Wellenlänge. Wenn ich aber die Wellenlänge genau messe, ist der Ort der Welle sehr unbestimmt.

Komplementäre Eigenschaften im Sinne Heisenbergs sind z.B.

  • Ort und Impuls (Geschwindigkeit)
  • Energie und Zeit
  • xxx

Physik: Quantenmechanik – Materiewellen

Gehört zu: Physik
Siehe auch: Wellenfunktion, Quantenphysik , Quantenfeldtheorie, Potential
Benutzt: Videos von Youtube

Stand: 19.05.2022

Quantenmechanik: Materiewellen

In einem sog. “konservativen” Kraftfeld \( \vec{F}(r) \) können wir eine Potentielle Energie (bzw. ein Potential) definieren.  Der Begriff konservativ bedeutet dabei, dass der Energieerhaltungssatz gilt. Die entlang eines Weges im Kaftfeld geleistete Arbeit ist unabhängig von Weg und nur vom Anfangs- und Endpunkt des Weges abhängig. So kann eine skalares Feld, das Potential, definiert werden.

Ist das betrachtete Kraftfeld das Gravitationsfeld einer ruhenden Masse M, so ist das “Gravitationspotential” einfach:

\(  \Large V(r) = \space – G  \frac{M}{r}  \\ \)

Ist das betrachtete Kraftfeld das Elektrische Feld einer ruhenden elektrischen Ladung Q, so ist das “Coulomb-Potential” einfach:

\(  \Large V(r) = \space – \frac{1}{4\pi\epsilon_0}\frac{Q}{r}  \\ \)

Und umgekehrt ist das Kraftfeld \( \vec{F}(r) \) einfach der Gradient des Potentials. Also:

\( \vec{F}(r) = \enspace – k \enspace \nabla V(r) \)   (wobei k die Ladung bzw. Masse ist)

Materiewellen

Die Idee von Materiewellen entstand aus dem berühmten Doppelspalt-Experiment und dem von Louis de Boglie (1892-1987) postulierten Welle-Teilchen-Dualismus.

Die Ergebnisse des Doppelspalt-Experiments konnten dadurch erklärt werden, dass die Lichtteilchen (die Photonen) auch einen Wellencharakter haben. De Boglie hatte dann die kühne Idee, dass jedes Materieteilchen auch einen Wellencharakter haben muss;  z.B. auch Elektronen.

Aus der Planck-Formel:

\( E = h \nu \)

und der Einsteinschen Energie-Masse-Äquivalenz:

\( E = m c^2 \)

ergibt sich rein rechnerisch die berühmte De-Broglie-Wellenlänge eines Teilchens der Masse m bzw. einem Impuls von p bei einer Geschwindigkeit von c.:

\( \lambda = \frac{h}{p} \)

Einstein: Energie-Masse-Äquivalenz

Genaugenommen ist die aus der speziellen Relativitätstheorie bekannte Formel:

\( E = m c^2 \)

nur eine Näherung. Richtg müsste es heissen:

\( E^2 = m^2 c^4 + c^2 p^2 \)

So erfordert es die Einstein’sche Spezielle Relativitätstheorie.

Die Lösungen sind periodische ebene Wellen.

In der Quantenfeldtheorie (QFT). muss dann jedes Elementarteilchen diese Gleichung erfüllen; denn in der QFT berückrichtigen wir ja erstmals die Spezielle Reletivitätstheorie (was wir in der Quantenmechanik ja nicht taten.).

De Broglie Wellenlänge

Gemäß des Welle-Teilchen-Dualismus kann ein Teilchen mit dem Impuls p auch als Welle (Materiewelle) der De-Broglie-Wellenlänge

\( \lambda = \frac{h}{p} \)

aufgefasst werden.

Der Quantenmechaniker verwendet statt der Wellenlänge gern die sog. Wellenzahl:

\( k = \frac{2 \pi}{\lambda} \)

und statt des originären Planck’schen Wirkungsquantums h, gerne das sog. reduzierte Wirkungsquantum:

\( \hbar = \frac{h}{2 \pi} \)

Damit können wir den Impuls also schreiben als:

\( p = \hbar k \)

Die Wellenfunktion

Wenn demnach Materieteilchen auch Wellencharakter haben können, fragt man sich natürlich nach einer “klassischen” Wellenfunktion als Lösung einer Wellengleichung. Ernst Schroedinger fand später seine berühmte Schroedinger-Gleichung.

Physik: Arbeit, Energie und Wirkung

Gehört zu: Physik
Siehe auch: Linienelement, Lagrange, Newton

Stand: 25.02.2023

Die physikalische Größen Arbeit, Energie und Wirkung

Diese physikalischen Größen kennen wir in der Mechanik. Später in der Thermodynamik (Wärmelehre) und in der Quantenmechanik werden wir einiges davon gebrauchen.

Die physikalische Größe “Arbeit”

Arbeit, so haben wir in der Schule gelernt, ist Kraft mal Weg.

Das übliche Formelzeichen für Arbeit ist W (work) und die SI-Einheit das Joule: 1 J = 1 Nm = 1 kg  m2/s2.

\( W = F \cdot s \\ \)

Gemeint ist immer die Kraftkomponente in Richtung des Weges. Genau genommen also das Skalarprodukt der Vektoren:

\( W = \vec{F} \cdot \vec{s} = || F || \cdot ||s|| \cdot \cos(\angle \left( \vec{F}, \vec{s} \right))    \\ \)

Wenn der Weg nicht geradeaus ist, sondern entlang einer Kurve von s1 nach s2, müssen wir entlang dieser Kurve integrieren.

\( \Large W = \int_{s_1}^{s_2} \vec{F}(\vec{s}) \cdot d\vec{s} \\ \)

Das ist analog zur bereits besprochenen Länge so einer Kurve im Raum. Das hatten wir ja schon (siehe: Linienelement) erklärt:
Im allgemeinen Fall nehmen wir eine parametrisierte Kurve α: [a,b] -> Rn  und definieren als Länge L der Kurve α:

\( L_\alpha(a,b) = \int_a^b ||\alpha^\prime(t)|| dt \\\ \)

Historische gesehen, war diese Definition der physikalischen Größe “Arbeit” ursprünglich umstritten: Decartes wollte Arbeit als Kraft mal Zeit definieren, aber die Definition als Kraft mal Weg von Leibniz hat sich durchgesetzt.

Arbeit kann in verschiedener Weise eingesetzt werden z.B. als Arbeit zur Bescheunigung eines Körpers oder als Arbeit zur Ortsveränderung in einem Kraftfeld oder …

Die physikalische Größe “Energie”

Die Energie in einem mechanischen System kann in Arbeit umgesetzt werden, bedeutet also eine Art “Arbeitsfähigkeit”…

Kinetische Energie

Die Kinetische Energie nennt man auch “Bewegungsenergie”, weil sie mit der Geschwindigkeit eines Massepunkts zusammenhängt.
Wenn ich einen Massepunkt von einer Anfangsgeschwindigkeit v=v0 (in einem Inertialsystem gemessen) durch Einwirkung einer konstanten Kraft (Größe und Richtung konstant) auf eine Endgeschwindigkeit v=v1 bringe, habe ich eine Arbeit geleistet, die nun in dem Massepunkt als sog. Kinetische Energie steckt.

Die Kraft war:  \(  F = m \cdot a \)

Der Weg war: \(  s = \frac{1}{2} a t^2 \)

Damit ist die geleistete Arbeit:

\( W = m \cdot a \cdot \frac{1}{2} \cdot a \cdot t^2 = \frac{1}{2} \cdot m \cdot a^2 t^2 \\ \)

Wenn man nun einsetzt: v = a t erhält man:

\( W = \frac{1}{2} \cdot m \cdot v^2 \\ \)

Diese Arbeit steckt nun am Ende der Krafteinwirkung als “Kinetische Energie” in dem schneller bewegten Massepunkt. Beispiel: Eine geworfene Bowlingkugel enthält Kinetische Energie, die wir benutzen, um die Pins am Ende der Bahn umzustoßen.

Potentielle Energie

Die Potentielle Energie nennt man auch “Energie der Lage”. Damit ein Massepunkt seine Lage verändert, brauchen wir Kräfte, die auf den Massepunkt einwirken; denn ohne solche Kräfte verharrt der Massepunkt in Ruhe. Wenn an jedem Ort im Raum (Ortsvektor r) eine Kraft wirkt, sprechen wir von einem Kraftfeld F(r).

Die Frage ist nun, welche Arbeit (gegen dieses Kraftfeld) geleistet werden muss, um einen Massepunkt m von einem Punkt r1 zu einem Punkt r2 zu verschieben.
Wir nehmen dazu eine (glatte) Kurve α, die von r1 nach r2 führt; beispielsweise parametrisiert als α: [0,1] -> Rn  mit α(0) = r1 und α(1) = r2.

Die geleistete Arbeit ist dann ja Kraft mal Weg, aufsummiert über diese Kurve – als Integral:

\( \Large W_\alpha = \int_0^1 \vec{F}(\vec{r})  \cdot d\vec{r}  \\\ \)

Diese Arbeit steckt nun am Ende der Ortsveränderung als “Potentielle Energie” in der neuen Lage des Massepunkts im Kraftfeld. Beispiel: Ein Stausee enthält viel Potentielle Energie, die man benutzen kann, um Strom (elektrische Energie) zu erzeugen.

Wenn diese Arbeit für alle Wege, die von r1 nach r2 führen, die gleiche ist, sprechen wir von einem konservativen Kraftfeld und können die physikalische Größe Potenzial definieren. Ein Beispiel für so ein konservatives Kraftfeld ist die Gravitation.

Die physikalische Größe “Wirkung”

Die physikalische Größe “Wirkung” (englisch: action) ist definiert als Arbeit, die entlang eines Weges in einer Zeitspanne geleistet wird.

Als Wirkung haben wir:

\(  \Large S = \int_a^b (E_{kin} – E_{pot}) dt  \)

 

Physik: Newtonsche Mechanik

Gehört zu: Physik, Himmelsmechanik
Siehe auch: Gravitation, Potential, Algebren, Lagrange-Formalismus, Keplersche Gesetze, Phasenraum
Benutzt WordPress-Plugin MathJax-Latex

Stand: 25.02.2023 (Schrödinger)

Newtons Gesetze

In der Newtonschen Mechanik wird “alles” durch die Wirkung von Kräften erklärt.

Aus der Schule kennen wir: Kraft = Masse mal Beschleunigung

Das bedeutet, dass wenn wir an einer Masse eine beschleunigte Bewegung messen, so erklären wir diese beschleunigte Bewegung als Wirkung einer Kraft.

Im SI-System ist dementsprechend die Maßeinheit für die physikalische Größe “Kraft” das Newton (1 Newton= 1 N = 1 kg m /s2).

Newton formulierte 1687 die bekannten drei “Gesetze”:

  1. Ein kräftefreier Körper bleibt in Ruhe oder bewegt sich geradlinig mit konstanter Geschwindigkeit.  “Trägheitsgesetz”
  2. Kraft gleich Masse mal Beschleunigung: \( \vec{F} = m \cdot \dot{\vec{v}}  \)   “Aktionsprinzip”
  3. Kraft gleich Gegenkraft.   “Actio gleich Reactio”

Diese Gesetze bilden das Fundament der Klassischen Mechanik.

Das obige Newtonsche Aktionsprinzip wird auch Impulssatz genannt, weil der Impuls \(\vec{p}=m \cdot \vec{v}\) ist; also
\( \vec{F} = \dot{\vec{p}}  \)

Diese drei Newtonschen Gesetze (auch Axiome genannt) gelten in sog. Inertialsystemen, das sind Bezugssysteme, die sich gradlining mit gleichbleibender Geschwindigkeit gegeneinander bewegen.
Besser definieren wir, dass ein Intertialsystem genau ein Bezugssystem ist, in dem diese drei Newtonschen Gesetze gelten. Alle gleichförmig (auch “ruhende”) und natürlich gradlinig dazu bewegten Bezugssysteme sind dann auch Intertialsysteme.

Der so definierte Kraftbegriff gilt relativ zu einem benutzten Bezugssystem. Da die Beschleunigung eines Körpers in allen Inertialsystemen gleich ist, ist auch die Kraft auf diesen Körper in allen Inertialsystemen gleich.
Sobald ich aber ein Nicht-Intertialsystem benutze (z.B. geradlinig beschleunigte oder rotierende Bezugssysteme), muss ich fürchterlich aufpassen. Dort beobachte ich Beschleunigungen, die in Inertialsystem gar nicht auftreten und denen man dann auch Kräfte zuordnet, die dann aber Scheinkräfte (Trägheitskräfte) genannt werden.
Beispiel 1: (Geradlinig beschleunigtes Bezugssystem): Andruck bei Bescheunigung im Auto auch bei Geradeausfahrt.
Beispiel 2: (Rotierendes Bezugsystem): Zentrifugalkraft, Corioliskraft.

Bewegungsgleichungen

Man möchte ja die räumliche und zeitliche Entwicklung eines mechanischen Systems (die Bewegung eines Teilchens) unter Einwirkung äußerer Einflüsse (z.B. eines Kraftfelds) beschreiben. Im Allgemeinen sucht man also:

Ortsvektor in Abhängigkeit von der Zeit: \( \vec{s}(t) \)
Geschwindigkeitsvektor in Abängigkeit von der Zeit:  \( \vec{v}(t) \)

Wobei gegeben ist ein Kraftfeld: \( F(r,t) \)

Man findet diese beiden Funktionen als Lösung von sog. Bewegungsgleichungen, die z.B. diese äußeren Einflüsse (z.B. das Kraftfeld) beschreiben. Ausgangspunkt ist dabei immer das Newtonsche Gesetz (s.o.):

\( \vec{F} = m \cdot \dot{\vec{v}}  \)

Nur bei ganz kleinen Teilchen ist die Quantenmechanik (Schrödinger-Gleichung) gefragt.

Das Gravitationsgesetz

Im Jahre 1668, formulierte Isaac Newton (1642-1727) das berühmte Gravitationsgesetz:

\( F = G \frac{m \cdot M}{r^2}  \)

aus dem sich auch die Keplerschen Gesetze herleiten lassen…

Das Besonere der Erkenntnis von Newton ist nicht nur die Formulierung als eine einzige Formel, sondern auch, dass die Gravitationskraft zwischen allen Körpern im Universum wirkt. Beispielsweise kreisen die Jupitermonde gemäß diesem Gesetz um den Jupiter und ebenfalls kreisen Doppelsterne etc. aufgrund der Gravitation umeinander…

Massen erzeugen also eine “Gravitation”, die man auch als Schwerefeld bezeichnet. Dieses ist ein konservatives Kraftfeld und kann demzufolge auch durch sein Potiential beschrieben werden.

Isaac Newton hat auch sehr viel über das Licht geforscht. Stichworte dazu wären: Teilreflektion, Newtonsche Ringe,…

Die Größe der Gravitationskonstante \( \gamma \) wurde erst viel später durch das berühmte Experiment “Gravitationswaage” von Henry Cavendish (1731-1810) bestimmt.

In der Wikipedia finden wir:

\( \Large G = (6{,}674\,30\pm 0{,}000\,15)\cdot 10^{-11}\,\mathrm {\frac {m^{3}}{kg\cdot s^{2}}} \)

 

Beispiel: Freier Fall nach Newton

Der äußere Einfluss ist hier die Erdanziehung, die auf eine punktförmige Masse m eine Kraft \( \vec{F} = m \cdot \vec{g} \) ausübt; wobei wir die Gravitationsbeschleunigung \( \vec{g} \) idealisiert mit konstanter Größe und konstanter Richtung annehmen.

Die Fragestellung ist nun, wie sich ein Massepunkt, der zur Zeit t=0 die Anfangsbedingungen s(0)=0 und v(0)=0 erfüllt, in der Zeit weiter bewegt.
Die Bewegungsgleichung hierfür ist:  \( m \cdot \dot{\vec{v}}(t) = m \cdot \vec{g} \)

Die Lösung dieser Bewegungsgleichung erfolgt durch Integration. Zusammen mit den Anfangsbedingungen ergibt sich:

\( \vec{v}(t) = \vec{g} \cdot t \)
\( \vec{s}(t) = \frac{1}{2} \vec{g} \cdot t^2 \)

Neben der klassischen graphischen Darstellung dieser beiden Funktionen können wir auch einen sog. Phasenraum verwenden.

 

Physik: Krümmung der Raumzeit

Gehört zu: Physik
Siehe auch: Relativitätstheorie, Vektorraum, Gravitation, Schwarze Löcher, Metrik

Krümmung der Raumzeit

Die Allgemeine Relativitätstheorie (ART) basiert auf dem Postulat der Äquivalenz von Gravitation und Beschleunigung.

Aus diesem Äquivalenzprinzip ergibt sich die Lichtablenkung in Gravitationsfeldern.

Wenn man trotzdem davon ausgehen möchte, dass das Licht immer den kürzesten Weg nimmt, muss die Gravitation den Raum (besser die Raumzeit) entsprechend krümmen, sodass eine Metrik entsteht bei der der kürzeste Weg zwischen zwei Punkten nicht unbedingt die Euklidische gerade Linie ist.

Wir wollen hier zunächsteinmal den Begriff der “Krümmung” ganz allgemein diskutieren.

Umgangssprachlich denkt man bei “Krümmung”, dass sich etwas in eine zusätzliche Dimension krümmt (s.u. die vielen Beispiele). Bei der von Einstein postulierten Krümmung der vierdimensionalen Raumzeit wird aber für diese Krümmung keine 5. Dimension gebraucht. Die vierdimensionale Raumzeit ist nach Einstein  “in sich” gekrümmt; d.h. wir haben einen anderen Abstandsbegriff (eine andere Metrik, ein anderes Linienelement).

Krümmung bei Euklidischer Metrik

Unter der Krümmung eines geometrischen Objekts versteht man die Abweichung von einem geraden Verlauf; dazu bedarf es (mindestens) einer weiteren Dimension in die die Krümmung verläuft oder der Begriff “gerade” muss umdefiniert werden. Eine Kurve verläuft “gerade” wenn beim Durchlaufen mit konstanter Geschwindigkeit, keine Beschleunigungen “seitwärts”, sonder höchstens in der Normalen auftreten.

Wir betrachten eine Gerade. Solange sie wirklich geradeaus verläuft ist sie nicht gekrümmt. Wenn sie eine Kurve nach links (oder rechts) macht, haben wir eine Krümmung – und wir brauchen dafür (mindestens) eine zweite Dimension. Die Stärke der Krümmung kann mehr oder weniger sanft oder kräftiger sein. Wir messen die Stärke der Krümmung an einer Stelle durch einen sog. Krümmungskreis. Das ist ein Kreis, der sich in dem betrachteten Punkt am besten an die Kurve anschmiegt. Ein großer Krümmungskreis bedeutet eine kleine Krümmung ein kleiner Krümmungskreis ein starke Krümmung. Der Kehrwert des Radius ist das Maß für die Krümmungsstärke.

Die andere Frage ist, welche geometrischen Objekte sind es, die da “gekrümmt” werden?  Im einfachsten Fall ist es eine eindimensionale Linie in einer zweidimensionalen Ebene; also z.B. ein Funktionsgraph oder eine sog. Kurve. Kurven sind in diesem Zusammenhang sehr interessant als Teilmenge eines Vektorraums, die durch eine Abbildung von einem reellen Intervall in den Vektorraum  als sog. “parametrisierte” Kurve dargestellt werden kann. Das “Umparametrisieren” ist dann eine Äquivalenzrelation zwischen parametrisierten Kurven. Eine “Kurve” kann dann als Äquivalenzklasse solcher parametrisierten Kurven verstanden werden. Als Repräsentant einer Äquivalenzklasse nimmt man dann gerne eine nach Bogenlänge parametrisierte Kurve.

Wenn wir uns mit Kurven beschäftigen und speziell dann mit der Länge einer Kurve oder der Krümmung von Kurven, haben wir es mit Differentialgeometrie zu tun.
Dazu gibt es eine Reihe von sehr schönen Youtube-Videos:

Schritt 1: Krümmung einer Linie in der Ebene

Wenn das betrachtete Objekt ein Funktionsgraph von beispielsweise y = f(x) in der Ebene ist, können wir die Krümmung leicht berechnen:

Für eine zweimal differenzierbare Funktion  y = f(x) ergibt sich der Krümmungsradius an einem Punkt x zu:

\( \Large  r(x) = \left\vert \frac{(1+(f^\prime(x))^2)^\frac{3}{2}}{f^{\prime\prime}(x)} \right\vert  \)

Als Beispiel nehmen wir mal eine Parabel f(x) = 0,5 * x2
Dazu haben wir die Ableitungen:
f(x) = x
f(x) = 1
Der Krümmungsradius beispielsweise am Punkt x0 = 0 beträgt dann laut obiger Formel:

\( \Large r(x_0) = \frac{(1+{x_0}^2)^{\frac{3}{2}}}{1} = 1 \\\ \)

Und zur Probe nehmen wir noch x=1:

\( \Large r(1) = \frac{(1+1^2)^{\frac{3}{2}}}{1} = 2^\frac{3}{2} = 2 \sqrt{2} \)

Dieses Beispiel habe ich entnommen aus https://www.ingenieurkurse.de/hoehere-mathematik-analysis-gewoehnliche-differentialgleichungen/kurveneigenschaften-im-ebenen-raum/kruemmung/kruemmungsradius.html
Es wird grafisch veranschaulicht durch:

Schritt 2: Krümmung einer Kurve in der Ebene

Wenn das betrachtete Objekt eine “richtige” Kurve in der Ebene ist, wird die Krümmung anders berechnet.

Als “richtige” Kurve (in der Ebene) betrachten wir von der obigen Parabel das Kurvenstück von x=-1 bis x=1. Als Parametrisierte Kurve, wobei der Parameter t auch von -1 bis 1 laufen möge, (was wir uns z.B. als Zeit vorstellen könnten) sieht das dann so aus:

\( \Large \alpha(t) = \left( \begin{array}{c} t \\\ \frac{1}{2}t^2  \end{array}\right)  \\\  \)

Um die Krümmung zu brechnen ermitteln wir zuerst:

\( \Large \alpha^\prime(t) = \left( \begin{array}{c} 1 \\\ t  \end{array}\right)  \)

womit dann:

\( \Large ||\alpha^\prime(t)||^2 =  1 +  t^2   \\\  \)

und mit:

\( \Large \alpha^{\prime\prime}(t) = \left( \begin{array}{c}  0 \\\ 1  \end{array}\right)  \)

ergibt sich:

\( \Large det(\alpha^\prime(t), \alpha^{\prime\prime}(t)) = 1  \\\ \)

und damit ergibt sich dann die Krümmung zu:

\( \Large \kappa_\alpha(t) = \frac{1}{(1 + t^2 )^\frac{3}{2}}  \)

Bei t=0 ist dann die Krümmung:

\( \Large \kappa_\alpha(0) = 1 \\\  \)

und zur Probe nehmen wir noch t=1:

\( \Large \kappa_\alpha(1) = \frac{1}{2 \sqrt{2}} \\\ \)

Weil t=x ist, stimmt das mit den Berechnungen des Krümmungsradius (s.o. Schritt 1) exakt überein.

Schritt 3: Krümmung einer Fläche im Raum

Analog können wir uns gekrümmte Flächen im Raum vorstellen. Hier kann allerdings der Krümmungsradius in unterschiedlichen Richtungen unterschiedlich sein. Inetwa so die wir das von einem Gradienten kennen.

Auch in diesem Fall stellen wir uns das ganz klassisch geometrisch vor als Krümmung in eine weitere Dimension.

Krümmung per Nicht-Euklidischer Metrik

In der Allgemenen Relativitätstheorie spricht man auch von “Krümmung” z.B. Krümmung des Raumes oder Krümmung der Raumzeit.

Hier basiert die “Krümmung” nicht auf einer zusätzlichen Dimension, sondern auf einer speziellen Metrik in ein und demselben Raum. Unter “Metrik” versteht man ja eine Vorschrift, die zwei Punkten in dem betreffenden Raum einen Abstand zuordnet.  So eine Metrik definiert dann auch automatische die Längen von Linien…

Geodätische Linie

Die Linie, die die kürzeste Verbindung zwischen zwei Punkten bildet, nennt man Geodät oder auch Geodätische LInie. Auf der Erdoberfläche kennen wir das z.B. bei der Seefahrt oder Luftfahrt wenn wir beispielsweise die Flugroute von London nach Los Angeles betrachten:

Geodätische LInie Moskau - Los Angeles

Das Licht läuft immer auf einer Geodäte, nimmt also die kürzeste Verbindung. Das kann “gekrümmt” aussehen…

Krümmung ohne zusätzliche Dimension

Für eine solche Krümmung benötigen wir aber nicht zwingend eine zusätzliche Dimension. Die Krümmung kann auch “in sich” durch andere Abstandsgesetze (= Metriken) bewirkt werden.
Siehe Schwarzschild-Metrik

 

Physik: Magnetisches Feld

Gehört zu: Physik
Siehe auch: Elektrisches Feld, Vektorraum, SI-Einheiten

Das Magnetische Feld

Analogie zum Elektrischen Feld

Schon seit Jahrhunderten kennt man den Kompass, dessen Magnetnadel sich in die Richtung des Magnetfeldes der Erde ausrichtet.

Ein “Magnet” erzeugt ein Magnetfeld. Wenn ich in ein solches Magnetfeld einen kleinen “Probemagneten” einbringe, so übt das magnetische Feld eine magnetische Kraft auf diesn kelinen “Probemagneten” aus…
Dann hätte man in Analogie zum elektrischen Feld:

Magnetische Feldstärke = Magnetische Kraft /  Magnetische Probeladung

Magnetfelder können verursacht werden durch:

  • magnetische Materialien, etwa einen Dauermagneten,
  • elektrische Ströme, z. B. eine stromdurchflossene Spule oder
  • zeitliche Änderung eines elektrischen Feldes.

Die Definition eines magnetischen Feldes \( \vec{B} \) kann man durch folgende Formel erreichen:

\( \vec{F} = q \cdot \vec{v} \times \vec{B} \)

Dabei bewegt sich eine elektrische Ladung (q) mit der Geschwindigkeit \( \vec{v} \) und erfährt eine Kraft von \( \vec{F} \), die durch das Magnetfeld \( \vec{B} \) hervorgerufen wird.

Historisch gesehen gibt es den Begriff der “Feldstärke” beim Magnetfeld nicht. Wir haben aber eine Größe “Magnetische Flußdichte”, die soetwas ähnliches ist.

Eine besonders einfache Situation ist ein gerader elektrischer Leiter, der von einem konstanten elektrischen Strom durchflossen wird – das wurde schon von Hans Christian Oersted (1777-1851) untersucht. Für einen Strom der Stärke I durch den Leiter bekommen wir im Abstand r ein Magnetfeld von:

\( \vec{B} = \Large \frac{\mu \cdot I}{2 \pi \cdot r} \)

Fragen / Probleme

  • in welchen Masseinheiten misst man ein Magnetfeld  (Tesla, Gauß,…) ?
  • Eigentlich haben wir nur magnetische Dipole

Die sog. Lorentzkraft – Elektromagnetismus

Auf eine mit der Geschwindigkeit v bewegte elektrische Ladung q wirkt im elektromagnetischen Feld eine Kraft. Für diese sog. Lorentzkraft haben wir die Formel:

\( \vec{F} = q \cdot (\vec{E} + (\vec{v} \times \vec{B})) \)

Wo bei E die elektrische Feldstärke und B die magnetische Feldstärke (historisch: Flussdichte) sind.

Und dann gibt es noch einen Dynamo und ein Induktionsgesetz….

 

 

Physik: Elektrische Felder – Coulomb

Gehört zu: Elektrodynamik
Siehe auch: Gravitation, Magnetisches Feld, Vektoren, SI-System
Benutzt: WordPress-Plugin Latex

Stand: 22.08.2021

Ruhendes Elektrisches Feld

In der Elektrostatik werden ruhende und zeitlich unveränderliche Elektrische Felder beschrieben.

Die physikalische Größe elektrische Feldstärke (E) beschreibt die Stärke und Richtung eines elektrischen Feldes, also die Fähigkeit dieses Feldes, Kraft (F) auf Ladungen (q) auszuüben. Sie ist ein Vektor und ist in einem gegebenen Punkt definiert durch:

\( \Large \vec{E} =  \frac{\vec{F}}{q} \\\ \)

Die Maßeinheit der Elektrische Feldstärke ist also Newton / Coulomb, was das Gleiche ist wie V / m.

Bewegtes Elektrisches Feld

Laut Wikipedia ist die klassische Elektrodynamik (auch Elektrizitätslehre) das Teilgebiet der Physik, das sich mit bewegten elektrischen Ladungen und mit zeitlich veränderlichen elektrischen und magnetischen Feldern beschäftigt. Die Elektrostatik als Spezialfall der Elektrodynamik beschäftigt sich mit ruhenden elektrischen Ladungen und ihren Feldern. Die zugrundeliegende Grundkraft der Physik heißt elektromagnetische Wechselwirkung.

Analogie: Gravitationsfeld

Analog müssten wir für das Gravitationsfeld einer Punktmasse M die Gravitationskraft (F) durch die “Probemasse” m dividieren, um die “Gravitationsfeldstärke” g zu erhalten:

\( \Large \vec{g} = \frac{\vec{F}}{m} = G \frac{M}{r^2} \\\ \)  (in radialer Richtung)

Diese “Gravitationsfeldstärke” wird aus historischen Gründen “Gravitationsbeschleunigung” genannt.

Analogie: Magnetisches Feld

Auch beim Magnetismus stellt man sich ein Kraftfeld vor: das Magnetische Feld

Elektrostatik: Coulombsches Gesetz

Das Elektrische Feld einer Punktladung q ist:

\( \Large E = \frac{1}{4 \pi \epsilon_0} \frac{q}{r^2} \\\ \) (in radialer Richtung)

Daraus ergibt sich das sog. Coulombsche Gesetz für die Anziehungskraft zweier elektrischer Ladungen:

\( \Large F = \frac{1}{4 \pi \epsilon_0} \frac{q_1 \cdot q_2}{r^2} \\\ \)

Elektrostatische Kraft im Wasserstoffatom

Link: https://www.leifiphysik.de/elektrizitaetslehre/ladungen-elektrisches-feld/aufgabe/elektrische-kraefte-im-wasserstoffatom

Wobei im Wasserstoffatom gilt:

  • Elektrische Ladung eines Elektrons: \( q_e = -1.6 \cdot 10^{-19} C \)
  • Elektrische Ladung eines Protons: \( q_p = +1.6 \cdot 10^{-19} C \)
  • Masse eines Elektrons: \( m_e = 9.1 \cdot 10^{-31} kg \)
  • Angenommene Entfernung Proton-Elektron: \( r = 5.29 \cdot 10^{-11} m  \)  (Bohrscher Radius)

Damit errechnet sich die elektrische Anziehungskraft zwischen Proton und Elektron im Wasserstoffatom (unter Vernachlässigung anderer Kräfte) zu:

\( \Large F = \frac{1}{4 \cdot 3.1415 \cdot 8.8541 \cdot 10^{-12}}   \cdot \frac{1.6 \cdot 1.6 \cdot 10^{-38}}{5.29^2 \cdot 10^{-22}}  N \\\ \)

Ausgerechnet:

\( \Large F = \frac{1}{111.2639 \cdot 10^{-12}}   \cdot   0.0914805 \cdot 10^{-16}   N  \)

Weiter gerechnet:

\( \Large F = \frac{ 0.0914805}{111.2639}  \cdot 10^{-4}   N = 0.0008221939 \cdot 10^{-4} N = 8.221939 \cdot 10^{-8} N \)

Kreisbahn im Wasserstoffatom

Für eine Kreisbahn ist eine Zentripedalkraft in gleicher Höhe wie die zentrale Anziehungskraft erforderlich.  Bei einer Bahngeschwindigkeit von v und einem Bahnradius von r ist die Zentripedalkraft:

\( \Large F = \frac{m \cdot v^2}{r} = 8.221939 \cdot 10^{-8}N \)

Also

\( \Large v =\sqrt{\frac{8.221939 \cdot 5.29 \cdot 10^{-19}}{9.1 \cdot 10^{-31}}} m/s = \sqrt{4.779568 \cdot 10^{12}} m/s = 2.186222 \cdot 10^6 m/s \)

Vergleich zur Lichtgeschwindigkeit

Im Vergleich zur Lichtgeschwindigkeit von 299792 km/s = 2.99792 · 108 m/s sind das ca. 0,73% also noch nicht “relativistisch”.

Das Problem dieses “simplen” Atommodells ist also nicht, dass die (theoretische) Bahngeschwindigkeit des Elektrons zu schnell sein müssste; verglichen zur Lichtgeschwindigkeit, sondern das Problem liegt darin, dass ein bewegtes (und beschleunigtes) Elektron ein Magnetfeld abstrahlen müsste und damit laufend Energie verlieren würde.