Mathematik: Körper (Grundlagen)

Gehört zu: Mathematik
Siehe auch: Gruppentheorie, Vektorraum, Taylor-Entwicklung

Stand: 25.12.2023

Axiomatische Definition eines Körpers

Ein Körper ist eine Menge K mit zwei (zweistelligen) Verknüpfungen, die meist Addition und Multiplikation genannt werden. Für die folgende Axiome gelten:

(1) Bezüglich der Addition genannten Verknüpfung soll die Menge eine abelsche Gruppe sein – das Neutrale Element schreiben wir als: 0.

(2) Bezüglich der Multiplikation genannten Verknüpfung soll die Menge K ohne das Element 0 eine abelsche Gruppe sein – das Neutrale Element schreiben wir als: 1.
Es gibt also zu jedem Element \( k \in K  \text{ aber } k \neq 0 \)  ein Inverses, geschrieben \( k^{-1} \); also: \( k \cdot k^{-1} = 1 \).

(3) Distributivgesetz: \( a \cdot (b + c) = (a \cdot b) + (a \cdot c) \)

Beispiele

Die Menge der Ganzen Zahlen \( \mathbb{Z} \) bildet keinen Körper, sonder (nur) einen Ring.

Die Menge der Rationalen Zahlen \( \mathbb{Q} \) bildet einen Körper.

Die Menge der Reellen Zahlen \( \mathbb{R} \) bildet einen Körper.

Die Menge der Komplexen Zahlen \( \mathbb{C} \) bildet einen Körper.

Ordnungsrelation auf \( \mathbb{Q} \)

Im Körper der Rationalen Zahlen \( \mathbb{Q} \)  können wir eine Ordnungsrelation definieren durch:

\( \Large \frac{a}{b} \ge \frac{c}{d} \normalsize \text{ genau dann, wenn: } a d \ge c b \text{ in } \mathbb{Z}  \)

Norm in \( \mathbb{Q} \)

Für ein Element  \( a \in \mathbb{Q} \) können wir eine Norm |a| definieren:

\( |a| = a \text{ wenn } a \geq 0, -a \text{ wenn } a  \lt 0  \\ \)

Diese Norm ist abgeschlossen in \( \mathbb{Q} \), denn es gilt:

\( a \in \mathbb{Q} \Rightarrow -a \in \mathbb{Q} \\\)

Folge und Grenzwert

Als Folge in einem Körper K wir bezeichnet eine Abbildung:

\( \mathbb{N} \to K \)

Meist geschrieben als: a1, a2, a3,… mit ai aus K.

Cauchy-Folge

Eine Folge ai heisst Cauchy-Folge wenn für jedes (noch so kleine)  ε > 0 eine natürliche Zahl Nε exisistiert, sodass:

\( | a_n – a_m | < ε \text{ für alle } n,m \in \mathbb{N} \text{ mit } n, m > N_\epsilon \\\)

Die Elemente einer Cauchy-Folge rücken also beliebig dicht aneinander.

Grenzwert einer Folge

Eine Folge ai hat einen Grenzwert g ∈ K wenn für jedes ε > 0 eine natürlche Zahl Nε exisistiert, sodass:

\( | a_n – g | < ε \text{ für alle } n \in \mathbb{N} \text{ mit } n \gt N_\epsilon\\\)

Die Elemente der Folge kommen dem Grenzwert beliebig nahe.

Falls so ein Grenzwert exisitiert, schreiben wir:

\( \lim  \limits_{i \to \infty}  {a_i} = g \\\)

Vektorraum

Jeder Körper K ist auch ein Vektorraum über K (also über sich selbst).

Physik: Wärmepumpe

Gehört zu: Physik
Siehe auch: Thermodynamik

Stand: 25.10.2023

Prinzip der Wärmepumpe

Gestern (24.10.2023) konnte ich als Ringvorlesung “Physik im Alltag”  von Herrn Prof. Dr. Markus Drescher hören, der über das Thema “Physik der Wärmepumpe” sprach.
Link: https://www.physik.uni-hamburg.de/oeffentlichkeit/veranstaltungen/ringvorlesung.

Der physikalische Prozess ist ja im Prinzip einfach ein umgekehrter Carnotscher Kreisprozess. Wir haben also vier thermodynamische Zustände, mit vier  Zustandsveränderungen, die am Ende wieder beim Ausgangszustand landen. So ein Kreisprozess ist schon seit längerem bekannt und technisch realisiert in unseren elektrischen Kühlschränken (auch: Wäschtrockner, Klimaanlage,…).

Wir haben ein externes Wärmereservoir mit der Temperatur T1. Die Wärmepumpe soll dort Wärme entnehmen und in einen zu heizenden Raum pumpen.

Zustand 1: Das Arbeitsmedium ist gasförmig und habe einen Druck von p1 und eine Temperatur T1 . Diese Anfangstemperatur T1 soll die Temperatur des externen Wärmereservoirs sein.

Zustandsübergang 1 nach 2: Kompression durch Verrichtung mechnischer Arbeit.
Das gasförmige Arbeitsmedium wird mit mechanischer Arbeit W zusammengedrückt (durch einen Kompressor).
Die Temperatur und der Druck des Arbeitsmediums erhöhen sich.
Das Arbeitsmedium muss so weit zusammengedrückt werden, dass die Temperatur oberhalb der Temperatur des Heizwassers (Vorlauftemperatur) liegt.

Zustand 2: Der Druck ist auf p2 und  die Temperatur auf T2 gestiegen.

Zustandsübergang 2 nach 3: Wärmetransport vom Arbeitsmedium zu der Heizflüssigkeit im zu heizenden Raum (Vorlauftemperatur).
Das warme Arbeitsmedium wird durch Kontakt mit dem Heizwasser im zu heizenden Raum (Wärmetauscher) soweit abgekühlt , dass ein Temperaturausgleich stattfindet. Das heisst, es wird eine gewisse Wärmemenge ΔQ in das Heizwasser transportiert.

Zustand 3: Die Temperatur des  des Arbeitsmediums ist gesunken auf T3. Beim unverändert hohen Druck ist das Arbeitsmedium jetzt flüssig geworden.

Zustandsübergang 3 nach 4: Das Arbeitsmedium wird entspannt d.h. der Druck wird von p2 zurück auf p1 entspannt. Dabei kühlt sich das Arbeitsmedium stark ab, so dass die Temperatur unterhalb der Temperatur des externen Wärmereservoirs liegt; sagen wir auf T4 < T1.

Zustand 4: Die Temperatur des Arbeitsmediums ist weiter gesunken auf T4, der Druck ist wieder bei p1.

Zustandsübergang 4 nach 5: Wärmetransport vom externen Wärmereservoir in das Arbeitsmedium. Durch Kontakt mit dem  Wärmereservoir (Wärmetauscher) wird die Temperatur auf den ursprünglichen Wert T1 erhöht. D.h. es wird eine gewisse Wärmemenge ΔQ aus dem externen Wärmereservoir entnommen.

Zustand 5 = Zustand 1
Temperatur T1 Druck p1, Das Arbeitsmedium ist jetzt wieder gasförmig geworden.

In jedem Zyklus investieren wir also eine mechanische Arbeit von W und gewinnen (pumpen) eine Wärmemenge ΔQ.

Effizienz einer Wärmepumpe

In jedem Zyklus der Wärmepumpe stecken wir also eine Energiemenge (W), als mechanische Arbeit zur Kompression, hinein und entnehmen dem externen Reservoir eine Energiemenge ΔQ (Wärmemenge). Als Kennzahl für die “Effizienz” dieses Prozesses nehmen wir die sog. “Leistunsgzahl” (englisch: “Coefficient of Performance” COP):

\( \Large  COP = \frac{\Delta Q}{W} \\   \)

Dieser COP besagt also, wieviel Wärmemenge bekomme ich heraus (gepumpt) im Verhältnis zur hineingesteckten mechanischen Energie.

Der Prozess in der Wärmepumpe entspräche genau einem umgekehrten Carnotschen Kreisprozess, wenn er “reversibel” wäre. Dazu müssten in den Wärmetauschern am Ausgang tatsächlich die beiden Temperaturniveaus identisch sein. Für diesen Idealfall kann man das physikalisch berechnen als:

\( \Large  COP = \frac{T_3}{T_3 – T_1} \\   \)

Dies ist aber “nur” der physikalisch maximal mögliche COP. In der technischen Realisierung haben wir es aber immer mit unvollkommenen Prozessen und Verlusten zu tun, sodass in den real exsitierenden Wärmepumpen wir tatsächlich nur so etwa die Hälfte dieses physikalisch möglichen Werts erreichen.

Wenn die Temperatur des externen Wärmereservoirs jahreszeitlich schwankt (wenn man z.B. Aussenluft als Reservoir nimmt) wird vielfach ein sog. Seasonal COP (“SCOP“) genommen. Der ist ein Mittelwert aus vier COP-Werten bei vier unterschiedlichen Außentemperaturen.

Eine noch realistischere Kennzahl ist die JAZ (Jahresarbeitszahl). Da wird die übers Jahr tatsächlich “erzeugte” Wärmemenge ins Verhältnis gesetzt zur tatsächlich eingesetzten Strommenge; dazu muss man diese beiden Werte mit speziellen Zählern einzeln messen.

Beispiel:

Das externe Wärmereservoir sei die Aussenluft mit einer Temperatur T1 von 0° C.
Die Temperatur beim Wärmeaustausch (gewünschte Vorlauftemperatur der Heizung) möge sein: T3 = 40° C.

Um obige Formel anwenden zu können, müssen wir die Temperaturen in Kelvin umrechnen:

T1 = 273 K
T3 = 313 K

Damit bekommen wir:

\(  \Large COP = \frac{273}{313 – 273} = \frac{273}{40} =  6,825   \\\)

In der technischen Realisierung könnten wir uns freuen, wenn wir einen COP von 3 erreichen würden.

Phasenübergänge

Besonders effizient arbeitet eine Wärmepumpe dann, wenn das Arbeitsmedium bei der Wärmeaufnahme und der Wärmeabgabe die Temperatur nicht großartig ändert, sondern stattdessen ein sog. Phasenübergang stattfindet.

Statt einer großen Temperaturdifferenz bei der Erwärmung, wäre ein Phasenüberang von flüssig zu gasförmig gut; also beim Zustandsübergang 4 nach 1.
Statt einer großen Temperaturdifferenz beim Abkühlen, wäre ein Phasenübergang von gasförmig zu flüssig gut; also beim Zustandsübergang 2 nach 3.

Die Abgabe von Wärme und die Aufnahme von Wärme erfolgt in sog. Wärmetauschern.  In den beiden Wärmetauschern arbeitet man mit einem geeigneten Druck, sodass genau in dem Wärmetauscher ein Phasenübergang stattfindet (bei gegebenen Temperaturverhältnissen und gegebenem Arbeitsmedium). Beispielsweise 2 bar bei der Wärmeaufnahme und 12 bar bei der Wärmeabgabe.

Youtube-Video: Ganteföhr Energie und Klima

Technische Realisierung einer Wärmepumpe

Das Arbeitsmedium in der Wärmepumpe wird technisch auch “Kältemittel” genannt. Es wird nicht verbraucht, sondern befindet sich in einem geschlossenen System in einem ewigen Kreislauf. Nach dem heutigen Stand der Technik (2023) kommt hierfür praktisch nur Butan (früher: FCKW) zum Einsatz.

Die zu leistende mechanische Arbeit wird ein kleiner Elektromotor besorgen. Woher der Strom dafür kommt, wäre eine weitere Frage…

Das externe Wärmereservoir muss sehr groß sein; so groß, dass eine Entnahme einer kleinen Wärmemenge die Temperatur des Reservoirs unverändert lässt. Als so ein Wärmereservoir kommt in der Praxis infrage:

  • Das Grundwasser
  • Das Erdreich
  • Die Aussenluft
  • Fließende Gewässer
  • Das Meer

Interessant zu wisssen ist, dass auch wenn es draussen richtig kalt ist, trotzdem diese “kalte” Draussenluft sehr viel Wärme-Energie enthält.
Erst bei einer Temperatur von -273° C wäre keine Wärme-Energie mehr da.

 

 

 

 

 

Mathematik: Äquivalenzrelation

Gehört zu: Mathematik
Siehe auch: Gruppentheorie
Benutzt: Latex-Plugin für WordPress

Stand: 10.09.2023

Eine Äquivalenzrelation

Bei meiner Beschäftigung mit der Gruppentheorie bin ich auf das klassische Thema Äquivalenzklassen gestoßen.

Eine Äquivalenzrelation in der Mathematik ist ersteinmal eine “Relation”. Dann soll diese Relation inetwa die Eigenschaften haben, die wir von der klassischen Äquivalenz her kennen: Gleichheit oder Ungleichheit.

Allgemein: Was ist eine Relation?

Auf einer Menge M können wir eine Relation R einfach definieren als eine Teilmenge der geordneten Paare. Also

\( R \subseteq M \times M \\\)

So eine Relation wird dann Äquivalenzrelation genannt, wenn sie noch zusätzlich drei wichtige von der Gleichheitsrelation bekannten Eingenschaften besitzt: reflexiv, symmetrisch, transitiv.

Reflexiv: \( (a,a) \in R \text{ für alle } a \in M \\\)

Symmetrisch:  \( \text{Wenn } (a,b) \in R \text{ dann ist auch } (b,a) \in R \\\)

Transitiv: \( \text{Wenn } (a,b) \in R \text{ und } (b,c) \in R \text{ dann ist auch } (a,c) \in R \\\)

Wenn es aus dem Kontext klar ist, welche Relation gemeint ist, schreibt man auch einfach: \( a \sim b\text{  für } (a,b) \in R \)

Äquivalenzklassen

Wenn ich eine Äquivalenzrelation R auf einer Menge M habe, kann ich damit zu jedem Element m ∈ M eine Teilmenge von M definieren:

\( [m]_R =  \{ x \in M \,|\, (m,x) \in R \} \\\)

Diese Teilmenge nennt man Äquivalenzklasse von m (bezüglich der Relation R auf M). Wenn man zwei Äquvalenzklassen betrachtet, sind diese entweder identisch oder disjunkt.
Da jedes Element der Menge M auch in einer (genau einer) Äquivalenzklasse vorkommt, bilden die Äquivalenzklassen also eine (disjunkte) Partition von M.

Faktor-Mengen

Wenn wir die Menge der Äquivalenzklassen betrachten ist aus unserer ursprünglichen Relation dort die Gleichheitsrelation geworden.
Die Menge der Äquivalenzklassen zu einer Relation R über M bezeichnet man auch als Faktor-Menge oder Quotienten-Menge und schreibt:

\( M/R = \{ [m]_R \,|\,  m \in M \} \\ \)

Beispiele von Konstruktionen mit Hilfe von Faktormengen

Generell kann man mit diesem Mechanismus viele interessante mathematische Gebilde konstruieren…

Die Menge der ganzen Zahlen: \( \mathbb{Z} = (\mathbb{N}^2 \times \mathbb{N}^2) / R_1 \)
Wobei die Relation R1 definiert wird als: (n1, n2) ∼ (m1, m2) genau dann wenn n2 + m1 = m2 + n1

Die Menge der rationalen Zahlen: \( \mathbb{Q} = (\mathbb{Z}^2 \times \mathbb{Z}^2) / R_2 \)
Wobei die Relation R2 definiert wir als: (n1, n2) ∼ (m1, m2) genau dann wenn n2 · m1 = m2 · n1

Äquivalenzklassen in der Gruppentheorie

In der Gruppentheorie kann man mittels einer Untergruppe H einer Gruppe G sog.  “Cosets” zu jedem Element g aus G bilden:

\(  gN = \{ x \in G \, | \, \exists h \in H \text{ with } x = g \cdot h \} \\\)

Diese Cosets (deutsch: Nebenmengen) bilden eine disjunkte Überdeckung der Gruppe G.

Ich kann mir auch ganz einfach eine Äquivalenzrelation R definieren, die diese gleichen Nebenmengen als Äquivalenzklassen erzeugt. Dazu muss ich nur definieren, wann zwei Elemente x und y aus G  zueingabder in Relation stehen sollen…

Ich versuche es einmal mit: \( R = \{ (x,y) \, | \, \exists h \in H : h\cdot x = h \cdot y \} \\ \)

Ist das wirklich eine Äquivalenzrelation (1) und erzeugt sie tatsächlich die gewünschen Äquivalenzklassen (2)?

Ad (1): Als Äquivalenzrelation wäre zu überprüfen:

Reflexivität; d.h. ist (x,x) immer in R? Offensichtlich stimmt das.

Symmetrie: d.h. wenn (x,y) in R liegt, liegt dann auch (y,x) in R?

Wenn demnach (x,y) in R liegt, existiert ein h in H sodass hx = hy. Dann ist mit dem gleichen h aus H auch hy = hx. Also ist R symmetrisch.

Transitivität:

Wenn (x.y) und (y,z) in R liegen, so heisst das: Es gibt ein h1 und ein h2 in H sodass gilt: h1 x = h1 y und h2 y = h2 z.
Man könnte es mit h = h1 h2 versuchen, was bei einer kommutativen (abelschen) Gruppe funktionieren würde…

Vertiefung

YouTube-Video:https://www.youtube.com/watch?v=E8gItS9vGKg

YouTupe-Video zum Tensor-Produkt:https://www.youtube.com/watch?v=KnSZBjnd_74

Mathematik: Gruppentheorie

Gehört zu: Mathematik
Siehe auch: Standardmodell der Elementarteilchenphysik, Symmetrien, Äquivalenzrelation
Benutzt: Latex-Plugin für WordPress

Stand: 30.8.2023

Was ist eine Gruppe?

Bei meiner Beschäftigung mit dem Standardmodell der Elementarteilchen bin ich auf das klassische Thema der Gruppentheorie gestoßen.

Eine Gruppe in der Mathematik ist eine Menge mit einer “inneren” Verküpfung (die man gerne mit dem Symbol “+” schreibt) und die bestimmten, unten aufgeführten Axiomen genügt.

Die Verknüpfung

Die Menge bezeichnen wir mal mit M und nehmen dann zwei Elemente aus dieser Menge:

\( a \in M \) und \( b \in M \)

Dann soll die Verknüpfung (geschieben als +) von a und b wieder in der Menge M liegen:

\( a + b \in M \)

Die Axiome

Damit das ganze dann eine Gruppe ist, müssen folgende Axiome gelten:

Assoziativgesetz:

\( (a + b) + c = a + (b + c) \\ \)

Existenz eines “neutralen Elements” e, sodass:

\( \exists e \in M \space \forall a \in M: a + e = a \\\)

Existenz eines inversen Elements zu jedem Element der Gruppe:

\( \forall a \in M \space \exists b \in M : a + b = e \\ \)

Beispiel 1: Die ganzen Zahlen

Die Menge der ganzen Zahlen \(\mathbb{Z}\) mit der Addition als Verknüpfung bildet eine Gruppe.

Beispiel 2: Die Kleinsche Vierergruppe

Die Kleinsche Vierergruppe (nach Felix Klein 1849-1925) besteht aus vier Elementen, wobei jedes Element mit sich selbst invers ist.

Die Menge schreiben wir als:
V = {e, a, b, c}

Die Verknüpfung definieren wir über eine Verknüpfungstafel (auch Cayley Table genannt):

e a b c
e e a b c
a a e c b
b b c e a
c c b a e

Wie man leicht sieht, werden mit der so definierten Verknüpfung die Gruppenaxiome erfüllt.

Beispiel 3: Die komplexen Zahlen auf dem Einheitskreis

In der komplexen Zahlenebene \(\mathbb{C}\) ist er Einheitskreis einfach die Teilmenge S der komplexen Zahlen, die wir definieren als:

\(S = \{ z \in \mathbb{C} \space : \space  |z| = 1  \} \\ \)

Als Verknüpfung auf dieser Menge nehmen wir die Multiplikation der komplexen Zahlen; geometrisch können wir uns das als Drehungen vorstellen.

Damit wird das Ganze eine Gruppe.

Symmetrien und Drehungen

Gruppen kann man also ganz axiomatisch Definieren, wie oben; in der Praxis sind die Elemente einer Gruppe typischerweise die Symmetrien eines Objekts.

Ganz allgemein bilden die Symmetrien eines Objekts eine Gruppe. Eine speziell Art von Symmetrien sind Drehungen.

Die Leute, die sich mit den verschiedenen Arten von “Drehungsgruppen” als Spezialgebiet beschäftigen, bezeichnen die Gruppe der komplexen Zahlen auf dem Einheitskreis auch gerne als U(1); wobei die “1” bedeuten soll, dass wir nur eine Drehachse haben und das “U” steht für “unitär”, was man gerne zu einer Verknüpfung (Abbildung) sagt, wenn die Länge gleich bleibt (“längentreu”) – allerdings müsste man dann den Begriff “Länge” noch definieren.

Solche Gruppen, die aus Drehungen bestehen, spielen später im Standardmodell der Elementarteilchenphysik eine wichtige Rolle. Wobei eine Drehung auch als sog. “kontinuierliche Symmetrie” bezeichnet wird.

Da solche Drehungen ja “kontinuierlich” (im Gegensatz zu Spiegelungen) um auch beliebig kleine Winkel stattfinden können, kommt man damit auch in das Gebiet der Differentialgeometrie und letztlich zum Begriff der Lie-Gruppen (nach Sophus Lie, 1842-1899).

Vergleiche hierzu auch das YouTube-Video von Josef Gassner: https://www.youtube.com/watch?v=zFhjF6sfY4o

Nur für Mathematiker:
Drehungen im n-dimensionalen komplexen Raum sind lineare Abbildungen und damit als eine spezielle Art von nxn-Matrizen darstellbar.
\(U(n) = \{ U \in \text{ nxn Matrix } | \space U^\dagger U = I \} \)
Die nxn-Matrizen werden auch “General Linear Group” genannt und man schreibt sie als: \(GL(n,\mathbb{C}) \), wobei man zusätzlich fordert: det(U)>0 damit jede Matrix U invertierbar ist und so \(GL(n,\mathbb{C}) \) eine Gruppe ist.

Direktes Produkt von Gruppen

Wenn wir zwei Gruppen G und H haben, können wir das sog. “Direkte Produkt” dieser zwei Gruppen bilden, indem wir von den Mengen das cartesische Produkt \(G \times H\) nehmen und eine Verknüpfung auf diesem cartesischen Produkt komponentenweise definieren.
Wenn wir die Verknüpfungen mit dem Zeichen “+” schreiben, wäre das also:

\((g_1,h_1) + (g_2,h_2) = (g_1+g_2,h_1+h_2) \text{ wobei } g_1, g_2 \in G \text{ und } h_1,h_2 \in H\\\)

Wobei uns klar ist, dass das Symbol “+” hier für drei verschiedene Verknüpfungen benutzt wird.
Die Menge \(G \times H\) ausgestattet mit der so definierten Verknüpfung bezeichnet man als “Direktes Produkt” der Gruppen G und H und schreibt das als \(G \oplus H\).

Physik: Tscherenkow-Strahlung

Gehört zu: Physik
Siehe auch: Elementarteilchen, Lichtgeschwindigkeit, Brechungsindex

Stand: 3.8.2023

Tscherenkow-Strahlung

auch: Cherenkov-Strahlung

Tscherenkow-Strahlung ist eine elektromagnetische Strahlung, die durch den Tscherenkow-Effekt entsteht. Benannt nach Pawel Alexejewitsch Tscherenkow (1904-1990), der  zusammen mit Kollegen 1934 diese Strahlung entdeckte. Nobelpreis 1958.

Der Tscherenkow-Effekt entsteht, wenn schnelle elektrisch geladene Teilchen (z.B. Elektronen) in ein Medium eintreten, in dem die Lichtgeschwindigkeit kleiner ist, als die Geschwindigkeit der Teilchen.

Der Tscherenkow-Effekt kann nur in Medien mit Brechungsindex n>1 auftreten, weil im Gegensatz zur Lichtgeschwindigkeit im Vakuum von c = 299 792,458 km/s z. B. die Lichtgeschwindigkeit in Wasser nur etwa c′ ≈ 225 000 km/s beträgt und so Teilchen dort schneller sein können als dort das Licht.

Die ausgesandte Strahlung entlang der Flugbahn beschreibt einen sogenannten Mach-Kegel. Das Tscherenkow-Licht ist somit das optische Analogon zum Überschallkegel, der entsteht, wenn Flugzeuge sich schneller als der Schall fortbewegen.

Wo kann man Tscherenkow-Strahlung beobachten?

Im Abklingbecken von Kernkraftwerken

In der Hochatmoshäre, ausgelöst durch kosmische Strahlung

Astronomie: Synchrotron-Strahlung

Gehört zu: Physik
Siehe auch: Quantenmechanik, Relativitätstheorie, Elementarteilchen

Stand: 02.08.2023

Synchrotron-Strahlung

Wenn sich elektrisch geladene Teilchen (z.B. Elektronen) gleichförmig bewegen, geschieht nichts besonderes.

Wenn sich solche Teilchen (z.B. Elektronen) aber nicht gleichförmig bewegen, also bescheunigt werden, gebremst werden oder ihre Richtung verändern, dann entsteht elektromagnetische Strahlung; d.h. es werden Photonen abgestrahlt, die der Energiedifferenz entsprechen. Allgemein heisst so eine Strahlung “Bremsstrahlung”.

Abbildung 1: Bremsstrahlung (Wikipedia)

Bremsstrahlung

Abbildung 2: Bremsstrahlung (http://microanalyst.mikroanalytik.de/info1.phtml)

Klassische Bremsstrahlung

Ein klassische Anwendung dieses Effekts ist das Erzeugen von Röntgen-Strahlen. Dazu werden Elektronen beschleunigt und dann auf ein Stück Metall geschossen, wo sie durch das Coulomb-Feld der Metallatome abgebremst werden.

Relativistische Bremsstrahlung

Wenn man zu sehr hohen Energien (v > 0,9 c) kommt, kann man  relativistische Effekte nicht mehr vernachlässigen; man spricht dann von “relativistischen” Teilchen (z.B. Elektronen). Diese Art Bremsstrahlung nennt man “Synchrotron-Strahlung”; auch weil solche hohen Energien praktisch nur in Teilchenbescheunigern mit Magnetfeldern erzielt werden können.

Die Richtung dieser Synchrotron-Strahlung ist tangential zur Bahn des bewegten Teilchens – vorrangig nach vorne, aber auch etwas nach hinten.

Der Name Synchrotron-Strahlung

Man nennt das “Synchrotron-Strahlung”, weil diese Strahlung zu erst (1947) in Teilchenbeschleunigern, die man Sychrotron nannte, auftrat und nachgewiesen wurde. In einem solchen Teilchenbeschleuniger werden geladene Teilchen (z.B. Elektronen) durch Magnete so abgelenkt, dass ein Kreisbahn entsteht, was eine Beschleunigung bedeutet.

Stärke der Synchrotron-Strahlung

Je größer die Geschwindigkeitsänderung pro Zeiteinheit (also die Beschleunigung als Vektor) ist, desdo intensiver ist auch die Synchrotron-Strahlung, wobei ein breites Spektrum entsteht: vom Infrarot bis zum Röntgenbereich…

Da viele Elektronen unterschiedlich stark abgelenkt bzw. abgebremst werden, entstehen Photonen mit unterschiedlichen Energien. Die Energieverteilung der Photonen ist deswegen kontinuierlich und breit. Bremsstrahlung hat ein kontinuierliches Spektrum.

Wenn man besonders starke Synchrotron-Strahlung herstellen will, reichen “einfache” Teilchenbescheuniger, wie Synchrotrons den Forschern aber nicht mehr aus. Man muss dann die bewegten geladenen Teilchen durch  Parcours von starken Magneten schicken, sodass sie bei diesen vielen Richtungswechseln tausendmal stärker als in den Kurven eines klassischen Ringbeschleunigers strahlen.

Synchrotron-Strahlung in der Astronomie

Synchrotronstrahlung gibt es nicht erst seit es Teilchenbeschleuniger gibt, sondern auch im Weltall gibt es Quellen.

In der Astronomie beobachtet man Synchrotronstrahlung immer dann, wenn sich ein heißes Plasma in einem Magnetfeld befindet. Beispiele für kosmische Synchrotronquellen sind Pulsare, Radiogalaxien und Quasare.

Bei astronomischen Synchrotronquellen, kann es auch weniger energetische Synchrotronstrahung geben, die dann Frequenzen im Radiobereich hat.

Physik: Tunneleffekt

Gehört zu: Physik
Siehe auch: Kernfusion, Quantenmechanik
Benutzt: Fotos vom Spiegel

Stand: 02.07.2013

Was ist der Tunneleffekt?

Tunneleffekt ist eine anschauliche Bezeichnung dafür, dass ein Teilchen eine Potentialschwelle auch dann überwinden kann, wenn seine Energie geringer als die „Höhe“ der Barriere (Schwelle)  ist. In der klassischen Physik ist das nicht möglich, aber in der Quantenphysik gibt es das mit einer gewissen Wahrscheinlichkeit.

Der Spiegel

Quelle: https://www.spiegel.de/fotostrecke/erwischt-elektronen-beim-tunneln-fotostrecke-20657.html

Beispiel einer Potentialschwelle

Elektrisch gleichnamig geladene Teilchen stoßen sich ab –  wie z.B. zwei Protonen durch ihr elektrisches Feld (das Coulomb-Potential). Diese abstoßende Kraft steigt an, je näher sich die Teilchen kommen (mit r-2).

Eine “Potentialschwelle” kommt hier dadurch zustande, dass die Starke Kernkraft anziehend wirkt und bei kleineren Abständen stärker ansteigt, als die abstoßende elektromagnetische Kraft. Das Überwinden einer solchen Potentialschwelle, auch wenn die Energie dafür eigentlich nicht reicht, ist ein quantenmechanischer Effekt, der mit einer gewissen Wahrscheinlichkeit auftreten kann.

Die Stärke der sog. Starken Kernkraft, die zwei Protonen bei kleinem Abstand anzieht, ist nur durch sehr aufwendige Berechnungen zu ermitteln. Denn diese Starke Kernkraft wirkt primär zwischen den Quarks im Inneren eines Protons. Man spricht dann noch von einer “restlichen” Wirkung. Dazu das Stichwort: Gamow Peak.

Berechnung des Tunneleffekts

Zuerst müssten wir das Potential des betrachteten Teilchens in Abhängigkeit vom Ort  mit einer Funktion V(x) beschreiben.

Diese Potentialfunktion können wir dann in die stationäre Schrödinger-Gleichung einsetzen.

Diese Schrödinger-Gleichung ist damit eine Differentialgleichung, deren Lösung die Wellenfunktion Φ des betrachteten Teilchens ist. Damit haben wir sich die Aufenthaltswahrscheinlichkeit |Φ|² des Teilchens in Abhängigkeit von seinem Ort, welche auch jenseits der Potientialschwelle größer als Null ist.

Beispiel des Tunneleffekts

Bei der Kernfusion in unserer Sonne findet in der Hauptsache der sog. p-p-Prozess statt. Der p-p-Prozess beginnt mit der Verschmelzung zweier Protonen und der anschließenden Umwandlung eines Protons in ein Neutron und eine Positron, sodass ein Deuterium-Kern 2H entsteht.

\( ^1H +  {^1H}  \to  {^2H} + e^+ + \nu_e + 0.42 MeV \\\)

Für diesen ersten Reaktionsschritt muss die Potentialschwelle zwischen den beiden Protonen 1H überwunden werden, was der Tunneleffekt ermöglicht. Die Wahrscheinlichkeit dafür ist aber so klein, dass die durchschnittliche Reaktionszeit  1.4 1010 Jahre (in unserer Sonne) beträgt.

Quelle: https://sternentstehung.de/von-wasserstoff-zu-helium-die-pp-kette

Physik: Phasenraum

Gehört zu: Mechanik, Physik
Siehe auch: Newtonsche Mechanik, Lagrange-Formalismus
Benutzt: SVG-Grafiken aus Github

Stand: 06.04.2023

Quellen

Anregungen hierzu habe ich von Stefan Müllers Youtube-Video

erhalten.

Der Phasenraum

Im Phasenraum (auch Zustandsraum genannt) bezeichnen die Punkte die Zusände eines mechanischen Systems.

Der Zustand eines mechanischen Systems (zu einer Zeit t) kann durch Ort und Geschwindigkeit seiner Massepunkte beschrieben werden.

Dazu dienen sog. “generalisierten Koordinaten” (auch “verallgemeinerte Koordinaten” genannt).

Solche generalisierten Koordinaten werden meist geschreiben als:

  • Ortskoordinaten: \( q_1, q_2,…,q_i,…  \)
  • Geschwindigkeiskoordinaten:  \( \dot{q_1}, \dot{q_2},…, \dot{q_i},… \)

Den Physiker interessiert nun eine Zustandsveränderung mit der Zeit.
Möge ein Zustand 1 (Anfang) beschrieben sein durch \( q_i(t_1), \dot{q_i(t_1} \)
und ein Zustand 2 (Ende) beschrieben sein durch \( q_i(t_1), \dot{q_i(t_1} \).

Diese beiden Punkte im Phasenraum kann man in einem Diagramm des Phasenraums graphisch darstellen.

Es gibt viele Wege auf denen man vom Zustand 1 zum Zustand 2 kommen kann.

Abbildung 1: Wege in einem Phasenraum (Github: Phasenraum.svg)

Wege in einem Phasenraum

Auf jedem dieser Wege kann man das Integral entlang des Weges (nicht: Pfadintegral) der Engergie über die Zeit bilden. Diese Größe nennt man “Wirkung“.
Genaugenommen sind hier (infenitesimale) Energie-Unterschiede entlang des Weges gemeint.

Die Natur wählt nun denjenigen Weg, auf dem diese Wirkung minimal ist.
Hinter dem Begriff “minimal” steckt so eine Idee von “einfacher”, “ökonomischer”,  “sparsamer”,….

Um von so einem Integral das Minimum zu finden bedient man sich der mathematischen Methode der Variationsrechnung. Da werden “kleine” Differenzen betrachtet (geschrieben als kleiner Griechischer Buchstabe Delta) und  diese Differenzen werden dann als Taylorentwicklung dargestellt…

Aber welche “Energie” ist das, die wir da integrieren sollen? In der klassischen Sichtweise ist das die Lagrange-Funktion. Aber wo bekommen wir die denn her???

Wir haben da immer irgendein Kraftfeld, was zu Bewegungsgleichungen führt. Ähnlich wie wir statt eines konservativen Kraftfeldes auch das Potenzial als skalares Feld nehmen konnten, wollen wir nun statt des Potenzials die Lagrange-Funktion nehmen….

Warum ist das dann immer noch richtig?

Computer: Differentialoperatoren

Gehört zu: Mathematik
Siehe auch: Lineare Algebra, Kraftfeld, Arbeit, Schrödinger, Maxwell

Stand: 03.12.2013

Differentialoperatoren: Gradient

Bei einer Funktion von \(\mathbb{R} \to \mathbb{R} \) ist ja klar, was eine Ableitung (Differentialquotient) ist: Anschaulich die Änderungsrate des Funktionswerts an einer bestimmten Stelle…
Wenn der Definitionsbereich einer Funktion nicht mehr \(\mathbb{R}\) sondern \(\mathbb{R}^3\) ist, nennt man eine solche Funktion auch ein “Skalarfeld”, weil durch die Funktion jedem Punkt im Raum \(\mathbb{R}^3\) ein skalarer Wert zugeordnet wird (Beispiel: Temperatur). Eine “Änderungsrate” einer solchen Funktion wäre dann ja von der Richtung abhängig, in die ich gehe; also muss so eine “Änderungsrate” ein Vektor werden. So eine “Änderungsrate” eines Skalarfeldes nennt man dann den “Gradienten” s.u.

Sei also \( \Phi \) eine Funktion \(\Phi: \mathbb{R}^3 \to \mathbb{R} \) dann ist der Gradient von \( \Phi \) :

\( \Large grad  \enspace\Phi = \left[ \begin{array}{c} \frac{\partial \Phi}{\partial x} \\\ \frac{\partial \Phi}{\partial y} \\\ \frac{\partial \Phi}{\partial z}  \end{array} \right]  \\\  \)

Differentialoperatoren: Nabla

Generell definiert man auf einem Vektorraum dann besondere Abbildungen, sog. Differentialoperatoren. Man benutzt dazu die Koordinatenschreibweise. Wir nehmen hier immer die klassischen Cartesischen Koordinaten. Wenn man andere Koordinatensystem hat, sehen die Formeln dann etwas anders aus.

Wir nehmen als Definitionsbereich für unsere “Felder” den Vektorraum \(\mathbb{R}^3\). dann haben wir partielle Ableitungen nach den drei Koordinaten: x, y und z und man definiert als sog. Nabla-Operator:

\( \Large \nabla = \left[ \begin{array}{c} \frac{\partial}{\partial x} \\\ \frac{\partial}{\partial y} \\\ \frac{\partial}{\partial z}  \end{array} \right]  \\\  \)

Damit kann man dann einfach definieren:

  • Gradient eines Skalarfeldes:  \( \nabla \Phi \) (ist ein Vektorfeld)
  • Divergenz eines Vektorfeldes: \( \nabla \cdot \vec{V} \) (ist ein Skalarfeld)
  • Rotation eines Vektorfeldes: \( \nabla \times \vec{V} \)  (ist ein Vektorfeld)

Dies wird benutzt beispielsweise bei den Maxwellschen Gleichungen und der Schrödinger-Gleichung.

Im einfachen Fall, wenn unser Definitionsbereich nur ein Vektorraum der Dimension 1 ist (\(\mathbb{R}^1\)), ist der Gradient einfach die erste Ableitung.

Kraftfeld und Gradient

In einem konservativen Kraftfeld F(r)  kann man als Skalar ein Potential V(r) definieren, sodass die Kraft der Gradient den Potentials wird:

\( \vec{F}(r) = \nabla V(r) \)

Elektrisches Feld und Divergenz

Ein Elektrisches Feld wird durch eine ruhende elektrische Ladung erzeugt.
Ein Elektrisches Feld ist ein Vektorfeld, das man üblicherweise \( \vec{E} \) schreibt.

Feldstärke  – Feldlinien – xyz

Für das von einer Elektrischen Ladung Q erzeugte E-Feld \( \vec{E} \) gilt:

\( \nabla \cdot \vec{E} = 4 \pi Q \\\)

Da die Elektrische Ladung Q sozusagen das Elektrische Feld erzeugt, nennt man es auch die Quelle des E-Feldes…

Magnetisches Feld

Ein Magnetisches Feld wird durch bewegte elektrische Ladungen erzeugt.
Ein Magnetisches Feld ist ein Vektorfeld, das man üblicherweise \( \vec{B} \) schreibt.

Für ein Magnetisches Feld gilt:

\( \nabla \cdot \vec{B} = 0 \\\)

D.h. es gibt keine Quelle und alle Feldlinien sind geschlossen…

Mathematik: Vektorräume (Grundlagen)

Gehört zu: Mathematik
Siehe auch: Körper, Vektorräume – Lineare Algebra, Matrizen und Vektoren, Bra-Ket-Notation

Stand: 23.12.2023

Was ist ein Vektorraum?

Eine der Voraussetzungen zum Verständnis vieler Dinge (z.B. in der Allgemeinen Relativitätstheorie und der Quantenmechanik) sind sog. Vektorräume und Tensoren.

Es gibt dazu eine Menge Videos auf Youtube; z.B. von 3Blue1Brown:  https://youtu.be/fNk_zzaMoSs  – Playlist:

https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

Ein Vektorraum kann axiomatisch wie folgt definiert werden:

Axiom 1: Vektorräume verfügen über eine Operation, die Vektor-Addition (Vektor plus Vektor ergibt einen Vektor) genannt wird und eine kommutative (abelsche) Gruppe bildet.
Axiom 2: Jeder Vektorraum muss einen Körper  haben, dessen Elemente Skalare genannt werden.  Mit solchen Skalaren können wir  die Vektoren mutiplizieren (“skalieren“); d.h. Skalar mal Vektor ergibt Vektor.

Man spricht dann von einem Vektorraum “über” einem Körper K seiner Skalaren oder kurz von einem K-Vektorraum.

Solche Axiome ergeben eine abstrakte Definition von Eigenschaften; die Frage ist allerdings, ob es tatsächlich “Gebilde” gibt, die diese Axiome erfüllen. Tatsächlich gibt es viele “Gebilde”, die die Vektorraum-Axiome erfüllen: d.h. die tatsächlich Vektorräume sind. Beispiele für Vektorräume sind u.a.:

  • Ein \(\mathbb{R}^n \) wird mit den naheliegenden Operationen Vektorraum über \(\mathbb{R}\)
  • Ein \(\mathbb{C}^n \) wird mit den naheliegenden Operationen Vektorraum über \(\mathbb{C}\)
  • Die Menge der Funktionen auf \(\mathbb{R}\) kann auch als Vektorraum ausgestattet werden…

Ein abstrakter Vektorraum kann auch veranschaulicht werden:

  • Physik: Der Physiker stellt sich Vektoren gern als “Pfeile” vor, die also eine Richtung und eine Länge haben, also eher “geometrisch“.
  • Computer: Der Computer-Mensch stellt sich Vektoren eher als Liste von Komponenten vor (Vektor = Liste) – wozu man aber ersteinmal ein System von Basis-Vektoren (nicht: Koordinatensystem) haben muss.
  • Mathematik: Der abstrakte Mathematiker sagt, Vektoren sind einfach “etwas”, was man addieren kann (Gruppe) und was man mit “Skalaren” skalieren kann – fertig, einfach ein paar Axiome und das war’s.

Linearkombinationen

Mit einem Satz von Vektoren kann man eine sog. Linearkombination bilden, beispielsweise:

Zu einem Satz Vektoren \( \vec{g_1}, \vec{g_2}, …, \vec{g_n} \) wäre eine Linearkombination etwa:

\(    a_1 \vec{g_1} + a_2 \vec{g_2} + … + a_n \vec{g_n}\)

Wobei  wir jeden Vektor \( \vec{g_i} \)mit einem Skalar \( a_i  \) multiplizieren und die Summe bilden.

Vektorbasis und Dimension

Wenn ich mit einem Satz von Vektoren jeden Vektor des Vektorraums durch eine Linearkombination darstellen kann, sagt man “der Satz von Vektoren spannt den Vektorraum auf”. Ist so ein Satz von Vektoren minimal und die Darstellung eines Vektors durch eine Linearkombination damit eindeutig, so  nennt man den Satz von Vektoren eine Vektorbasis.

Soweit ist dies eine axiomatische Definition von Eigenschaften, welche eine Vektorbasis erfüllen muss. Die Frage ist allerdings, für einen bestimmten Vektorraum, ob dort auch tatsächlich eine solche Vektorbasis exsitiert.

Die Antwort lautet: Jeder Vektorraum hat (mindestens) eine Vektorbasis.
Falls ein Vektorraum mehrere Vektorbasen hat sind alle diese Vektorbasen gleich mächtig. Die Kardinalzahl (Mächtigkeit) heist Dimension des Vektorraums, geschrieben dim(V).

Eine Einheitsbasis (normal basis) ist eine Basis, bei der alle Basisvektoren die Länge 1 haben (“auf die Länge 1 normiert sind”).
Was die Länge eines Vektors sein könnte, kommt weiter unten.

Beispiel:

Der euklidische Vektorraum: \(\mathbb{R}^n\)

Dort haben wir z.B. eine Vektorbasis:  \( \vec{e}_i = (\delta_{i}^j) \)

Wobei das Kronecker-Delta bekanntlich definiert ist als:

\( \delta_{i}^j = \left\{\begin{array}{11}    0 & \text{falls } i \ne j  \\ 1 & \text{falls } i = j \\ \end{array} \right. \)

Vektor-Komponenten bezüglich einer Vektorbasis

Damit ich mit einem Vektor so schön herumrechnen kann, ist es enorm praktisch, den Vektor durch “seine” Komponenten darzustellen. Solche “Komponenten” beziehen sich immer auf eine sog. Vektorbasis.

Den Satz von Skalaren mit dem ein Vektor bezüglich einer Vektorbasis als Linearkobination eindeutig dargestellt werden kann nennt man auch die Komponenten des Vektors. Man schreibt also:

\( \vec{a} = \sum\limits_{i=1}^{n}{a_i \vec{g_i}} \)

Dabei sind also die ai die Komponenten des Vektors a bezüglich des gewählten Basisvektorsystems. Der Begriff von Koordinaten in einem Koordinatensystem unterscheidet sich von diesem Begriff der Komponenten bezüglich eines Basisvektorsystems.

Der Physiker möchte die Formeln noch kompakter aufschreiben und führt eine impliziete Summenkonvention ein (nach Einstein). Danach verwenden wir Indizes teilweise unten (klassisch) und auch teilweise oben (neu). Wenn ein gleicher Index oben und unten auftaucht, soll darüber summiert werden (ohne dass man es expliziet schreiben muss). Also in unserem Fall:

\( \vec{a} = a^i \vec{g_i} \)

Man nennt Größen mit einem Index unten “kovariant” und mit einem Index oben “kontravariant” – was man damit eigentlich sagen will werden wir später erfahren.

Komponentenschreibweise

Unsere Rechenregeln für Vektoren kann man nun auch einfach in Komponentenschreibweise ausdrücken:

Vektoraddition: \( \vec{a} + \vec{b} = (a^i + b^i) \vec{g_i}  \)

Skalar-Multiplikation: \( \lambda \vec{a} = (\lambda a^i) \vec{g_i} \)

Schreibweise von Vektoren

Geschrieben werden Vektoren meist als eine Liste ihrer Komponenten, aber nicht waagerecht, sondern senkrecht angeordnet (bei waagerechter Anordnung denkt man eher an einen Punkt im Raum).

\( \Large \vec{v} = \left( \begin{array}{c} x \\\ y \\\ z  \end{array}\right) \)

oder auch in eckigen Klammern:

\( \Large \vec{v} = \left[ \begin{array}{c} x \\\ y \\\ z  \end{array} \right] \)

Wenn ich Vektoren als Liste von Komponenten schreiben will, muss ich ersteinmal ein Basisvektorsystem haben.

Vektoren, und das ist wichtig, exisitieren auch ohne Basisvektorsysteme, also einfach geometrisch im Raum. Unabhängig von einem Basisvektorsystem hat jeder Vektor eine Länge und eine Richtung. Dies sind also sog. “Invarianten”; d.h. bei Änderung des Basisvektorsystems ändern sich diese Eigenschaften nicht.
Also: Vektoren ansich sind invariant gegenüber einem Wechsel des Basisvektorsystems. Aber die Vektorkomponenten verändern sich beim Wechsel des Basisvektorsystems, sind wie man sagt “variant“. Wie Vektorkomponenten bei Wechsel des Basisvektorsystems hin- und hergerechnet werden können, behandeln wir weiter unten. So ein Vektor ist damit der Sonderfall eines Tensors, nämlich ein Tensor vom Rang 1.

Lineare Abbildung (Lineare Transformation)

Wir betrachten zwei Vektorräume V und W über dem gleichen Körper K habe. Eine Abbildung \(  f: V  \to W  \) nennt man auch Transformation. Wenn V=W ist spricht man auch von einer Operation auf V und nennt f einen Operator.

Lineare Transformationen sind Transformationen, bei denen Geraden Geraden bleiben und der Null-Punkt (Origin) unverändert bleibt.
Anschaulich gesagt, bleiben Parallelen parallel und die Koordinatengitter gleichmäßig unterteilt (was immer auch Parallelen und Koordinatengitter genau sein mögen). Man kann das auch abstrakt durch Formeln ausdrücken:

Eine solche Abbildung f von einem Vektorraum V in einen Vektorraum W (beide über dem gleichen Körper K)

\(  f: V  \to W \\ \)

wird “linear” genannt, wenn sie additiv und homogen ist; d.h. wenn für alle \( \vec{v} \in V \text{ und alle } \vec{w} \in V \) gilt:

additiv: \( f(\vec{v} +  \vec{w}) = f(\vec{v}) +  f(\vec{w})  \)

und für alle \( a \in K \) gilt:

homogen: \( f(a \vec{v}) = a f(\vec{v})  \)   (hierfür brauchen wir den gleichen Körper K)

allgemein also: \(f(a \vec{x} + b \vec{y}) = a f(\vec{x}) + b f(\vec{y}) \)

General Linear Group

Zu einem Vektorraum V über K können wir die Menge der linearen invertierbaren Abbildungen \( f: V \to V \) betrachten. Diese nennen wir: General Linear Group und schreiben GL(V). Wenn man die allgemeine Verknüpfung von Abbildungen als Guppenverknüpfung nimmt, ist GL(V) tatsächlich eine Gruppe.

Die GL(V) ist ein schönes Beispiel für eine nicht abelsche (nicht kommutative) Gruppe.
Siehe hierzu auch das schöne Youtube-Video von Josef Gassner:

In der Quantenmechanik (Quantenphysik) sind die Untergruppen von GL(V) sehr interessant.

Dualer Raum

Zu einem Vektorraum V über dem Körper K definieren wir eine “Dualen Vektorraum”  V* wie folgt:

Als Menge V* nehmen wir alle linearen Abbildungen  \( f: V \to K \)

Als Vektor-Addition in V* definieren wir: \( (f+g)(v) = f(v) + g(v) \)

Und als Skalar-Multiplikation in V* nehmen wir: \( (\lambda \cdot f)(v) = \lambda \cdot f(v) \)

Bilinerarform

Hier geht es um zwei Variable (zwei = bi); also eine Abbildung:

\(  f: V \times V  \to K \\\)  (mit V  Vektorraum über dem Körper K)

So eine Abbildung heisst “bilinear“, wenn sie “in beiden Variablen” linear ist, was heisst:

\( f(a_1 \vec{x_1} + a_2 \vec{x_2}, \vec{y}) = a_1 f(\vec{x_1},\vec{ y}) + a_2 f(\vec{x_2}, \vec{y}) \\\)

und

\( f(\vec{x}, b_1 \vec{y_1} + b_2 \vec{y_2}) = b_1 f(\vec{x}, \vec{y_1}) + b_2 f(\vec{x}, \vec{y_2}) \\\)

Skalarprodukt (Inneres Produkt)

Ein Vektorraum verfügt nicht notwendig über ein Skalarprodukt. Auf einem Vektorraum kann ein Skalarprodukt definiert sein (Vektor mal Vektor ergibt einen Skalar) –  Dies ist inspiriert aus der Physik durch Arbeit = Kraft mal Weg.

Wir werden sehen, dass so ein Skalarprodukt dann eine “Norm” induziert und damit eine Metrik, wodurch z.B. Grenzwertprozesse möglich werden.

Einen \(\mathbb{R}\)-Vektorraum mit Skalarprodukt nennt man auch einen Euklidischen Raum, einen \(\mathbb{C}\)-Vektorraum mit Skalarprodukt nennt man auch Hilbertraum – genauer Prähilbertraum.

Für die Anwendungen z.B. in der Physik spielt es eine große Rolle, welches der Körper zum Vektorraum ist. In der Quantenphysik benötigt man dazu den Körper der Komplexen Zahlen: \(\mathbb{C}\)

Definition des Skalarprodukts

Das Skalarprodukt zweier Vektoren wird axiomatisch wie folgt definiert.

Axiomatische Definition

Generell ist das Skalarprodukt f in einem Vektorraum über dem Körper K eine Abbildung:

\( f: V \times V \to K \)

Man schreibt auch gerne das Skalarprodukt als:

  • \( \Large f(x,y) = \langle x,y \rangle \)
  • \( \Large f(x,y) = \vec{x} \cdot \vec{y} \)

Für den Fall eines Vektorraums über dem Körper der reelen Zahlen, müssen für x, y, z ∈ V und λ ∈ \(\mathbb{R} \) folgende Axiome gelten:

  • Linearität in beiden Argumenten
    • <x+y,z> = <x,z> + <y,z>
    • <x,y+z> = <x,y> + <x,z>
    • <λx,y> = λ <x,y>
    • <x,λy> = λ <x,y>
  • Symmetrie: <x,y> = <y,x>
  • Positiv definit:
    • <x,x> ≥ 0
    • <x,x> = 0 genau dann, wenn x=0 ist

Das reelle Skalarprodukt ist also eine positiv definite, symmetrische Bilinearform.

Für den Fall eines Vektorraums über dem Körper der komplexen Zahlen, ist die Sache etwas schwieriger.
Da wir aber in der Quantenphysik Vektorräume über den komlexen Zahlen benötigen, müssen wir auch diesen etwas komplizierteren Fall näher betrachten.

Es müssen für x, y, z ∈ V und λ ∈ \(\mathbb{C} \) folgende Axiome gelten:

Semilinear im ersten Argument:

\( <\lambda x, y> = \bar{\lambda} <x,y> \)

Linear im zweiten Argument:

\( <x, \lambda y> = \lambda <x,y> \)

Hermitisch:

\( <x,y> = \overline{<y,x>} \)

Positiv definit:

<x,x> ≥ 0

<x,x> = 0 genau dann, wenn x=0

Das komplexe Skalarprodukt ist also eine positiv definite, hermitische Sesquillinearform.

Existenz eines Skalarprodukts bei endlicher Dimension

Soweit ist dies eine axiomatische Definition von Eigenschaften, welche ein Skalarprodukt erfüllen muss. Die Frage ist allerdings, für einen bestimmten Vektorraum, ob dort auch tatsächlich ein solches Skalarprodukt definiert werden kann.

Aus unserem Vektorraum V über K nehmen wir zwei Vektoren \(\vec{x}\) und \(\vec{y}\) und versuchen deren Skalarprodukt zu definieren. Im Falle einer endlichen Dimension des Vektorraums dim(V)=n können wir das leicht über die Komponentendarstellung dieser Vektoren zu einer ausgewählten Vektorbasis erreichen:

Die Vektorbasis sei: \( \vec{g}_i  (i=1,2,…,n) \)

Die Komponentendastellungen sind:

\( \vec{x} = x^i \vec{g}_i  \) und \( \vec{y} = y^i \vec{g}_i  \)

Das Skalarprodukt der beiden Vektoren müsste dann eigentlich sein:

\( \vec{x} \cdot \vec{y} = x^i y^j (\vec{g}_i \cdot \vec{g}_j) \)

Wir könnten das Skalarprodukt zweier beliebiger Vektoren also definieren, wenn wir nur das Skalaprodukt von je zwei Basisvektoren so definieren, dass dann die Axiome des Skalarprodukts eingehalten würden. Mit anderen Worten: Bei geeigneter Festlegung einer Matrix:

\( g_{ij} = \vec{g}_i \cdot \vec{g}_j \tag{1}\)

Könnten wir das Skalarprodukt einfach definieren als:

\( \vec{x}  \cdot \vec{y} = g_{ij} x^i y^j \tag{2}\)

Wir bekommen also ein Objekt aus zweifach indizierten Skalaren (genannt Metrik-Koeffizienten). Diese Metrik-Koeffizienten bilden also eine quadratische Matrix, die wir später auch gerne “Metrik-Tensor” nennen werden.

Der Metrik-Tensor besteht also aus den paarweisen Skalarprodukten der verwendeten Basisvektoren.

Beispiel:

Wie nehmen einen euklidischen Vektorraum: \(\mathbb{R}^3\)
mit der Vektorbasis: \( \vec{e}_i = (\delta_{i}^j) \)
Wir nehmen als Metrik-Tensor: \( \eta_i^j = \left( \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right) \)

Aus Gleichung (2)  mit dem obigen Metrik-Tensor ergibt sich als Skalarprodukt:

\( \vec{a} \cdot \vec{b} = \sum\limits_{i=1}^3 a^i  b^i \)

Nun müssen wir nur noch überprüfen, ob die Skalarprodukt-Axiome gelten:

Welcher Metrik-Tensor erfüllt die Skalarprodukt-Axiome?

Das erste zu überprüfende Axiom wäre die Linearität des  so definierten Skalarprodunkts in beiden Argumenten.

Zur Überprüfung der Linearität im ersten Argument müssen wir folgenden Ausdruck berechnen:

\(  \langle a_1 \vec{x1} + a_2 \vec{x_2} , \vec{y} \rangle = ? \)

Das erste Argument ist also:

\(  \vec{x} = a_1 \vec{x_1} + a_2 \vec{x_2} \)

Um hier das Skalarprodukt auszurechnen nach Gleichung (2) müssen wir die Komponenten der Vektoren bestimmen. Dazu nehmen wir ersteinmal die Komponenten der einzelnen Vektoren:

\( \vec{x_1} = x_1^i \vec{g_i} \) und \( \vec{x_2} = x_2^i \vec{g_i} \)

Dann ist also:

\( \vec{x} = a_1 (x_1^i \vec{g_i}) + a_2 (x_2^i \vec{g_i}) \\ \)

und:

\( x^i = a_1 x_1^i + a_2 x_2^i  \tag{3}\\\)

Nach der Definition des Skalarprodukts nach Gleichung (2) bekommen wir:

\(  \langle a_1 \vec{x_1} + a_2 \vec{x_2} , \vec{y} \rangle = x^i y^j g_{ij}  \\ \)

Wenn wir nun hier Gleichnug (3) einsetzen, erhalten wir:

\(  \langle a_1 \vec{x_1} + a_2 \vec{x_2} , \vec{y} \rangle  = (a_1x_1^i + a_2 x_2^i) y^j g_{ij}  = a_1 x_1^i y^j g{ij} + a_2 x_2^i y^j g_{ij}\)

und schließlich:

\(  \langle a_1 \vec{x_1} + a_2 \vec{x_2} , \vec{y} \rangle = a_1 \langle\vec{x_1}, \vec{y} \rangle + a_2 \langle \vec{x_2}, \vec{y} \rangle \\ \)

Somit ist das Skalarprodukt im ersten Argument linear unabhängig von der Wahl des Metrik-Tensors.

Das Skalarprodukt ist auch im zweiten Argument linear, wenn der Skalaren-Körper \(\mathbb{R}\) ist – dann gilt die obige Herleitung identisch.

Das zweite zu überprüfende Axiom wäre die Symmetrie

Nach unserer Definition des Skalarprodukts in Gleichung (2) gilt:

\( \langle x, y \rangle = x^i y^j g_{ij} \)

und

\( \langle y, x \rangle = y^j x^i g_{ji} = x^i y^j g_{ji}\)

Wir sehen also, dass wenn der Metrik-Tensor symmerisch ist (gij = gji), dann ist auch das damit definierte Skalarprodukt symmetrisch.

Das dritte zu überprüfende Axiom wäre die Positive Definitheit

Dies ergibt sich auch ganz einfach.

Skalarprodukt bei nicht-endlicher Dimension

Ein  Vektorraum nicht-endlicher Dimension über K ist so etwas wie ein Funktionenraum. Für \( f \in V \text{ und } g \in  V \) definieren wir das Innere Produkt (Skalarprodukt) als:

\(\langle f,g \rangle = \Large \int \normalsize \overline{f(t)} g(t) dt \)

Die komplexe Konjugation wird hier u.a. benötigt, damit die Länge eines Vektors (s.u.) eine reele Zahl wird.

Unitäre Abbildung (Unitäre Transformation)

Eine Abbildung (auch Transformation genannt) von einem Vektorraum V in einen anderen W wird “unitär” genannt, wenn sie das Skalarprodukt “erhält” (Da die Länge eines Vektors über das Skalarprodukt definiert ist, ist eine unitäre Abbildung längentreu)

Nehmen wir zwei Vektorräume V und W, jeweils mit einem Skalarprodukt, sowie eine Abbildung:

\( f: V \to W \)

Dann soll für je zwei Vektoren u und v aus V gelten:

\( <f(u),f(v)> = <u,v>\\ \)

Man kann zeigen, dass solche unitären Abbildungen auch stets lineare Abbildungen sind.

Ein klassisches Beispiel ist die Gruppe U(1) der komplexer Zahlen vom Betrag Eins, wobei die Gruppen-Verknüpfung die Multiplikation der komplexen Zahlen (also die Drehung) ist. Diese Gruppe spielt bei dem Standardmodell der Teilchenphysik eine wichtige Rolle. Die Gruppe U(1) bildet ein mathematisches Modell der Elektrostatischen Wechselwirkung in der Quanten-Elektrodynamik mit dem Photon als Austauschteilchen.

Länge eines Vektors

Der Begriff “Metrik-Tensor” hat schon einen Sinn, wenn wir sehen, dass damit auch die Länge eines Vektors definiert werden kann:

\( | \vec{a} | = \sqrt{\vec{a} \cdot \vec{a}} = \sqrt{g_{ij} a^i a^j}  \)

Zu jedem Skalarprodukt in einem R-Vektorraum oder C-Vektorraum kann man eine Norm definieren, die man “induzierte Norm” nennt:

\( ||\vec{x}|| = \sqrt{\vec{x} \cdot \vec{x}} \)

Abstand zweier Punkte

Mittels der sich aus dem Skalarprodukt ergebenden Norm, definieren wir dann eine Metrik (Anstandsbegriff):

Zu einem Vektorraum der Dimension n über \(\mathbb{R} \) können wir \(\mathbb{R}^n \) als Metrischen Raum definieren:

d(x,y) := || y – x ||

Die Metrik-Axiome werden erfüllt.

Dadurch werden Grenzwert-Konstruktionen möglich z.B. die Konvergenz einer Folge (vgl. Cauchy-Folge), Differentialquotienten etc.