Mathematik: Vektorräume (Grundlagen)

Gehört zu: Mathematik
Siehe auch: Körper, Vektorräume – Lineare Algebra, Matrizen und Vektoren, Bra-Ket-Notation

Stand: 23.12.2023

Was ist ein Vektorraum?

Eine der Voraussetzungen zum Verständnis vieler Dinge (z.B. in der Allgemeinen Relativitätstheorie und der Quantenmechanik) sind sog. Vektorräume und Tensoren.

Es gibt dazu eine Menge Videos auf Youtube; z.B. von 3Blue1Brown:  https://youtu.be/fNk_zzaMoSs  – Playlist:

https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

Ein Vektorraum kann axiomatisch wie folgt definiert werden:

Axiom 1: Vektorräume verfügen über eine Operation, die Vektor-Addition (Vektor plus Vektor ergibt einen Vektor) genannt wird und eine kommutative (abelsche) Gruppe bildet.
Axiom 2: Jeder Vektorraum muss einen Körper  haben, dessen Elemente Skalare genannt werden.  Mit solchen Skalaren können wir  die Vektoren mutiplizieren (“skalieren“); d.h. Skalar mal Vektor ergibt Vektor.

Man spricht dann von einem Vektorraum “über” einem Körper K seiner Skalaren oder kurz von einem K-Vektorraum.

Solche Axiome ergeben eine abstrakte Definition von Eigenschaften; die Frage ist allerdings, ob es tatsächlich “Gebilde” gibt, die diese Axiome erfüllen. Tatsächlich gibt es viele “Gebilde”, die die Vektorraum-Axiome erfüllen: d.h. die tatsächlich Vektorräume sind. Beispiele für Vektorräume sind u.a.:

  • Ein \(\mathbb{R}^n \) wird mit den naheliegenden Operationen Vektorraum über \(\mathbb{R}\)
  • Ein \(\mathbb{C}^n \) wird mit den naheliegenden Operationen Vektorraum über \(\mathbb{C}\)
  • Die Menge der Funktionen auf \(\mathbb{R}\) kann auch als Vektorraum ausgestattet werden…

Ein abstrakter Vektorraum kann auch veranschaulicht werden:

  • Physik: Der Physiker stellt sich Vektoren gern als “Pfeile” vor, die also eine Richtung und eine Länge haben, also eher “geometrisch“.
  • Computer: Der Computer-Mensch stellt sich Vektoren eher als Liste von Komponenten vor (Vektor = Liste) – wozu man aber ersteinmal ein System von Basis-Vektoren (nicht: Koordinatensystem) haben muss.
  • Mathematik: Der abstrakte Mathematiker sagt, Vektoren sind einfach “etwas”, was man addieren kann (Gruppe) und was man mit “Skalaren” skalieren kann – fertig, einfach ein paar Axiome und das war’s.

Linearkombinationen

Mit einem Satz von Vektoren kann man eine sog. Linearkombination bilden, beispielsweise:

Zu einem Satz Vektoren \( \vec{g_1}, \vec{g_2}, …, \vec{g_n} \) wäre eine Linearkombination etwa:

\(    a_1 \vec{g_1} + a_2 \vec{g_2} + … + a_n \vec{g_n}\)

Wobei  wir jeden Vektor \( \vec{g_i} \)mit einem Skalar \( a_i  \) multiplizieren und die Summe bilden.

Vektorbasis und Dimension

Wenn ich mit einem Satz von Vektoren jeden Vektor des Vektorraums durch eine Linearkombination darstellen kann, sagt man “der Satz von Vektoren spannt den Vektorraum auf”. Ist so ein Satz von Vektoren minimal und die Darstellung eines Vektors durch eine Linearkombination damit eindeutig, so  nennt man den Satz von Vektoren eine Vektorbasis.

Soweit ist dies eine axiomatische Definition von Eigenschaften, welche eine Vektorbasis erfüllen muss. Die Frage ist allerdings, für einen bestimmten Vektorraum, ob dort auch tatsächlich eine solche Vektorbasis exsitiert.

Die Antwort lautet: Jeder Vektorraum hat (mindestens) eine Vektorbasis.
Falls ein Vektorraum mehrere Vektorbasen hat sind alle diese Vektorbasen gleich mächtig. Die Kardinalzahl (Mächtigkeit) heist Dimension des Vektorraums, geschrieben dim(V).

Eine Einheitsbasis (normal basis) ist eine Basis, bei der alle Basisvektoren die Länge 1 haben (“auf die Länge 1 normiert sind”).
Was die Länge eines Vektors sein könnte, kommt weiter unten.

Beispiel:

Der euklidische Vektorraum: \(\mathbb{R}^n\)

Dort haben wir z.B. eine Vektorbasis:  \( \vec{e}_i = (\delta_{i}^j) \)

Wobei das Kronecker-Delta bekanntlich definiert ist als:

\( \delta_{i}^j = \left\{\begin{array}{11}    0 & \text{falls } i \ne j  \\ 1 & \text{falls } i = j \\ \end{array} \right. \)

Vektor-Komponenten bezüglich einer Vektorbasis

Damit ich mit einem Vektor so schön herumrechnen kann, ist es enorm praktisch, den Vektor durch “seine” Komponenten darzustellen. Solche “Komponenten” beziehen sich immer auf eine sog. Vektorbasis.

Den Satz von Skalaren mit dem ein Vektor bezüglich einer Vektorbasis als Linearkobination eindeutig dargestellt werden kann nennt man auch die Komponenten des Vektors. Man schreibt also:

\( \vec{a} = \sum\limits_{i=1}^{n}{a_i \vec{g_i}} \)

Dabei sind also die ai die Komponenten des Vektors a bezüglich des gewählten Basisvektorsystems. Der Begriff von Koordinaten in einem Koordinatensystem unterscheidet sich von diesem Begriff der Komponenten bezüglich eines Basisvektorsystems.

Der Physiker möchte die Formeln noch kompakter aufschreiben und führt eine impliziete Summenkonvention ein (nach Einstein). Danach verwenden wir Indizes teilweise unten (klassisch) und auch teilweise oben (neu). Wenn ein gleicher Index oben und unten auftaucht, soll darüber summiert werden (ohne dass man es expliziet schreiben muss). Also in unserem Fall:

\( \vec{a} = a^i \vec{g_i} \)

Man nennt Größen mit einem Index unten “kovariant” und mit einem Index oben “kontravariant” – was man damit eigentlich sagen will werden wir später erfahren.

Komponentenschreibweise

Unsere Rechenregeln für Vektoren kann man nun auch einfach in Komponentenschreibweise ausdrücken:

Vektoraddition: \( \vec{a} + \vec{b} = (a^i + b^i) \vec{g_i}  \)

Skalar-Multiplikation: \( \lambda \vec{a} = (\lambda a^i) \vec{g_i} \)

Schreibweise von Vektoren

Geschrieben werden Vektoren meist als eine Liste ihrer Komponenten, aber nicht waagerecht, sondern senkrecht angeordnet (bei waagerechter Anordnung denkt man eher an einen Punkt im Raum).

\( \Large \vec{v} = \left( \begin{array}{c} x \\\ y \\\ z  \end{array}\right) \)

oder auch in eckigen Klammern:

\( \Large \vec{v} = \left[ \begin{array}{c} x \\\ y \\\ z  \end{array} \right] \)

Wenn ich Vektoren als Liste von Komponenten schreiben will, muss ich ersteinmal ein Basisvektorsystem haben.

Vektoren, und das ist wichtig, exisitieren auch ohne Basisvektorsysteme, also einfach geometrisch im Raum. Unabhängig von einem Basisvektorsystem hat jeder Vektor eine Länge und eine Richtung. Dies sind also sog. “Invarianten”; d.h. bei Änderung des Basisvektorsystems ändern sich diese Eigenschaften nicht.
Also: Vektoren ansich sind invariant gegenüber einem Wechsel des Basisvektorsystems. Aber die Vektorkomponenten verändern sich beim Wechsel des Basisvektorsystems, sind wie man sagt “variant“. Wie Vektorkomponenten bei Wechsel des Basisvektorsystems hin- und hergerechnet werden können, behandeln wir weiter unten. So ein Vektor ist damit der Sonderfall eines Tensors, nämlich ein Tensor vom Rang 1.

Lineare Abbildung (Lineare Transformation)

Wir betrachten zwei Vektorräume V und W über dem gleichen Körper K habe. Eine Abbildung \(  f: V  \to W  \) nennt man auch Transformation. Wenn V=W ist spricht man auch von einer Operation auf V und nennt f einen Operator.

Lineare Transformationen sind Transformationen, bei denen Geraden Geraden bleiben und der Null-Punkt (Origin) unverändert bleibt.
Anschaulich gesagt, bleiben Parallelen parallel und die Koordinatengitter gleichmäßig unterteilt (was immer auch Parallelen und Koordinatengitter genau sein mögen). Man kann das auch abstrakt durch Formeln ausdrücken:

Eine solche Abbildung f von einem Vektorraum V in einen Vektorraum W (beide über dem gleichen Körper K)

\(  f: V  \to W \\ \)

wird “linear” genannt, wenn sie additiv und homogen ist; d.h. wenn für alle \( \vec{v} \in V \text{ und alle } \vec{w} \in V \) gilt:

additiv: \( f(\vec{v} +  \vec{w}) = f(\vec{v}) +  f(\vec{w})  \)

und für alle \( a \in K \) gilt:

homogen: \( f(a \vec{v}) = a f(\vec{v})  \)   (hierfür brauchen wir den gleichen Körper K)

allgemein also: \(f(a \vec{x} + b \vec{y}) = a f(\vec{x}) + b f(\vec{y}) \)

General Linear Group

Zu einem Vektorraum V über K können wir die Menge der linearen invertierbaren Abbildungen \( f: V \to V \) betrachten. Diese nennen wir: General Linear Group und schreiben GL(V). Wenn man die allgemeine Verknüpfung von Abbildungen als Guppenverknüpfung nimmt, ist GL(V) tatsächlich eine Gruppe.

Die GL(V) ist ein schönes Beispiel für eine nicht abelsche (nicht kommutative) Gruppe.
Siehe hierzu auch das schöne Youtube-Video von Josef Gassner:

In der Quantenmechanik (Quantenphysik) sind die Untergruppen von GL(V) sehr interessant.

Dualer Raum

Zu einem Vektorraum V über dem Körper K definieren wir eine “Dualen Vektorraum”  V* wie folgt:

Als Menge V* nehmen wir alle linearen Abbildungen  \( f: V \to K \)

Als Vektor-Addition in V* definieren wir: \( (f+g)(v) = f(v) + g(v) \)

Und als Skalar-Multiplikation in V* nehmen wir: \( (\lambda \cdot f)(v) = \lambda \cdot f(v) \)

Bilinerarform

Hier geht es um zwei Variable (zwei = bi); also eine Abbildung:

\(  f: V \times V  \to K \\\)  (mit V  Vektorraum über dem Körper K)

So eine Abbildung heisst “bilinear“, wenn sie “in beiden Variablen” linear ist, was heisst:

\( f(a_1 \vec{x_1} + a_2 \vec{x_2}, \vec{y}) = a_1 f(\vec{x_1},\vec{ y}) + a_2 f(\vec{x_2}, \vec{y}) \\\)

und

\( f(\vec{x}, b_1 \vec{y_1} + b_2 \vec{y_2}) = b_1 f(\vec{x}, \vec{y_1}) + b_2 f(\vec{x}, \vec{y_2}) \\\)

Skalarprodukt (Inneres Produkt)

Ein Vektorraum verfügt nicht notwendig über ein Skalarprodukt. Auf einem Vektorraum kann ein Skalarprodukt definiert sein (Vektor mal Vektor ergibt einen Skalar) –  Dies ist inspiriert aus der Physik durch Arbeit = Kraft mal Weg.

Wir werden sehen, dass so ein Skalarprodukt dann eine “Norm” induziert und damit eine Metrik, wodurch z.B. Grenzwertprozesse möglich werden.

Einen \(\mathbb{R}\)-Vektorraum mit Skalarprodukt nennt man auch einen Euklidischen Raum, einen \(\mathbb{C}\)-Vektorraum mit Skalarprodukt nennt man auch Hilbertraum – genauer Prähilbertraum.

Für die Anwendungen z.B. in der Physik spielt es eine große Rolle, welches der Körper zum Vektorraum ist. In der Quantenphysik benötigt man dazu den Körper der Komplexen Zahlen: \(\mathbb{C}\)

Definition des Skalarprodukts

Das Skalarprodukt zweier Vektoren wird axiomatisch wie folgt definiert.

Axiomatische Definition

Generell ist das Skalarprodukt f in einem Vektorraum über dem Körper K eine Abbildung:

\( f: V \times V \to K \)

Man schreibt auch gerne das Skalarprodukt als:

  • \( \Large f(x,y) = \langle x,y \rangle \)
  • \( \Large f(x,y) = \vec{x} \cdot \vec{y} \)

Für den Fall eines Vektorraums über dem Körper der reelen Zahlen, müssen für x, y, z ∈ V und λ ∈ \(\mathbb{R} \) folgende Axiome gelten:

  • Linearität in beiden Argumenten
    • <x+y,z> = <x,z> + <y,z>
    • <x,y+z> = <x,y> + <x,z>
    • <λx,y> = λ <x,y>
    • <x,λy> = λ <x,y>
  • Symmetrie: <x,y> = <y,x>
  • Positiv definit:
    • <x,x> ≥ 0
    • <x,x> = 0 genau dann, wenn x=0 ist

Das reelle Skalarprodukt ist also eine positiv definite, symmetrische Bilinearform.

Für den Fall eines Vektorraums über dem Körper der komplexen Zahlen, ist die Sache etwas schwieriger.
Da wir aber in der Quantenphysik Vektorräume über den komlexen Zahlen benötigen, müssen wir auch diesen etwas komplizierteren Fall näher betrachten.

Es müssen für x, y, z ∈ V und λ ∈ \(\mathbb{C} \) folgende Axiome gelten:

Semilinear im ersten Argument:

\( <\lambda x, y> = \bar{\lambda} <x,y> \)

Linear im zweiten Argument:

\( <x, \lambda y> = \lambda <x,y> \)

Hermitisch:

\( <x,y> = \overline{<y,x>} \)

Positiv definit:

<x,x> ≥ 0

<x,x> = 0 genau dann, wenn x=0

Das komplexe Skalarprodukt ist also eine positiv definite, hermitische Sesquillinearform.

Existenz eines Skalarprodukts bei endlicher Dimension

Soweit ist dies eine axiomatische Definition von Eigenschaften, welche ein Skalarprodukt erfüllen muss. Die Frage ist allerdings, für einen bestimmten Vektorraum, ob dort auch tatsächlich ein solches Skalarprodukt definiert werden kann.

Aus unserem Vektorraum V über K nehmen wir zwei Vektoren \(\vec{x}\) und \(\vec{y}\) und versuchen deren Skalarprodukt zu definieren. Im Falle einer endlichen Dimension des Vektorraums dim(V)=n können wir das leicht über die Komponentendarstellung dieser Vektoren zu einer ausgewählten Vektorbasis erreichen:

Die Vektorbasis sei: \( \vec{g}_i  (i=1,2,…,n) \)

Die Komponentendastellungen sind:

\( \vec{x} = x^i \vec{g}_i  \) und \( \vec{y} = y^i \vec{g}_i  \)

Das Skalarprodukt der beiden Vektoren müsste dann eigentlich sein:

\( \vec{x} \cdot \vec{y} = x^i y^j (\vec{g}_i \cdot \vec{g}_j) \)

Wir könnten das Skalarprodukt zweier beliebiger Vektoren also definieren, wenn wir nur das Skalaprodukt von je zwei Basisvektoren so definieren, dass dann die Axiome des Skalarprodukts eingehalten würden. Mit anderen Worten: Bei geeigneter Festlegung einer Matrix:

\( g_{ij} = \vec{g}_i \cdot \vec{g}_j \tag{1}\)

Könnten wir das Skalarprodukt einfach definieren als:

\( \vec{x}  \cdot \vec{y} = g_{ij} x^i y^j \tag{2}\)

Wir bekommen also ein Objekt aus zweifach indizierten Skalaren (genannt Metrik-Koeffizienten). Diese Metrik-Koeffizienten bilden also eine quadratische Matrix, die wir später auch gerne “Metrik-Tensor” nennen werden.

Der Metrik-Tensor besteht also aus den paarweisen Skalarprodukten der verwendeten Basisvektoren.

Beispiel:

Wie nehmen einen euklidischen Vektorraum: \(\mathbb{R}^3\)
mit der Vektorbasis: \( \vec{e}_i = (\delta_{i}^j) \)
Wir nehmen als Metrik-Tensor: \( \eta_i^j = \left( \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right) \)

Aus Gleichung (2)  mit dem obigen Metrik-Tensor ergibt sich als Skalarprodukt:

\( \vec{a} \cdot \vec{b} = \sum\limits_{i=1}^3 a^i  b^i \)

Nun müssen wir nur noch überprüfen, ob die Skalarprodukt-Axiome gelten:

Welcher Metrik-Tensor erfüllt die Skalarprodukt-Axiome?

Das erste zu überprüfende Axiom wäre die Linearität des  so definierten Skalarprodunkts in beiden Argumenten.

Zur Überprüfung der Linearität im ersten Argument müssen wir folgenden Ausdruck berechnen:

\(  \langle a_1 \vec{x1} + a_2 \vec{x_2} , \vec{y} \rangle = ? \)

Das erste Argument ist also:

\(  \vec{x} = a_1 \vec{x_1} + a_2 \vec{x_2} \)

Um hier das Skalarprodukt auszurechnen nach Gleichung (2) müssen wir die Komponenten der Vektoren bestimmen. Dazu nehmen wir ersteinmal die Komponenten der einzelnen Vektoren:

\( \vec{x_1} = x_1^i \vec{g_i} \) und \( \vec{x_2} = x_2^i \vec{g_i} \)

Dann ist also:

\( \vec{x} = a_1 (x_1^i \vec{g_i}) + a_2 (x_2^i \vec{g_i}) \\ \)

und:

\( x^i = a_1 x_1^i + a_2 x_2^i  \tag{3}\\\)

Nach der Definition des Skalarprodukts nach Gleichung (2) bekommen wir:

\(  \langle a_1 \vec{x_1} + a_2 \vec{x_2} , \vec{y} \rangle = x^i y^j g_{ij}  \\ \)

Wenn wir nun hier Gleichnug (3) einsetzen, erhalten wir:

\(  \langle a_1 \vec{x_1} + a_2 \vec{x_2} , \vec{y} \rangle  = (a_1x_1^i + a_2 x_2^i) y^j g_{ij}  = a_1 x_1^i y^j g{ij} + a_2 x_2^i y^j g_{ij}\)

und schließlich:

\(  \langle a_1 \vec{x_1} + a_2 \vec{x_2} , \vec{y} \rangle = a_1 \langle\vec{x_1}, \vec{y} \rangle + a_2 \langle \vec{x_2}, \vec{y} \rangle \\ \)

Somit ist das Skalarprodukt im ersten Argument linear unabhängig von der Wahl des Metrik-Tensors.

Das Skalarprodukt ist auch im zweiten Argument linear, wenn der Skalaren-Körper \(\mathbb{R}\) ist – dann gilt die obige Herleitung identisch.

Das zweite zu überprüfende Axiom wäre die Symmetrie

Nach unserer Definition des Skalarprodukts in Gleichung (2) gilt:

\( \langle x, y \rangle = x^i y^j g_{ij} \)

und

\( \langle y, x \rangle = y^j x^i g_{ji} = x^i y^j g_{ji}\)

Wir sehen also, dass wenn der Metrik-Tensor symmerisch ist (gij = gji), dann ist auch das damit definierte Skalarprodukt symmetrisch.

Das dritte zu überprüfende Axiom wäre die Positive Definitheit

Dies ergibt sich auch ganz einfach.

Skalarprodukt bei nicht-endlicher Dimension

Ein  Vektorraum nicht-endlicher Dimension über K ist so etwas wie ein Funktionenraum. Für \( f \in V \text{ und } g \in  V \) definieren wir das Innere Produkt (Skalarprodukt) als:

\(\langle f,g \rangle = \Large \int \normalsize \overline{f(t)} g(t) dt \)

Die komplexe Konjugation wird hier u.a. benötigt, damit die Länge eines Vektors (s.u.) eine reele Zahl wird.

Unitäre Abbildung (Unitäre Transformation)

Eine Abbildung (auch Transformation genannt) von einem Vektorraum V in einen anderen W wird “unitär” genannt, wenn sie das Skalarprodukt “erhält” (Da die Länge eines Vektors über das Skalarprodukt definiert ist, ist eine unitäre Abbildung längentreu)

Nehmen wir zwei Vektorräume V und W, jeweils mit einem Skalarprodukt, sowie eine Abbildung:

\( f: V \to W \)

Dann soll für je zwei Vektoren u und v aus V gelten:

\( <f(u),f(v)> = <u,v>\\ \)

Man kann zeigen, dass solche unitären Abbildungen auch stets lineare Abbildungen sind.

Ein klassisches Beispiel ist die Gruppe U(1) der komplexer Zahlen vom Betrag Eins, wobei die Gruppen-Verknüpfung die Multiplikation der komplexen Zahlen (also die Drehung) ist. Diese Gruppe spielt bei dem Standardmodell der Teilchenphysik eine wichtige Rolle. Die Gruppe U(1) bildet ein mathematisches Modell der Elektrostatischen Wechselwirkung in der Quanten-Elektrodynamik mit dem Photon als Austauschteilchen.

Länge eines Vektors

Der Begriff “Metrik-Tensor” hat schon einen Sinn, wenn wir sehen, dass damit auch die Länge eines Vektors definiert werden kann:

\( | \vec{a} | = \sqrt{\vec{a} \cdot \vec{a}} = \sqrt{g_{ij} a^i a^j}  \)

Zu jedem Skalarprodukt in einem R-Vektorraum oder C-Vektorraum kann man eine Norm definieren, die man “induzierte Norm” nennt:

\( ||\vec{x}|| = \sqrt{\vec{x} \cdot \vec{x}} \)

Abstand zweier Punkte

Mittels der sich aus dem Skalarprodukt ergebenden Norm, definieren wir dann eine Metrik (Anstandsbegriff):

Zu einem Vektorraum der Dimension n über \(\mathbb{R} \) können wir \(\mathbb{R}^n \) als Metrischen Raum definieren:

d(x,y) := || y – x ||

Die Metrik-Axiome werden erfüllt.

Dadurch werden Grenzwert-Konstruktionen möglich z.B. die Konvergenz einer Folge (vgl. Cauchy-Folge), Differentialquotienten etc.

Physik: Einstein Spezielle Relativitätstheorie

Gehört zu: Physik
Siehe auch: Allgemeine Relativitätstheorie, Raum-Zeit-Diagramme
Benutzt: WordPress-Plugin Latex, Grafiken aus Github

Stand: 12.11.2023

Überschneidungen mit: Relativitätstheorie

Die Spezielle Relativitätstheorie

Albert Einstein (1879-1955) hat 1905 die sog. “Spezielle Relativitätstheorie” (SRT) formuliert. Sie basiert lediglich auf zwei Postulaten:

  • Die physikalischen Gesetze sind gleich in allen Intertialsystemen
  • Die Lichtgeschwindigkeit im Vakuum ist gleich in allen Intertialsystemen

Diese Gleichberechigung aller Intertialsysteme wird durch die Gravitation zunichte gemacht. Deshalb entwickelte Einstein die SRT später weiter zur ART.

Die Koordinaten von Ereignissen in zwei Inertialsystemen S (t,x,y,z) und S’ (t’,x’,y’,z’), die sich relativ zueinander mit der konstanten Geschwindigkeit u  bewegen, kann man mit Formeln umrechnen, die man Lorentz-Transformationen nennt.

Einstein gelingt es, diese Lorentz-Transformationen aus den o.g. Postulaten und der Homogenität und der Isotropie des Raumes herzuleiten.
Aber diese Herleitung ist mühsam und ich zeige sie deshalb hier nicht.

Aus diesen Lorentz-Transformationen ergeben sich einige, sog. relativistische,  Phänomene:

  • Zeitdilatation
  • Längenkontraktion
  • Relativistische Geschwindigkeitsaddition
  • Relativistische Massen und Energien
  • ….

Wie man die Zeitdilation und die Längenkontraktion aus den Lorentz-Transformationen herleiten kann, zeigt beispielsweise das YouTube-Video von MathePunk.

Koordinaten-Transformation

Zur Vereinfachung nehmen wir an:

  • Nur eine Raumdimension: x
  • Die Koordinatenachsen der beiden Inertialsystem S und S’ seinen parallel zueinander und der Ursprung sei zur Zeit t=0 der gleiche
  • Die konstante Bewegung der beiden Inertialsysteme S und S’ gegeneinander erfolge  in x-Richtung

Mit dieser Vereinfachung erhalten wir ziehmlich einfache Transformationsgleichungen, die man auch “spezielle” Lorentz-Transformation nennt.

Der Lorentz-Faktor

In den folgenden Formeln kommt immer wieder ein Faktor vor, den wir “Lorentz-Faktor” nennen und mit dem griechischen Buchstaben Gamma schreiben:

\( \Large\gamma = \frac{1}{\sqrt{1-\frac{u^2}{c^2}}} \\ \tag{1} \)

Wobei u  die konstante Geschwindigkeit ist, mit der sich die beiden Bezugssysteme (Inertialsysteme) relativ zueinander bewegen.

Dieser Gamma-Faktor ist also immer größer als 1. Das bedeutet: Multiplizieren mit Gamma macht einen Wert größer, dividieren durch Gamma macht einen Wert kleiner,

Lorentz-Transformation

Die Umrechung der Koordinaten x und t zwischen diesen beiden Bezugssystemen nennt man (spezielle) Lorentz-Transformation:

\( x’ = \gamma (x – u t) \tag{2}\\ \) \( t’ = \gamma (t – \Large\frac{u}{c^2} x ) \tag{3}\\\) \( x = \gamma (x’ + u t’) \tag{4}\\ \) \( t = \gamma (t’ + \Large\frac{u}{c^2} x’) \tag{5} \\ \)

Raumzeit

In Gleichung (3) sieht man, dass die Zeit im System S’ auch abhängig von der Raumkoordinate ist; d.h. die Zeit vergeht unterschiedlich an unterschiedlichen Orten im Raum. Deswegen spricht man von der “Raumzeit”.

Längenkontraktion

Wir haben ein Objekt, dessen Länge wir im “bewegten” Bezugssystem S’ bestimmen indem wir gleichzeitig den Anfangspunkt (x’1) und den Endpunkt (x’2) messen:
\( \Delta x’ = {x’}_2 – {x’}_1 \)

Die Frage ist nun, welche Länge ein Beobachter im “ruhenden” Bezugssystem S zur Zeit t1 = t2 bestimmen wird.

Nach Gleichung (2) gilt:

\( \Delta x’ =  {x’}_2 – {x’}_1 = \gamma (x_2 – x_1 – u (t_2 – t_1))\\\)

Da die Messung der beiden x-Koordinaten im System S gleichzeitig stattfindet, gilt also t2 – t1 = 0. Also:

\( \Delta x’ = \gamma \cdot \Delta x \)
bzw.
\( \Delta x = \Large\frac{\Delta x’}{\gamma}  \)
Zusammenfassung

  • Strecken in einem bewegten Bezugssystem S’ erscheinen für den ruhenden Beobachter S verkürzt.
  • Vereinfacht: Bewegte Stecken sehen kürzer aus (aus Sicht des ruhenden Beobachters).
  • Für die Längenkontraktion gilt:   \( \Delta x = \frac{\Delta x’}{\gamma} \)
  • Die Längenkontraktion findet nur in Bewegungsrichtung statt.

Zeitdilatation

Wir haben einen Prozess dessen Zeitdauer wir im “bewegten” Bezugssystem S’ bestimmen indem wir die Startzeit (t’1) und die Endezeit (t’2) messen (also die sog. Eigenzeit):

\( \Delta t’ = {t’}_2 – {t’}_1 \\\)

Die Frage ist nun, welche Zeitdauer ein Beobachter im “ruhenden” Bezugssystem S bestimmen wird.
Nach Gleichung (5) gilt:

\( \Delta t = t_2 – t_1 = \gamma ({t’}_2 – {t’}_1 + \frac{u}{c^2}({x’}_2 – {x’}_1 )) \)

Da der gemessene Prozess in S’ ortsfest ist, gilt also x’2 – x’1 = 0. Also:

\( \Delta t = \gamma \cdot \Delta t’  \)
Zusammenfassung

  • Eine Uhr im “bewegten” Bezugssystem S’ erscheint für einen “ruhenden” Beobachter S langsamer zu gehen.
  • Vereinfacht: Bewegte Uhren gehen langsamer (aus Sicht des ruhenden Beobachters).
  • Der Zusammenhang zwischen Zeit im ruhenden System S und der Zeit im bewegten System S’ ist \(  \Delta t = \Delta t’ \cdot \gamma \)

Relativistische Addition von Geschwindigkeiten

Relativ zu einem “ruhenden” Beobachter (Inertialsystem) S möge sich ein zweiter Beobachter (Intertialsystem) S’ mit der konstanten Geschwindigkeit u in x-Richtung bewegen.

Ein Objekt möge sich im bewegten Bezugssystem S’ mit der gleichgerichteten Geschwindigkeit w entlang der x’-Achse bewegen:

\( \Large w = \frac{\Delta x’}{\Delta t’}  \tag{6}\\\)

Im ruhenden Bezugssystem S messen wir dafür die Geschwindigkeit:

\( \Large v = \frac{\Delta x}{\Delta t}  \tag{7}\\\)

Unter Anwendung der Lorenztransformationen (4) bekommen wir:

\( \Delta x = x_2 – x _1  = \gamma ( {x’}_2 + u {t’}_2) – \gamma ( {x’}_1 + u {t’}_1) = \gamma \cdot (\Delta x’ + u \cdot \Delta t’)\tag{8}\\\)

Analog bekommen wir mit Gleichung (5):

\(  \Delta t = t_2 – t_ 1 = \gamma ({t’}_2 + \frac{u}{c^2} {x’}_2) – \gamma ({t’}_1 + \frac{u}{c^2} {x’}_1) = \gamma (\Delta t’ + \frac{u}{c^2}\cdot \Delta x’)\tag{9}\\\)

Setzen wir nun (8) und (9) in Gleichung (7) ein, so erhalten wir:

\( \Large v =\frac{\Delta x’ + u \cdot \Delta t’}{\Delta t’ + \frac{u}{c^2} \cdot \Delta x’} \\\)

Wir dividieren Zähler und  Nenner durch Δt’:

\(\Large  v = \frac{\frac{\Delta x’}{\Delta t’}+u}{1 + \frac{u}{c^2}\frac{\Delta x’}{\Delta t’}} \\\)

mit Gleichung (6) kommen wir damit zu unserem Ergebnis:

\(\Large v = \frac{w + u}{1 + \frac{u\cdot w}{c^2}} \\\)

Lichtgeschwindigkeit

Wenn sich das zu messende Objekt nun im System S’ mit Lichtgeschwindigkeit bewegt, also w = c, bekommen wir:

\(  \Large v= \frac{c + u}{1 + \frac{u \cdot c}{c^2}} = \frac{c + u}{1 + \frac{u}{c}} = \frac{c + u}{\frac{c + u}{c}} = c \\ \)

Damit misst also auch der “ruhende” Beobachter S die gleiche Lichtgeschwindigkeit wie der “bewegte” Beobachter S’; d.h. die Lichtgeschwindigkeit ist für beide Beobachter gleich.

Impuls / Massen

Der Impulserhaltungssatz ist unantastbar. Also ist

\(\Large \vec{p} = m \cdot \vec{v} \tag{10}\\\)

invariant (gleich in allen Inertialsystemen).

In zwei Intertialsystemen messen wir ja unterschiedliche Geschwindigkeiten, also muss sich die Masse entsprechend verändern damit der Impuls gleich bleibt.

\(\Large m = \gamma \cdot m_0 \\ \tag{11}\)

Energie

Bekannt ist ja die berühmte Formel:

\(\Large E = m \cdot c^2 \tag{12}\\  \)

Josef Gassner zeigt in seinem Video https://youtu.be/AJ1prUzQ878k folgende Herleitung:

Wir  linearisieren den Lorenzfaktor (Gleichung 1):

\( \Large\gamma = 1 + \frac{1}{2}\frac{v^2}{c^2} + … \tag{13} \\ \)

Das setzen wir in Gleichung (11) ein und erhalten:

\(\Large m = \gamma \cdot m_0 = m_0 + \frac{1}{2} \frac{v^2}{c^2}  \\\)

Erweitern wir das mit c2 bekommen wir:

\(\Large m \cdot c^2 = m_0 c^2 + \frac{1}{2} m_0 v^2 \\ \)

Der hintere Term ist offenbar die kinetische Ernergie und dann ist der erste Term die Ruhe-Energie. Die Gesamt-Energie ist dann also::

\( \Large E = m\cdot c^2 = \gamma^2 m_0^2 \cdot c^2 \tag{14}\\\)

Diese Formel ist wegen der Linearisierung des Lorenzfaktors eigentlich falsch, soll heissen sie gilt so nur für kleine v (klein gegenüber c). Vollständig richt lautet sie:

\( \Large E^2 = m_0^2 \cdot c^4 + p^2 \cdot c^2 \tag{15} \)

Vernachlässigung relativistischer Effekte

Relativistische Effekte, wie die oben beschriebenen, kann man vernachlässigen, wenn die Geschwindigkeiten sehr klein sind gegenüber der Lichtgeschwindigkeit, wie die Betrachtung des Lorentzfaktors zeigt.

Abbildung 1: Der Lorentzfaktor in Abhängigkeit von u/c (Github: Lorentzfaktor.svc)

In der grafischen Darstellung sieht man, dass der Gamma-Faktor bei u=0 mit 1 startet und dann mit zunehmender Geschwindigkeit u immer größer wird. So ab 90% der Lichtgeschwindigkeit geht er so richtig hoch (über 2) und dann bei u=c asymptotisch gegen Unendlich.
Das bedeutet, dass so ungefähr ab 90% der Lichtgeschwindigkeit relativistische Effekte nicht mehr vernachlässigt werden können.

Ausblick

Später formulierte Einstein die Allgemeine Relativitätstheorie (ART).

Mathematik: Taylor-Entwicklung & Fourier-Entwicklung

Gehört zu: Mathematik
Siehe auch: Hintergrundstrahlung, MP3-Format, Multipol-Moment, Variationsrechnung

Stand: 24.10.2022

Taylor-Entwicklung – Fourier-Entwicklung

Wir versuchen eine kompliziertere Funktion in eine Summe einfacherer zu zerlegen.

Bei der Taylor-Entwicklung (Brook Taylor 1685 -1731) betrachten wir einen Punkt der Funktion und wollen in der Umgebung dieses Punktes die Funktion “vereinfachen”, dadurch dass wir sie als Summe aus einfacheren Funktionen annähern und im Grenzwert sie damit genau darstellen.

Bei der Fourier-Entwicklung (Jean Baptist Joseph Fourier 1768 – 1830) betrachten wir eine periodische Funktion und wollen diese für eine Periode durch eine Summe einfacherer periodischer Funktionen approximieren (im Grenzwert genau darstellen).

Taylor-Entwicklung

Wir wollen hier eine Funktion y=f(x) in der Nähe einer Stelle x0 durch eine Potenzreihe annähern:

\( f(x) = f(x_0) + a_1 (x-x_0) + a_2 ( x – x_0)^2 + a_3 (x – x_0)^3 + \ldots \\ \)

Das ist eine Linearkombination der Potzenzen (Monome genannt).

Die Koeffizienten in dieser Taylor-Entwicklung kennen wir: \(a_i = \frac{f^{(i)}(x_0)}{i!} \) damit ist:

\( f(x) = f(x_0) + f^\prime(x_0) (x-x_0) + \frac{f^{\prime\prime}(x_0)}{2!} ( x – x_0)^2 + \frac{f^{(3)}(x_0)}{3!} (x – x_0)^3 + \ldots \\ \)

Bleibt x in der Nähe von x0, so ist (x-x0) klein und wir können näherungsweise die Tayler-Entwicklung irgendwann abbrechen – wenn es genauer sein soll, müsen wir weitere Terme hinzunehmen.

Der Sinn einer solchen Taylor-Entwicklung ist häufig, dass die entstandene Potenzreihe einfacher zu handhaben ist als die Originalfunktion (z.B. in Formeln, z.B. die Ableitungen,…)

Physiker brechen gern nach dem zweiten Term ab und nennen das eine Linearisierung oder Approxmation erster Ordnung; also:

\( f(x) = f(x_0) + f^\prime(x_0)(x-x_0) \\\)

Das machten wir – schon in der Schule – beim Fadenpendel.

Und auch Einstein machte das bei seiner berühmten Formel E = mc2 .

In der Tat zeigt die Mathematik, unter bestimmten Voraussetzungen konvergiert diese Taylor-Reihe. Also

\( f(x) = \sum\limits_{i=0}^{\infty}{\frac{f^{(i)}(x_0)}{i!}} (x-x_0)^i\\\)

Fourier-Entwicklung

Wir betrachten eine etwas kompliziertere Funktion f(t); z.B. ein elektrisches oder akustisches Signal im Zeitverlauf. Die Funktion soll aber periodisch sein; etwa mit der Periode [-π,+π] (das wird gern genommen).

Wir wollen die Funktion durch eine Reihe von Sinus- und Cosinus-Funktionen, also durch Schwingungen, annähern:

\( f(t) = \frac{a_0}{2} + \sum\limits_{k=1}^\infty(a_k \cos(kt)+ b_k \sin(kt)) \\ \)

Das ist eine Linearkombination von Sinussen und Cosinussen verschiedener Frequenzen (und Amplituden).

Der Sinn so einer Fourier-Entwicklung ist jetzt primär nicht, dass das Ergebnis “einfacher” wäre, sondern man möchte etwas herausbekommen über die Original-Funktion; beipielsweise wenn die Original-Funktion ein akustisches Signal ist (siehe MP3-Format).

Die Ermittlung der Fourier-Koeffizienten ak und bk nennt man auch Fourier-Analyse. Fourier selbst fand als analytische Lösung:

\( a_k = \frac{1}{\pi}\int\limits_{-\pi}^{+\pi} f(t) cos(kt) dt \\\)

und

\( b_k = \frac{1}{\pi}\int\limits_{-\pi}^{+\pi} f(t) sin(kt) dt \\\)

Eine Deutung so einer Fourier-Analyse ist, dass wir eine Funktion f(t) untersuchen und die Anteile verschiedener Frequenzen ermitteln. Man spricht deshalb auch von einem Frequenz-Spektrum…

Wenn wir die Fourier-Entwicklung nach dem n-ten Term abbrechen, schreiben wir:

\( F_n  f(t) = \frac{a_0}{2} + \sum\limits_{k=1}^n(a_k \cos(kt)+ b_k \sin(kt)) \\ \)

Das nennen wir “Fourier-Polynom n-ten Grades zu f”  (Sprachgebrauch, obwohl das kein Polynom im üblichen Sinne ist).

Statt Fourier-Analyse wird auch gern die Bezeichnung Harmonische Analyse verwendet.

Komplexe Zahlen

Gerne wird die Fourier-Analyse auch mit Komplexen Zahlen erklärt. So hilft die Eulerschen Formel dabei statt Sinus und Cosinus “einfach” eine Exponatialfunktion zu verwenden:

\(  e^{i  \cdot \phi} = \cos \phi+i \cdot \sin \phi \\\)

Damit entwickeln wir:

\( f(t) = \sum\limits_{k \in Z} c_k \cdot e^{ikt} \\\)

Was dann in der Regel zu komplexen Fourier-Koeffizenten ck führt.

Wir unterscheiden zwischen Fourier-Analyse und Fourier-Transformation…

Diskrete Fourier-Analyse

In der Praxis kennt man die Funktion f(t) meist nicht analytisch (also als Formel), sondern hat “nur” die Funktionswerte an diskreten Stellen. Man kommt dann zu einer sog. Diskreten Fourier-Transformation (DFT).

xyz

 

 

 

Mathematik: GeoGebra

Gehört zu: Data Science
Siehe auch: Python, Thermodynamik, Raumkrümmung, Robin Glover, Jeans-Kriterium, Hydrostatisches Gleichgewicht , Data Science

Stand: 04.06.2024

Die Software GeoGebra Classic

Online-Aufruf:   https://www.geogebra.org/classic

GeoGebra Lokal

Download von: https://www.geogebra.org/download?lang=de

Versionen:   6.0.735

Installation: Lokal auf ComputerAcerBaer (Ordner Programmierung)

Lokaler Aufruf: C:\Users\rubas\AppData\Local\GeoGebra_6\Update.exe –processStart=”GeoGebra.exe”

Benutzung von GeoGebra Classic

Wenn man Dateien Online speichern will, benötigt man ein Konto bei GeoGebra und dann muss man sich da anmelden.

Das GeoGebra-Menü gekommt man, wenn man rechts oben auf das “Hamburger-Menü” klickt.

Dann funktioniert im GeoGebra-Menü “Datei -> Öffnen”

Wir können GeoGebra-Dateien auch auf unserem lokalen Computer speichern (Dateinamen: *.ggb).

Wir können GeoGebra-Grafiken als SVG-Dateien exportieren: Hamburger-Menü -> Herunterladen als…

Beispiel: Sonnensystem

Name Große Halbachse (AE) Umlaufszeit (Jahre)
Merkur 0,387 0,2409
Venus 0,7233 0,6160
Erde 1,000 1,0000
Mars 1,524 1,8809
Jupiter 5,204 11,9
Saturn 9,582 29,5
Uranus 19,201 84,01095
Neptun 30,178 164,7885

Physik: Die Bra-Ket-Notation

Gehört zu: Quantenphysik
Siehe auch: Schrödinger, Komplexe Zahlen, Vektorräume

Stand: 02.08.2022

Die Dirac-Notation

In der Quantenphysik arbeiten wir mit Vektorräumen V über den komplexen Zahlen \(\mathbb{C}\). So einen Vektor

\( \vec{v} \in V \)

scheibt man in der Quantenphysik gern als sog. Ket-Vektor:

\( |v\rangle \)

Dies ist Teil der sog. Bra-Ket-Notation von  Jean Paul Dirac (1902-1984), bei der man sogenannte Bra-Vektoren und Ket-Vektoren hat; zusammen gibt das das Wort “Braket”.

Zu jedem Ket-Vektor definieren wir noch einen sog. Bra-Vektor:

\( \langle v | := \left[ | v \rangle \right]^\dagger = {\left[ | v \rangle \right]^\ast}^T \)

Wobei v* der komplex konjugierte und vT der transponierte Vektor ist. Man nennt das Ganze “hermitisch konjugiert” und schreibt das mit dem hochgestellten Dagger-Symbol.

Bei einem reelen Vektorraum wäre der Bra-Vektor einfach nur der Zeilen-Vektor und der Ket-Vektor der normale Spalten-Vektor.

Zu dieser Bra-Ket-Notation gibt es enorm viele Youtube-Videos. Ein ganz einfaches ist: https://youtu.be/pBh7Xqbh5JQ

Einig sind sich alle Authoren über die Frage, was ein Ket-Vektor ist: eben ein “normaler” Vektor aus unserem Vektorraum V (also ein “Spaltenvektor”:

\( |v\rangle  = \left( \begin{array}{c} v_1 \\\ v_2 \\\ \vdots \\\ v_n  \end{array}\right) \)

Aber was um Himmelswillen ist der dazugehörige Bra-Vektor?

Einfache Gemüter sagen einfach:

\( \langle v|  = \left( \begin{array}{r} v_1^\ast & v_2^\ast & \cdots & v_n^\ast  \end{array}\right) \)

Der etwas nachdenkliche Mathematiker fragt sich:

  • “Konjugiert komplex” ist ja zunächst nur für Skalare (komplexe Zahlen) definiert. Kann man auch zu einem Vektor den konjugiert komplexen bilden?
  • Mit endlichen Dimensionen geht das ja alles so. Aber in der Quantenphysik wird man doch mit Hilberträumen unendlicher Dimension arbeiten. Wie funktionieren diese Konzepte denn da?

Skalarprodukt

MIt HIlfe von Bra-Vektor und Ket-Vektor definieren wir nun ein Skalarprodukt (inneres Produkt):

Das Skalarprodukt der Vektoren v und w schreiben wir als:
\( \langle v | w \rangle \)

Aber wie wird dieses Skalarprodukt berechnet (definiert)?

Dazu wählen wir eine Basis des Vektorraums: \( \{ |b_1\rangle, |b_2\rangle, |b_3\rangle,…\} \). Das geht immer, da jeder Vektorraum eine Basis hat und definieren das Skalarprodukt zunächt für diese Basisvektoren (damit wir eine orthonormale Basis bekommen):

\( \langle b_i | b_j \rangle := \delta_{ij} \)

Mit diesem Skalarprodukt ist die Basis per Konstruktion “orthonormal”.

Wenn wir nun unsere Vektoren v und w als Linearkombination dieser Basisvektoren schreiben:

\( | v \rangle  = \sum{v_i |  b_i \rangle} \)
und
\( | w\rangle = \sum{w_i | b_i \rangle} \)

definieren wir als Skalarprodukt der Vektoren v und w einfach:
\( \langle v | w \rangle := \sum{{v_i}^\ast \cdot w_i}  \)

Nun müssen wir der guten Ordnung halber noch zeigen, dass dieses allgemeine Skalarprodukt tatsächlich eine Erweiterung des für unsere Basisvektoren definierten Skalarprodukts ist. Wir bilden nehmen also zwei Basisvektoren |bi> und |bj> und bilden das Skalarprodukt nach der erweiterten Regel:

Die Komponenten von |bi> sind δij und die Komponenten von |bj> sind δji .
Und damit ist das Skalarprodukt nach erweiterter Definition:

\( \langle b_i |  b_j \rangle = \sum{{\delta_{ij}}^\ast  \delta_{ji} } = \delta_{ij} \)

Was übereinstimmt mit der ursprünglichen Definition des Skalarprodunkts zweier Basisvektoren.

Das so definierte Skalarprodukt ist nicht mehr kommutativ, sondern “hermitisch”; d.h.:

\( \langle v, w \rangle  = \langle w, v \rangle ^\ast \)

Das Skalarprodukt eines Vektors mit sich selbst ist immer reelwertig und “positiv definit”.

Hilbertraum

Ein Hilbertraum ist ein Vektorraum von unendlicher Dimension, der ein Skalarprodukt hat (Prä-Hilbertraum) und vollständig ist.

In der Quantenphysik verwendet man ja immer Hilberträume über den komplexen Zahlen. Die Elemente eines solchen Hilbertraums sind also Vektoren, die wir als Zustände des betrachteten quantenphysikalischen System verstehen. Statt der Wellenfunktion, die den Zustand beschreibt haben wir jetzt einfach einen Vektor \(\vec{v}\), der den Zustand beschreibt.

Um mit dieser Wellenfunktion etwas “netter” umzugehen, hat Jean Paul Dirac (1902-1984) die nach ihm benannte Dirac-Notation erfunden, bei der man sogenannte Bra-Vektoren und Ket-Vektoren hat; zusammen gibt das das Wort “Braket”.

Zunächst schreibt man also ganz normale Vektoren als Ket-Vektoren. Also statt: \( \vec{w} \) schreibt man: \( |w\rangle \). Generell sind Ket-Vektoren “normale” Vektoren aus einem Vektorraum V über \(\mathbb{C}\). Man kann sie sich als “normale” Spaltenvektoren vorstellen.

Ein Bra-Vektor geschrieben \( \langle v|\) ist eine lineare Form \( v: V \to \mathbb{C}\). Bra-Vektoren kann man sich als Zeilenvektoren vorstellen.

So ein Bra \( \langle v|\) kann dann auf einen Ket \( | w \rangle\) angewendet werden, was man schreibt als: \( \langle v|w \rangle \in \mathbb{C} \).

Wenn man so eine lineare Form \( v: V \to \mathbb{C}\) als Zeilenvektor auffasst, dann ist <v | w> das Skalarprodukt (innere Produkt) der beiden Vektoren.

In einer Bra-Ket-Notation verwendet man innerhalb der Notation häufig Kurz-Symbole für den Vektor oder die Linearform. Beispielsweise statt:

\( a  |\Psi_1\rangle + b  |\Psi_2\rangle \\ \)

schreibt man einfach:

\( a  |1\rangle + b  |2\rangle \\ \)

Physik: Die Wellenfunktion in der Quantenmechanik

Gehört zu: Quantenphysik
Siehe auch: Schrödinger-Gleichung, Materiewellen, Komplexe Zahlen, Lineare Algebra

Stand: 15.06.2025  (Klassische Welle, Observable, Zeitabhängigkeit, Korrespondenzprinzip)

Warnung / Disclaimer

Diesen Blog-Artikel schreibe ich ausschließlich zu meiner persönlichen Dokumentation; quasi als mein elektronisches persönliches Notizbuch. Wenn es Andere nützlich finden, freue ich mich, übernehme aber kleinerlei Garantie für die Richtigkeit bzw. die Fehlerfreiheit meiner Notizen. Insbesondere weise ich darauf hin, dass jeder, der diese meine Notizen benutzt, das auf eigene Gefahr tut.
Wenn Podukteigenschaften beschrieben werden, sind dies ausschließlich meine persönlichen Erfahrungen als Laie mit dem einen Gerät, welches ich bekommen habe.

YouTube-Video: https://youtu.be/-KSeRfep3Ek?si=4FkHAWmKw3sJ3RQy

Spektrum des Wasserstoffatoms

Ein großes Problem der “Atomtheorie” vor 1925 war das Spektrum des Wasserstoffatoms. Mit dem Bohrschen Atommodell konnte man das nicht vollständig berechnen. Kann man wirklich von Elektronenbahnen im Wasserstoffatom sprechen? Beobachtbar (Umlaufszeit, Radius) waren die Elektronenbahnen nicht.

Werner Heisenberg versuchte deshalb eine Theorie zu entwickeln, in der ausschließlich beobachtbare Größen vorkommen. Das sollte man später “Observablen” nennen. Bei den Spektrallinien waren beobachtbar: die Frequenz und die Intensität.

Die “klassische” Welle

Die klassische Wasserwelle ist ein periodisches Auf und Ab des Wasserstands, abhängig von der Zeit t und dem Ort x.

Zu einem festen Zeitpunkt hängt die Auslenkung y nur noch vom Ort x ab und kann man schreiben:

\( \Large y(x) = A \cdot \sin( \frac{2\pi}{\lambda} \cdot x ) \\ \)

Dabei ist A die Amplitude und λ die Wellenlänge.

Als Abkürzung benutzt man die sog. Wellenzahl  \( \Large k = \frac{2 \pi}{\lambda} \)  und kann damit schreiben:

\( \Large y(x) = A \cdot \sin(k \cdot x ) \\ \)

An einem festen Ort hängt die Auslenkung y nur noch von der Zeit t ab und man kann schreiben:

\( \Large y(t) = A \cdot \sin( \frac{2\pi}{T}  \cdot t) \\ \)

Dabei ist A die Amplitude und T die Periodendauer.

Als Abkürzung benutzt man die  sog. Kreisfrequenz  \( \Large \omega = \frac{2 \pi}{T} \) und kann damit schreiben:

\( \Large y(t) = A \cdot \sin( \omega  \cdot t) \\ \)

Wenn man die Auslenkung der Welle zu jedem Zeitpunkt t und an jedem Ort x haben will, bekommt man:

\( \Large y(x,t) = A \cdot \sin{(k \cdot x – \omega \cdot t)} \\\)

Link: https://youtu.be/MzRCDLre1b4

Komplexe Zahlen

Schrödinger wie auch Heisenberg kamen schnell zu der Erkenntnis, dass man allein mit reelen Zahlen nicht weiter kommt und zu den komplexen Zahlen übergehen muss.

Wenn wir eine komplexe Zahl in Polarkoordinaten (r und φ) schreiben, sieht das so aus:

\(  \Large z = r \cdot e^{i \phi} \\\)

Mit Komplexen Zahlen bedeutet eine periodische Schwingung eine gleichförmige Kreisbewegung in der komplexen Zahlenebene. In Polarkoordinaten geschrieben, erhalten wir so die einfachste Form einer Wellenfunktion:

\( \Large \Psi(x,t) = A \cdot e^{i \, (k\cdot x – \omega \cdot t)} \)

Die Wellenfunktionen in der Quantenphysik

Youtube: https://youtu.be/YJjHI7Gxn-s?si=iYv8Kg0MbKDfWvr7

In der klassischen Mechanik (Newton etc.), wird ein Teilchen durch Ort x(t) und Implus p(t) beschrieben mit seinem sog. “Zustand”. Wenn man den Zustand zu einem Zeitpunkt t=0 kennt, also x(0) und p(0), dann kann man alle zuküftigen Zustände berechnen durch Newtons berühmte Gleichung:

\( F = \, – m \ddot x \)   d.h. \( F = \, –  \dot p  \)

In der Quantenphysik macht man das mit der Wellenfunktion Ψ. Sehr allgemein gesagt: Eine Wellenfunktion beschreibt den Zustand eines quantenmechanischen Teilchens.

Der Wertebereich einer Wellenfunktion sind die Komplexen Zahlen. Der Definitionsbereich sind Ort und Zeit Ψ(r,t).
Der Wert ist also eine Komplexe Zahl, veranschaulicht in Polar-Koordinaten durch einen Vektor mit einer Länge, auch “Amplitude” genannt, und einem Winkel, auch Phase genannt.

Für die Darstellung Komplexer Zahlen in Polar-Koordinaten benutzt die Quantenmechanik gerne die sog. Exponential-Darstellung:

\(\Large z ={r} \cdot e^{i \cdot \phi} \\\)Damit kann man sich die Komplexe Zahl gut als Vektor einer bestimmten Länge r (auch genannt Amplitude) mit einem Drehwinkel Φ (auch genannt Phase) vorstellen.

Abbildung 1: Polarkoordinaten (GitHub: Polarkoordinaten.svg)

Da der Wert der Wellenfunktion eine Komplexe Zahl ist, kann man sie nicht “direkt” beobachten; der Betrag der Wellenfunktion zum Quadrat ist aber eine nicht negative reelle Zahl und ist so der Beobachtung zugänglich.

Wir werden später sehen, dass man mit der Wellenfunktion die Wahrscheinlichkeit für den Aufenthalt eines Teilchens an einem bestimmten Ort (Aufenthaltswahrscheinlichkeit) und auch die Wahrscheinlichkeiten anderer Größen, sog. Observable berechnen (vorhersagen) kann. Daher auch der Spruch “Shut up and calculate”, der angeblich auf Richard Feynman (1918-1988) zurückgehen soll…

Woher bekommen wir die Wellenfunktion eines quantenmechanischen Systems? Die Wellenfunktion bekommen wir als Lösung der Schrödinger-Gleichung.

Die Kopenhagener Deutung der Wellenfunktion

Dazu habe ich einen eigenen Blog-Artikel geschieben: Kopenhagener Deutung.

Operatoren und Observable

Was ist ein Operator?

Ein Operator bildet einfach eine Funktion auf eine andere Funktion ab. Traditionell spricht man dann nicht so allgemein von einer “Abbildung”, sondern von einem “Operator”. Folgendes Beispiel für Operatoren habe ich aus einem Youtube-Video von Prof. Patrick Nürnberger entnommen:

Um zu zeigen, was ein Operator macht, nehmen wir für ein Beispiel als Funktion einfach einmal \( \Psi(x) = e^{-x^2} \) und als Operator nehmen wir, ebenfalls als Beispiel, die zweite Ableitung der Funktion nach x und schreiben diesen Operator als \( \Large \hat A = \frac{d^2}{dx^2} \).

Dann ist dieser Operator angewendet auf unsere Funktion (nach der Kettenregel):

\( \hat A \Psi = \frac{d^2}{dx^2} \, e^{-x^2} = \frac{d}{dx}(-2x \, e^{-x^2}) \\\)

Die Produktregel ergibt dann:

\( \hat A \Psi = -2 \cdot e^{-x^2} + (-2x) \cdot (-2x \, e^{-x^2}) = (4x^2 – 2) e^{-x^2}\)

Was sind Observable?

Im Experiment beobachtbare Größen eines physikalischen Systems, also Messgrößen.

Observable sind z.B.:

  • Ort
  • Impuls
  • Kinetische Engergie
  • etc.

Operatoren in der Quantenmechanik

Wahrscheinlichkeitsdichte

Den Zustand eines quantenphysikalischen Systems beschreiben wir durch die Wellenfunktion Ψ dieses Systems.  Die können wir aber nicht direkt beobachten. Um zu beobachtbaren Größen zu kommen, benutzen wir die oben eingeführten Operatoren, die auf die Wellenfunktion angewendet werden und dann beobachtbare Werte (“Observable”) liefern; aber auch nur als Wahrscheinlichtkeitsverteilung (woraus ich Erwartungswerte etc. berechnen kann).

In Analogie zur  Kopenhagener Deutung schreiben wir für eine beliebige Observable Q die Wahrscheinlichkeitsdichte als:

\(\Large \rho(Q) = \Psi^* \hat Q \Psi \\\)

Der zur Observablen \( Q \) zugeordnete  Operator \(\hat Q \) liefert dann zusammen mit der Wellenfunktion des quantenphysikalischen Systems die Wahrscheinlichkeitsverteilung dieser Observablen (in reelen Zahlen).

In Analogie zur  Kopenhagener Deutung schreiben wir für eine beliebige Observable Q den Erwartungswert als:

\(\Large \langle \hat{Q} \rangle= \int\limits_{-\infty}^{+\infty} \Psi^* \hat{Q} \Psi dx \)

Das Korrespondenzprinzip

Der Begriff “Korrespondeszprinzip” hat je nach Kontext, verschiedene Bedeutungen.  In der Quantenmechanik hat ihn z.B. Niels Bohr bei seinem Atommodell eingeführt. In der Wellenmechanik versucht das Korrespondenzprinzip eine Korrespondenz zwischen klassischen Messgrößen und Operatoren herzustellen.

Welcher Operator wird in der Quantenmechanik für welche Observable genommen? Dazu haben wir zwei Beispiele:

Beispiel 1: Die Observable “Ort” (eindimensional):

Operator:   \( \Large\hat{x} \Psi(x,t) = x \cdot \Psi(x,t) \normalsize \text{ also Multiplikation}\)

Beispiel 2: Die Observable “Impuls” (eindimensional):

Operator: \( \Large\hat{p} \Psi(x,t) = -i \hbar \frac{\partial \Psi(x,t)}{\partial x} \normalsize \text{ also Ableitung} \)

Weitere Zuordnungen von Operatoren zu Observablen konstruieren wir daraus. Das nennt man Korrespondenzprinzip.

Fragen wir beispielweise nach dem Operator für die Observable eindimensionale “kinetische Energie”, so beginnen wir mit der klassischen Formel:

\( \Large E_{kin} = \frac{p^2}{2m} \\\)

und ersetzen dann die klassiche Größe Impuls p durch den obenstehenden Impuls-Operator:

\( \Large \hat{E}_{kin} = \frac{{\hat p}^2}{2m} = \frac{-\hbar^2}{2m} \frac{d^2}{dx^2}\\\)

Allgemein besagt das Korrespondenzprinzip, dass wir aus einer klassischen Messgröße, die vom Ort und vom Impuls abhängt, also \(f(x,p)\), in der Quantenmechanik einen “korrespondierenden” Operator bekommen: \( \hat{f}(\hat x, \hat p) \)

 

Physik: Symmetrie

Gehört zu: Physik
Siehe auch: Lineare Algebra, Langrange-Formalismus, Quantenmechanik

Stand: 21.12.2023

Der Begriff der Symmetrie in der Physik

Die Wikipedia sagt:

Unter einer Symmetrie versteht man in der Physik die Eigenschaft eines Systems, nach einer bestimmten Änderung (z.B. Koordinatentransformation) in einem unveränderten Zustand (also unverändert) zu bleiben. Eine solche Transformation (die den Zustand nicht ändert) wird Symmetrietransformation oder auch vereinfacht “Symmetrie“,  genannt.

In der Geometrie bedeutet “unveränderter Zustand”, dass ein geometrischer Körper nach einer Symmerietransformation wieder genauso ausssieht wie vorher.
In der Physik bedeutet “unveränderter Zustand”, dass die Lagrangefunktion identisch ist.

Der Zustand eines mechanischen Systems mit den Koordinaten q1, q2,…,qn wird dabei beschrieben durch die Lagrangefunktion:

\( \mathcal{L}(q_1, q_2,..q_n, \dot{q_1}, \dot{q_2},…, \dot{q_n}, t) \\\)

Unterschieden werden:

  • diskrete Symmetrien (z. B. Spiegelsymmetrie), die nur eine endliche Anzahl an Symmetrieoperationen besitzen
  • kontinuierliche Symmetrien (z. B. Rotationssymmetrie), die eine unendliche Anzahl an Symmetrieoperationen besitzen.

Eine Menge bestimmter Symmetrietransformationen bildet eine Gruppe denn: wenn ich zwei Symmetrietransformationen nacheinander ausführe habe ich wieder eine Symmetrietransformation – also ist Axiom der Abgeschlossenheit erfüllt und auch die Assoziativität ist offensichtlich. Ich muss dann noch die Menge so auswählen, dass die Identität dazu gehört und zu jeder Symmetrietransformation auch die inverse…

Die mathematische Beschreibung von Symmetrien erfolgt durch die Gruppentheorie.

Physikalische Anwendung findet die Gruppentheorie in der Quantenphysik und dort speziell bei dem Standardmodell der Elementarteilchen.

 

 

Mechanik: Lagrange-Formalismus

Gehört zu: Mechanik – Kinematik
Siehe auch: Newtonsche Mechanik, Symmetrie, Phasenraum, Variationsrechnung
Benutzt WordPress-Plugin MathJax-Latex

Stand: 29.05.2024

YouTube: https://youtu.be/drZGeAkN4QI?si=4W_yQ9JWiE-vpk4R

Der Lagrange-Formalismus

Alternativ zu den Newtonschen Gleichungen kann man die Bahn, auf der sich eine Teilchen bewegt, auch durch den sog. Lagrange-Formalismus beschreiben. Dazu benutzt man die physikalischen Größen kinetische Energie und potentielle Energie.

Langrange-Funktion: \(\mathcal{L} = E_{kin} – E_{pot} \)

Eine Langrange-Funktion hängt von Variablen ab. Die kinetische Energie hängt klassischerweise von der Geschwindigkeit v ab. Die potentielle Energie hängt klassischerweise vom Ort r ab. Die Variablen der obigen Lagrange-Funktion wären dann also \(\mathcal{L}(v,r) \).

Wobei diese Lagrange-Funktion nur eine “Hilfsfunktion” ist und keine intrinsische physikalische Eigenschaft darstellt.

Ein Teilchen könnte sich nun von einem Anfangspunkt zu einem Endpunkt auf verschiedenen Bahnen bewegen. Jeder solchen möglichen Bahn ordnen wir nun als eine Zahl das Integral über die Lagrange-Funktion entlang der jeweiligen Bahn zu:

\( S(Bahn) = \int\limits_{Bahn} \mathcal{L}(v,r) \, dt \\ \)

Die Zahl S nennen wir “Wirkung”.  Das Lagrange-Prinzip besagt nun, das das Teilchen sich auf derjenigen Bahn bewegen wird, bei der die Wirkung minimal ist.

Mit Hilfer der Eulerschen Variationsrechnung erhalten wir als Lösung dieser Minimums-Aufgabe  die sog. Langrange-Gleichung (2. Art sagt man) als:

\(\Large \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial v} – \frac{\partial \mathcal{L}}{\partial r} = 0 \\ \)

Setzt man in die obige Langrange-Gleichung die Ausdrücke für die kinetische und die potentielle Energie ein und bildet dann die für die Lagrange-Gleichung erforderlichen partiellen Ableitungen, so erhält man Bewegungsgleichungen, die man meist ganz einfach lösen kann.

Im Grenzfall ohne potentielle Energie ist:

\( \mathcal{L} = E_{kin} = \frac{1}{2} m \cdot v^2 \)

Und die Lagrangegleichung wird:

\(  \frac{d}{dt}\frac{\partial \mathcal{L}}{\partial v} = \frac{d}{dt} (m v) = 0 \\ \)

Was genau die Newtonsche Impulserhaltung ist.

Warum Lagrange-Formalismus?

Es wird gesagt, dass man mit dem Lagrange-Formalismus, kompliziertere Probleme der Kinematik leichter lösen kann als mit den Newtonschen Gleichungen.

Bei der Newtonschen Mechanik geht es um die Summe der Kräfte, die auf einen Massepunkt wirken. Daraus ergibt sich dann die Beschleunigung (Σ F = m · a).
D.h. wir haben eine Anfangswert-Aufgabe und müssen mit Vektoren umgehen.

Beim Lagrange-Formalismus geht es um die potentielle und die kinetische Energie, die sich bei einem Bewegungsvorgang ändern, deren Summe aber konstant bleibt. Woraus man auch die Bewegungsgleichungen herleiten kann. Das kann einfacher sein, wenn die Summe der Kräfte schwierig zu ermitteln ist. Die Betrachtung aller Kräfte heißt mit Vektoren zu hantieren; potentielle und kinetische Energie sind Skalare.

Im Langrange-Formalismus werden typischerweise sog. generalisierte Koordinaten verwendet, die die Lösung schon mal vereinfachen. Die generalisierten (oder verallgemeinerten) Koordinaten bilden in der theoretischen Mechanik einen minimalen Satz von unabhängigen Koordinaten zur eindeutigen Beschreibung des räumlichen Zustands des betrachteten Systems. Diese werden so gewählt, dass die mathematische Formulierung von Bewegungen, möglichst einfach wird. Die generalisierten Orts-Koordinaten tragen oft das Formelzeichen \(q_i\), dann sind \(\dot{q}_i\) sog. verallgemeinerte Geschwindigkeiten. Durch geschickt gewählte verallgemeinerte Koordinaten kann man z.B. sog. “Zwangsbedingungen” von vorne herein und ohne zusätzliche Gleichungen mit einbauen.
Die minimale Anzahl der verallgemeinerten Orts-Koordinaten ist zugleich auch die Anzahl der sog. Freiheitsgrade des Systems.

Typische einfache Beispiele, an denen man den Lagrange-Formalismus Anfängern erklärt, sind: Freier Fall, Schiefe Ebene, Fadenpendel,…

Verwendung findet der Langrange-Formalismus z.B. in der Himmelsmechanik beim Mehrkörperproblem. Man kennt ja beim vereinfachten Dreikörperproblem die berühmten Lagrange-Punkte L1, L2 etc. wo ja gerne Raumsonden, wie SOHO, hingeschickt werden.

Beispiel 1: Freier Fall mit dem Lagrange-Formalismus

Siehe dazu auch:

https://www.youtube.com/watch?v=MIHlsj6kan4

Zur Beschreibung dieses ganz einfachen (eindimensionalen) mechanischen Versuchs benutzen wir als vereinfachte Orts-Koordinate s(t) mit s(0)=0 als Höhen-Koordinate in der Vertikalen in Richtung nach unten und dazu die vertikale Fallgeschwindigkeit v(t) mit v(0)=0.

Als potentielle und als kinetische Energie haben wir damit:

\( E_{pot} = – m \cdot s \cdot g \) (wobei g die Erdbeschleunigung ist und s in der gleichen Richtung wie g laufen soll – wie das auch oben der Fall ist)
\( E_{kin} = \frac{1}{2} \cdot m \cdot v^2 \)

und die Lagrange-Funktion dieses mechanischen Systems ist:

\( \mathcal{L}(v,s) = \frac{1}{2} \cdot m \cdot v^2 + m \cdot s \cdot g \\ \)
Wir bilden also ersteinmal die partielle Ableitung der Lagrange-Funktion nach der Geschwindigkeit v:

\( \Large \frac{\partial L}{\partial v} = m \cdot v \\ \)

Dann bilden wir die partielle Ableitung der Lagrange-Funktion nach der Ortskoordinate s:

\( \Large \frac{\partial L}{\partial s} = m \cdot g \\ \)

Die Lagrange-Gleichung lautet damit also:

\(\Large \frac{d}{dt} (m \cdot v) – m \cdot g = 0 \\ \)

Was nichts anderes heisst als:

\( \Large m \cdot \dot{v} – m \cdot g = 0 \\\)

Was genau die gleiche Bewegungsgleichung ist, wie oben mit den klassischen Newton Axiomen. Also ist die Lösung dieser Bewegungsgleichung auch die gleiche wie oben:

\( \vec{v}(t) = \vec{g} \cdot t \)
\( \vec{s}(t) = \frac{1}{2} \vec{g} \cdot t^2 \)

Für diesen sehr einfachen Fall würde man die Lagrange-Methode sicher nicht bemühen; man sieht aber, wie sie im Prinzip abläuft.

Beispiel 2: Fadenpendel mit dem Lagrange-Formalismus

Siehe dazu auch: https://youtu.be/76i4uNsgvvo

Ein “klassisches” Fadenpendel habe die konstante Länge l und unten dran hänge eine Masse m.

Klassisch würde man das in kartesischen Koordinaten x (waagerecht) und y (senkrecht nach oben) mit dem Aufhängepunkt des Pendesl als Koordinatenursprungversuchen zu lösen.

Man hätte dann noch die “Zwangsbedingung”, dass die Masse m sich immer nur im Abstand l vom Koordinatenursprung aufhalten kann.

Wir wählen jetzt generalisierte Koordinaten, mit denen wir das einfacher beschreiben können, nämlich ebene Polarkoordinaten (r,φ) wobei wieder der Aufhängepunkt des Pendels als Koordinatenursprung gewählt wird und wir den Winkel φ von der Senkrechten her messen mit positivem φ auf den rechten Seite und negativem φ auf der linken Seite. Dann ist die oben genannte Zwangsbedingung ganz einfach r = l und wir suchen nur noch nach den Bewegungsgleichungen für φ.

Als Koordinaten-Transformation haben wir:

\(x = l \cdot \sin{\phi} \enspace mit\colon \enspace \dot{x} = l \cdot \cos{\phi} \cdot \dot{\phi}\\\)

und:

\(y = -l \cdot \cos{\phi}  \enspace mit\colon \enspace  \dot{y} = l \cdot \sin{\phi} \cdot \dot{\phi}\\ \)

Für die Langrange-Funktion benötigen wir Ekin und Epot.

\( E_{kin} = \frac{1}{2} m (\dot{x}^2 + \dot{y}^2) = \frac{1}{2} m l^2 (\dot{\phi})^2 \\ \)

und mit dem Gavitationspotential:

\( E_{pot} = – \int F(r) dr = m \cdot g \cdot y = -m \cdot g \cdot l \cdot \cos{\phi} \\\)

damit ergibt sich als Lagrange-Funktion:

\( \mathcal{L} = E_{kin} – E_{pot} =  \frac{1}{2} m l^2 (\dot{\phi})^2   + m \cdot g \cdot l \cdot \cos{\phi}   = 0 \\\)

Und schließlich als Lagrange-Gleichung:

\( \Large \ddot{\phi} = – \frac{g}{l} \sin{\phi} \)

Diese schöne Differentialgleichung können wir leider nicht analytisch lösen. Aber für kleine Winkel \( \phi \) bekommen wir näherungsweise:

\( \Large \ddot{\phi} = – \frac{g}{l} \phi \)

was uns dann wieder auf die klassische (Näherungs-)lösung führt.

Diese Näherungslösung ist ein sog. Harmonischer Oszillator.

Ausserdem gibt es noch Hamilton

In der Quantenphysik wird auch häufig die Hamiltionfunktion verwendet:

\(H = E_{kin} + E_{pot} \)

 

Physik: Kraftfeld und Potential

Gehört zu: Himmelsmechanik
Siehe auch: Newton, Langrange-Punkte, Ebbe und Flut, Gravitation, Differentialoperatoren, Arbeit, Elementarteilchen
Benutzt: WordPress-Plugin MathJax-Latex

Stand: 17.01.2024  (Zentrifugalkraft, Laplace)

Das Gravitationsgesetz

Im Jahre 1668, formulierte Isaac Newton (1642-1727) das berühmte Gravitationsgesetz:

\( \Large F = G \frac{m \cdot M}{r^2}  \)

aus dem sich die Keplerschen Gesetze herleiten lassen…

Das Besondere der Erkenntnis von Newton ist nicht nur die Formulierung als eine einzige Formel, sondern auch, dass die Gravitationskraft zwischen allen Körpern im Universum wirkt. Beispielsweise kreisen die Jupitermonde gemäß diesem Gesetz um den Jupiter und ebenfalls kreisen Doppelsterne etc. aufgrund der Gravitation umeinander…

Zu den Zeiten Newtons beschäftigte sich die Physik in der Hauptsache und fast ausschließlich mit Mechanik. Newton (und Gottfried Wilhelm Leibniz 1646-1716) entwickelten die Infenitesimalrechung (engl. Calculus) mit der die Bewegung mechanischer Systeme durch die Wirkung von Kräften berechenbar gemacht werden konnte. Siehe dazu mein separater Artikel Newtonsche Mechanik.

Isaac Newton hat auch sehr viel über das Licht geforscht. Stichworte dazu wären: Teilreflektion, Newtonsche Ringe,…

Die Größe der Gravitationskonstante G wurde erst viel später durch das berühmte Experiment “Gravitationswaage” von Henry Cavendish (1731-1810) bestimmt.

In der Wikipedia finden wir:

\( \Large G = (6{,}674\,30\pm 0{,}000\,15)\cdot 10^{-11}\,\mathrm {\frac {m^{3}}{kg\cdot s^{2}}} \)

Eine ähnliche Formel wie hier für die Gravitationskraft zwischen zwei Massen haben wir in der Elektrostatik für die Elektrische Kraft zwischen zwei elektrischen Ladungen: Das Coulomb-Gesetz.

Die elektrostatische Kaft

Elektrische Ladungen erzeugen ebenfalls ein Kraftfeld.  Charles Augustin de Coulomb (1736-1806) fand 1785, dass die Kraft zwischen zwei elektrische Ladungen q1 und q2 (im Vakuum) im Abstand von r sich nach folgender Formel berechnet (Coulombsches Gesetz):

\(\Large F_e = \frac{1}{4 \pi \epsilon_0} \frac{q_1 q_2}{r^2}\)

Mit der elektrischen Feldkonstanten:

\( \Large \epsilon_0 = 8{,}854 \cdot 10^{-12} \frac{C^2}{Nm^2} \\\)

Das Potential in einem Kraftfeld

Die Gravitationskraft, die das Newtonsche Gravitationsgesetz beschriebt wirkt ja über Entfernungen zwischen Körpern ohne das wir dazwischen etwas sehen können. Wir haben also eine sog. Fernwirkung (“action at a distance”), was schon Newton großes Kopfzerbrechen machte.
Pierre-Simon Laplace (1749-1827) gelang es, dies durch ein sog. Feld (Potentialfeld) zu beschreiben, dessen Gradient (also soetwas wie die Änderungsrate) dann die Kraft ist. Micheal Faraday (1791-1867) hat die Laplace’sche Idee von Feldern dann im Zusammenhang mit Elektrischen und Magnetischen Feldern populär gamacht.
Heute glaubt man (Quantenfeldtheorie), dass das ganze Universum “nur” aus solchen Feldern besteht und es eigentlich keine Teilchen gibt.
Quelle: https://youtu.be/RwdY7Eqyguo?feature=shared

Ein Kraftfeld, wie das Gravitationsfeld aber auch andere (wie z.B. ein Elektrostatisches Feld), beschreibt man auch gerne durch das sog. Potentialfeld, womit für jeden Punkt im Raum gemeint ist, welche Arbeit (Kraft mal Weg) erforderlich ist, eine kleine Probemasse aus dem Unendlichen an diesen Punkt im Raum zu bringen. Die Menge Arbeit ist in einem sog. “konservativen” Kraftfeld unabhängig vom Weg. Das Potentialfeld ist somit wohldefiniert.

So ein Potentialfeld Φ(r) ist also ein skalares Feld. Aus dem Potentialfeld ergibt sich dann das Kraftfeld F(r), das proportional dem lokalen Gradienten des Potentialfeldes ist.

\( \Large \vec{F(r)} = const \cdot grad( \Phi(r) )\\ \)

Statt “grad” für Gradient, schreiben manche auch gerne ein Nabla, mit dem Symbol: ∇

\( \Large \vec{F(r)} = const \cdot \nabla \Phi(r) \\ \)

Das Potential im Gavitationsfeld

Bei einem “einfachen” Gravitationsfeld, das nur von einem großen Körper (z.B. der Erde) erzeugt wird, hängt der Wert des Potentials nur vom Abstand vom Massemittelpunkt ab. Gleiche Abstände vom Massemittelpunkt definieren dann sog. Äqui-Potential-Flächen.

Wenn wir das Gravitationsfeld der Erde (Masse = M) nehmen, ist das “Gravitationspotential” im Abstand r vom Massemittelpunkt demnach:

\(  \Large \Phi(r) = \space – G \cdot \frac{M}{r}  \\ \)

Wenn wir dieses Potential nach r ableiten (das ist im Eindimensionalen der Gradient) erhalten wir ja unser Newtonsches Gravitationsgesetz:

\( \Large F(r) = m \cdot \frac{d \Phi}{dr} =  m \cdot \frac{G \cdot M}{r^2} \\ \)

Das “schicke” am Potentialfeld ist:

  1. Der philosophische Gedanke der “Fernwirkung” eines Kraftfeldes wird dadurch gedanklich eher eine lokale Angelegenheit.
  2. Die Potentiale mehrerer Kraftfelder können einfach addiert (“überlagert”) werden.

Ein Beispiel für eine Überlagerung von Potentialen mehrer Kraftfelder sind die Lagrange-Punkte im System Sonne-Erde. Dort haben wir zwei Gravitationsfelder (Sonne und Erde) und ein drittes Potentialfeld durch die Rotation. Letztere wird berücksichtigt durch die Betrachtung in einem rotierenden Bezugssystem, in dem auch die beiden schweren Himmelskörper (Sonne und Erde) ruhen. Man spricht dann von einem “effektiven” Potential, was die Zentrifugalkraft, die ja als sog. Scheinkraft (Trägheitskraft) in so einem rotierenden Bezugssystem auftritt, mit beinhaltet. Dies zeigt sehr schön der Wikipedia-Artikel Lagrange-Punkte. und auch der von mir später verfasste Artikel über die Lagrange-Punkte in diesem Blog.

Siehe auch das Youtube-Video von Josef M. Gaßner “Lagrange-Punkte und Potential”:

Das Potential im elektrostatischen Feld

Auch das elektrostatische Feld ist ein konservatives Kraftfeld.

Bei einem “einfachen” Elektrostatischen Feld, das nur von einer punktförmigen Ladung erzeugt wird, hängt der Wert des Potentials nur vom Abstand von der Punktladung ab. Gleiche Abstände von der Punktladung definieren dann sog. Äqui-Potential-Flächen.

Bei einem elektrostatischen Feld einer Punktladung der Ladung Q ist also das Potential im Abstand r von der Punktladung demnach:

\(  \Large \Phi(r) = \space – \frac{1}{4\pi\epsilon_0}\frac{Q}{r}  \\ \)

Auch hier können wir dieses Potential nach r ableiten und bekommen das Coulomb-Gesetz für die Anziehungskraft zweier elektrischen Ladungen q und Q:

\(\Large F_e = q \cdot \frac{d \Phi}{dr} = q \cdot \frac{1}{4 \pi \epsilon_0} \frac{Q}{r^2}\)

Die Zentrifugalkraft

Die Zentrifugalkraft ist eine sog. “Scheinkraft”; d.h. sie ist in Inertialsystemen nicht vorhanden.

Typischerweise hat man so eine Zentrifugalkraft bei der Bewegung eines Massepunkts auf einer kreisförmigen Bahn um ein Zentrum, wenn man als Bezugssystem das mitrotierende System nimmt (welches kein Intertialsystem ist).

Im Falle einer Kreisbahn, richtet sich die Zentrifugalkraft nach aussen (also vom Zentrum weg) und die Größe ist:

\(\Large F_{Zf} = m \cdot \omega^2 \cdot r \)

Dieses Kraftfeld kann man auch durch sein Potential beschreiben:

\( \Large \Phi(r) = \space – \frac{1}{2} \omega^2 \cdot r \)

Physik: Quantenfeldtheorie QFT

Gehört zu: Physik
Siehe auch: Quantenmechanik, Elementarteilchenphysik, Heisenberg, Kommutator

Stand: 23.2.2022

Links zur QFT

Youtube Gaßner (41):

Youtube Gaßner (42):

Grundlagen der Quantenfeldtheorie

Gerne verwendete Begriffe sind auch:

Was diese Begriffe mit der QFT zu tun haben ist mir nicht klar.

In der Quantenfeldtheorie soll die Spezielle Relativitätstheorie voll berücksichtigt werden (also die Lorentz-Invarianz), was ja in der Quantenmechnik (z.B. Schrödinger) noch nicht gegeben war.
Deswegen spricht man auch von der relativistischen Quantenfeldtheorie. Diese relativistische QFT ist damit die Vereinigung von Spezieller Relativitätstheorie und Quantenmechanik.

In der Quantenfeldtheorie haben wir lauter Felder. Für jedes Elementarteilchen haben wir ein im ganzen Universum omnipräsentes skalares Feld. Die Feldstärke ist dabei eine komplexe Zahl.
Beispielsweise haben wir ein Elektronenfeld:

\( \Psi_e (x,t) \\ \)

ein Photonenfeld etc. etc. pp.

Ein einzelnes Elementarteilchen ist dann eine elementare Anregung des zugeordneten Feldes. Was meint man hier mit “Anregung”?

Teilchen sind Anregungen von Feldern.

“Observables” sind beobachtbare physikalische Größen, wobei die von Parametern unterschieden werden.

Klassischerweise ist die Zeit ein Parameter: aber in der relativistischen QFT müssen auch die Raumkoordinaten zu Parametern werden, denn die Raumkoordinaten können ja auch nur indirekt “gemessen” werden. Ausserdem sollten Zeit und Raum gleichartig behandelt werden. Der Definitionsbereich solcher skalaren Felder ist also (x1,x2,x3,t) d.h. ein Vierervektor. (Mit einem Skalarprodukt hätten wir dann bald einen Hilbertraum.)

Das Messen (beobachten) einer “Observablen” geschieht durch Anwenden eines entsprechenden “Operators” auf das Skalarfeld. So ein Operator, soll immer “hermitsch” sein…

To be detailled …