Astronomie: Astrophotography: Dithering

Gehört zu: Astrofotografie
Siehe auch: DSLR, APT, PHD2 Guiding, Bildbearbeitung
Benutzt: Videos von Youtube, Fotos von Google Archiv

Eine Empfehlung für Dithering

Tony Hallas sagte auf seinem Vortrag “DSLR Astrophotography” beim 1st Annual SCAE Imaging Symposium,
dass man Dithering verwenden sollte speziell wenn man DSLRs einsetzt, die Farbsprenkel produzieren (“color mottle is your number one enemy when you are using a DSLR”) und ja einen ungekühlten Sensor haben; d.h. Darks zu benutzen wird schwierig, da die Temperaturen kaum richtig passen werden.

Abbildung 1: Tony Hallas: DSLR Astrophotography (Youtube)

Was ist Dithering?

Von einer Aufnahme zur nächsten eine kleine “zufällige” Bewegung um 2 oder 3 Sterndurchmesser.

Was bewirkt man mit Dithering?

Durch Dithering sollten weitgehend die “Hot Pixel” verschwinden – man kann möglicherweise auf Dark Frames verzichten (wenn man sie nicht aus anderem Grunde benötigt z.B. Amp Glow).

Durch Dithering sollte auch das sog. “Walking Man Pattern” verschwinden…

Man kann das Dithering kontrollieren, z.B. durch “Blinking” der Sub-Frames…

Wie macht man Dithering?

Beim Dithering muss man unterscheiden, ob man Autoguiding einsetzt oder nicht, denn im Falle von Autoguiding muss der Leitstern  ja koordiniert werden mit der Dithering-Bewegung.

Beim Stacking werden mit Hilfe von “Sigma Clipping” die “zufälligen” Schmutzeffekte dann entfernt.

Man sagt, es werden mindestens 6 Einzelaufnahmen, besser 10 Einzelaufnahmen benötigt, damit dieses Dithering funktioniert – bzw. damit dieses Sigma Clipping funktioniert.

Starten von APT

Zunächst muss ich APT starten und mit Kamera und Montierung verbinden.

Dithering mit APT

Um das APT-Dithering einzustellen müssen wir im APT auf den Reiter “Gear” und dann auf die Schaltfläche “GUIDE” gehen.
Der Hilfetext erklärt, was gleich passiert, wenn wir klicken:

Abbildung 2: Dithering mit APT (Google Archiv: APT_Dithering-01.jpg)

APT_Dithering-01.jpg

APT Dithering 1

Nun klicke ich auf die Schaltfläche “Guide” und das Fenster “Guiding Settings” öffnet sich, wo ich jetzt “Auto Dithering” auf “ON” schalte.

Abbildung 3: Dithering mit APT (Google Archiv: APT_Dithering-02.jpg)

APT_Dithering-02.jpg

APT Guiding Settings Dithering

APT Dithering – ohne Autoguiding

Wir geben nicht nur “Auto Dithering ON” ein, sondern insgesamt folgendes:

  • Auto Dithering:   ON
  • Guiding Program: APT Dithering   (oder: APT Pulse Dithering)
  • Dithering Distance:  5   (wieviel soll zwischen den Einzelaufnahmen bewegt werden – nicht zuviel, das kostet Zeit und die Montierung wackelt….)
    • Im Falle von APT Pulse Dithering ist das die maximale Pulslänge in Millisekunden in Hunderten. Z.B. 5 bedeutet also 500ms maximale Pulsdauer)
    • Im Falle von APT Dithering ist das die Angabe der Pixel um die maximal verschoben werden soll. APT rechnet das in Bogensekunden um und generiert einen entsprechenden GoTo-Befehl.
  • Dithering Settle Time:  15 Sekunden   (wir müssen ein wenig warten, damit die Montierung zur Ruhe kommt – sonst werden die Sterne kleine Striche)
    • Nur wenn wir “APT Dithering” statt “APT Pulse Dithering” ausgewählt hatten

Wenn man alles eingegeben hat und dann auf OK klickt, sieht man dass die Beschriftung der Schaltfläche “Guide” sich auf “Guide [D]” geändert hat, um anzuzeigen, dass Dithering aktiv ist.

Abbildung 4: APT Dithering ohne Autoguiding (Google Archiv: APT_Dithering-03.jpg)

APT_Dithering-03.jpg

APT Gear Guide Dithering

Dithering mit APT – mit Autoguiding (hier: PHD Guiding)

Wenn wir im APT Dithering mit Autoguiding machen wollen wollen, müssen wir das spezielle Autoguiding-Programm angeben.
Also:

  • Auto Dithering:   ON
  • Guiding program:  PHD2 Guiding (also nicht “APT Dithering”)

Im Autoguiding-Programm PHD2 Guiding müssen noch einige Einstellungen vorgenommen werden:

  • Menü -> Einstellungen -> PHD-Server aktivieren
  • Brain-Symbol -> Reiter “Global” -> Abschnitt “Dither Einstellungen”: Vergrößern = 1,0    (Faktor zum Multiplizieren der APT-Einstellung)

Astronomie: Stellarium Horizontbild/Landschaft mit Panoramafoto – spherical

Gehört zu: Astro-Software
Siehe auch: Stellarium, Aufnahmeverfahren, Cartes du Ciel
Benutzt: Fotos aus Google Archiv

Der Horizont in Stellarium: Landscapes

Stellarium bietet hierfür mehrere Möglichkeiten, die im Stellarium-Wiki näher erläutert werden:

  • Polygon-Methode
  • Einzelbild-Methode
  • Multi-Bild-Methode (Fisheye oder spherical)

Eine Polygon-Linie ist eigentlich völlig ausreichend für die realistische Planung von astronomischen Beobachtungen.

“Schicker” und eindrucksvoller ist es natürlich mit echten Fotos von der Horizontgegend per Einzelbild-Methode.

Die Multi-Bild-Methode habe ich noch nicht ausprobiert.

Polygonzug-Methode

Einen Horizont mit der einfachen Polygonzug-Methode kann man meist auch in anderen Planetariums-Programmen, z.B. Cartes du Ciel einrichten.

Bei der Polygon-Methode werden “nur” eine Folge von Horizont-Koordinaten (Höhe und Azimuth) angegeben und in einer Landscape-Datei gespeichert.

Es können mehrere Landscapes für Stellarium definiert werden. Die Dateien für ein Landscape sollen im Ordner: <Stellarium-Ordner>\landscapes\<landscape ID> liegen.

Also im Beispiel: <Stellarium-Ordner>\landscapes\terrasse

In diesem Unterordner muss sich eine Datei namens “landscape.ini” befinden, die dann das Landscape im einzelnen definiert.

Meine landscape.ini für den Beobachtungsort Hamburg-Eimsbüttel-Terrasse sieht folgendermaßen aus:

[location]
planet=Earth
latitude=53d30'00"
logitute=10d00'00"
altitude=110
[landscape]
name = Terrasse
type = polygonal
author = Dietrich
description = Horizontverlauf auf meiner Terrasse in Hamburg-Eimsbüttel
polygonal_horizon_list = horizon_eimsbuettel.txt
polygonal_angle_rotatez = 0
ground_color = .05,.05,.95
horizon_line_color = .05,.05,.05
minimal_brightness=.10

Wobei ich die Horizontpunkte aus meiner Datei für Cartes du Ciel kopiert habe.

Aktivieren dieses Horizonts in Stellarium:

Horizont: Linkes Menü: Himmel- und Anzeigeoptionsfenster [F4]

Abbildung 1: Horizont in Stellarium (Google Archiv: Stellarium01-3.jpg)

Stellarium Horizont

Abbildung 2: Horizont Auswahl: Linkes Menü: Himmel- und Anzeigeoptionsfenster [F4] –> Ansicht –> Landschaft (Google Archiv: Stellarium01-4.jpg)

Stellarium Ansicht Landschaft

Abbildung 3: Horizont in Stellarium: Das Ergebnis (Google Archiv: Stellarium01-5.jpg)

Stellarium Horizont

 

Einzelbild-Methode

Bei der Einzelbild-Methode geht man wie folgt vor.

Basis der Beschreibungen ist die im Web vorhandene Dokumentation:

Schritt 1: Das Panoramabild erstellen

Ich mache eine Fotoserie mit meiner Digitalkamera wobei ich ein leichtes Weitwinkelobjektiv (f=24mm bei APS-C Sensor) verwende. Ich suche mir eine passenden Standort aus, wo ich den kompletten Horizont in 360 Grad mit Stativ als Panorama fotografieren kann. Die höchsten Objekte am Horizont, die ich noch haben will, müssen ins Gesichtsfeld (36° x 52°) passen.

Es ist gut, wenn man sich die genaue Ostrichtung am Horizont merkt, weil Stellarium das Horizontbild auf den Ost-Punkt ausrichtet. Man kann das aber später in der Datei “landscape.ini” noch genau austarieren.

Das Panoramafoto erstelle ich aus den Einzelfotos mit der Software “Microsoft ICE”.
Geronimo beschreibt diesen Vorgang mit der Software Hugin Panorama-Photo Stitcher.

Abbildung 4: Beispiel Schlump:  So sieht mein 360°-Panoramabild aus (Google Archiv: Horizont_20171004_0006_stitch50aa.jpg)

Horizont Hamburg Schlump

Horizont Hamburg Schlump

Abbildung 5: Beispiel Handeloh: Das 360°-Panoramabild dort (Google Archiv: Horizont_20181005_121706_stitchA.jpg)

Horizont Handeloh ASW

Horizont Handeloh ASW

Schritt 2: Bildbearbeitung in GIMP

Zur Bildbearbeitung nehme ich das kostenfreie Software-Tool GIMP (ich habe Version 2.10.6).

Die Bildbearbeitung erfolgt in mehreren Teilschritten, wobei die enorme Größe meines Panoramabildes für GIMP wohl eine Herausforderung darstellt: einzelne Bearbeitungen dauern machmal sehr lange und manchmal stürzt GIMP auch ab. Deshalb bin ich dazu übergegangen, nach jedem Teilschritt das Zwischenergebnis in GIMP abzuspeichern.

Das mit ICE erstellte Panoramabild ist 16,6 MB groß. Wenn ich das in GIMP lade wird das erste GIMP-Zwischenbild 545,9 MB groß.

Vielleicht wäre es sinnvoller, als allererstes die Größe des Panoramabildes zu reduzieren: 2048 x 1024

Die ganze Bearbeitung in GIMP soll folgendes erreichen:

  • Der Himmel soll “entfernt” werden; d.h. transparent werden und die eigentliche Landschaft am Horizont soll bleiben.
  • Das Bild soll auf die von Stellarium erwartete Größe von 2048 x 1024 skaliert werden.
  • Oberhalb muss alles transparent sein
  • Unterhalb der schönen Horizontlandschaft muss das Bild mit horizontähnlichen Farben ausgefüllt werden

Die Verarbeitungsschritte in GIMP folgen der Anleitung von Geronimo, wobei ich teilweise eigene Tips und Anmerkungen dazu habe.

Schritt 2.1: Landschaft mit Ebenenmaske freistellen

1. Panoramabild in GIMP öffnen und Ebene erstellen

Rechtsklicken auf das Bild und im Kontextmenü <Ebene> – <Neu aus Sichtbarem> –
Im Folgenden bearbeiten wir nur diese neue Ebene und machen daraus eine Maske, die nur noch die eigentliche Landschaft durchlässt. Der Himmel darüber wird am Ende transparent gemacht; der Boden darunter wird am Ende “neutral” ausgemalt.

2. Zuerst wandeln wir die Farben in RGB-Graustufen um:

  • Rechtsklicken auf das Bild und im Kontextmenü <Farben> – <Entsättigen> – <Entsättigen> – <Helligkeit>
  • Achtung: Nach dem Klicken auf “OK” dauert es eine ganze Weile, bis die Entsättigung durch ist.

3. Himmel weiss & Landschaft schwarz:

  • Schwellwerte schwarz/weiss: Rechtsklicken auf das Bild und im Kontextmenü <Farben> – <Schwellwerte>. Dort den Schieberegler so einstellen, dass der Himmel durchgehend weiss wird und die Landschaft schwarz.
    Achtung: Jede Änderung des Schiebereglers bedeutet ein minutenlanges Neuberechnen des Bildes.
  • Damit wir eine saubere Maske bekommen nun noch im oberen Teil den Himmel mit dem Pinsel-Werkzeug in “weiss” korrigieren, da wo “Schwellwerte” es nicht ganz geschafft hat und im unteren Teil die Landschaft ggf. mit dem Pinselwerkzeug in “schwarz” korrigieren.

4. Nun die Landschaft (den schwarzen Bereich) transparent machen:

  • Rechtsklick auf das Bild und im Kontextmenü <Farben> – <Farbe nach Alpha> – Farbe (schwarz sollte schon ausgewählt sein) – <OK>.
    Nun wird langsam das Fotopanorama der Landschaft sichtbar – wie immer, dauert das ein Weilchen.
  • Nun alle Ebenen “nach unten” vereinen. Dazu Rechtsklick auf das Bild und im Kontextmenü <Ebene> – <nach unten vereinen> (oder: Menüleiste: Ebene -> nach unten vereinen)

Schritt 2.2 Himmel transparent machen

Im Werkzeugkasten das Werkzeug <Nach Farbe auswählen> wählen und auf den Himmel klicken. Alles was weiss ist, wird nun selektiert. Dann das Selektierte löschen mit Ctrl+X (dieses “Löschen” macht den Himmel transparent). Das Löschen eines großen Bereichs kann in GIMP eine ganze Weile dauern, man muss das geduldig abwarten…

Wenn bei <Nach Farbe auswählen> dummerweise noch Teile in der Landschaft selektiert wurden, weil sie auch weiss sind, muss man das korrigieren: Umschalten auf “Schnellmaske” (unten links im Bildfenster) und diese Auswahlen aufheben (d.h. schwarz malen).

Alternativ zu <Nach Farbe auswählen> kann man ggf. auch mit dem Werkzeug <Zauberstab> arbeiten. Damit bleibt man sicherer im Bereich des Himmels, muss es aber evtl. mehrfach machen.

Schritt 2.3 Bild für Stellarium skalieren

Stellarium erwartet ein Landscape-Bild in der Größe 2048 x 1024 mit 72 dpi. Deshalb:

  • das Bild jetzt entsprechend skalieren mit: <Bild> – <Bild scalieren> auf horizontal 2048 skalieren.
  • Dann ein Leerbild der richtigen Größe (2048 x 1024) erstellen
    • Leerbild: <Datei> – <Neu> – <Breite> = 2018, <Höhe> = 1024. Erweiterte Einstellungen: 72 dpi & Füllung = Transparenz, Schaltfläche “OK”
  • und “unser” Bild dahinein kopieren:
    • Hineinkopieren: <Fenster> – 1  – <Ctrl-C> – <Fenster> -2 – <Ctrl-V>

Achtung: Beim “Hineinkopieren” muss das Bild sehr feinfühlig vertikal geschoben werden, sodass der gedachte Horizont genau auf der Bildmitte (Pixel = 1024 / 2 = 512) sitzt.

Wahrscheinlich haben wir jetzt zwei Ebenen. Eine ist die “schwebende Auswahl”. Das muss mit dem Befehl “Ebene verankern” behoben werden. Erst danach kann die “normale” Bildbearbeitung weiter erfolgen.

Der untere Teil unseres Bildes soll nicht transparent sein (da sollen ja keine Sterne erscheinen). Dieser untere Teil des Bildes muss also mit Farbe ausgefüllt werden. Dabei sollten angrenzende Farben des Horizontpanoramas verwendet werden, denn diese werden in Stellarium möglicherweise sichtbar. Auch sollten die Farben eher dunkel sein, denn es ist ja der “unsichtbare” Teil des Grundes.

Zum Schluss das Bild als PNG exportieren (Menü -> Datei -> Exportieren…) und dabei einen “schönen” Namen vergeben, denn der Name wird in den Stellarium-INI-Dateien benutzt.

Schritt 3: Konfiguration für Stellarium

Zur Zeit (2018) benutze ich die Stellarium-Version  0.18.0. Um unser Horizontpanorama in Stellarium einzubinden, muss jetzt eine Datei mit dem Namen “landscape.ini” erstellt werden.

Inhalt der Datei landscape.ini

[landscape]
name = Name meiner Landschaft
author = Name des Erstellers
description = eine Beschreibung dieser Landschaft
type = spherical
maptex = Name der erstellten PNG-Datei  (s.o.)
angle_rotatez = -55
[location]
name = Hamburg-Schlump
planet = Earth
country = Germany
lattitude =
longitude =
alititude =

Die Südrichtung des Bildes kann über den Parameter “angle_rotatez=….” eingestellt werden.

Speicherort der Datei landscape.ini

Im Installationsordner von Stellarium befindet sich ein Unterordner names “landscapes”. Dort müssen wir einen Unterordner mit dem Namen unseres neuen Landscapes anlegen. In unserem Fall ist das: D:\bin\Stellarium\landscapes\eimsbuettel.

In diesen Ordner kopieren wir die erstellte Datei “landscape.ini” und die PNG-Datei.

Schritt 4: Aktivieren der Landschaft in Stellarium

Wir starten Stellarium und klicken in der linken Seitenleiste auf “Himmel- und Anzeigeoptionsfenster [F4]”.

Dort dann auf den Reiter “Landschaft” klicken und in der Liste links den Namen der gewünschten Landschaft auswählen.

Im unteren Bereich unter “Einstellungen” anhaken “Minimalhelligkeit” 0,20 – dann wird die Landschaft in der Nacht nicht auf vollkommen schwarz abgedunkelt, sondern bleibt ein wenig sichtbar.

Abbildung 6: Landschaft in Stellarium (Google Archiv: Stellarium_Schlump.jpg)

Stellarium Schlump

Stellarium Schlump

Computer – E-Mail – Thunderbird

Gehört zu: E-Mail
Siehe auch: E-Mail-Client, Thunderbird im Wiki

Thunderbird als E-Mail-Client

Als E-Mail-Lösung habe ich im Beruf ewig lange Microsoft Outlook verwendet – wozu dann immer ein Exchange-Server bei dem Arbeitgeber gehörte.

Privat bin ich dann auf eM Client gewechselt, weil der so schön mit CalDAV-Kalendern und CardDAV Adressbüchern zusammen arbeitet.

Die wirklich freie Alternative für E-Mail (und Adressbücher und Kalender) ist aber Mozilla Thunderbird als Client.

Die Frage ist dann, welche Server für E-Mail, Adressbücher (Kontakte) und Kalender man einsetzen kann und wie eine Synchronisation über mehrere Geräte (Smartphone, Reise-Notebook, Büro-PC,…). Dafür habe ich mehrere Möglichkeiten:

  • Microsoft Exchange Server (im Rahmen meines Microsoft Office365 Kontos)
  • Den IMAP-Mail-Server beim Provider Strato
  • Meine Baikal-Installation beim Provider Strato
  • Neuerdings mein fruux-Konto
  • oder mit dem guten alten Google-Konto

Seit Version 38 beinhaltet Thunderbird nun auch endlich die Kalender-Funktion als Addon (früher das separate Lightning) Contine reading

Astrofotografie: Speicherkarten

Gehört zu: Astrofotografie

Speicherkarten in der Astrofotografie

In Namibia 2017 möchte ich mit meiner Kamera Canon EOS 600D viele schöne Aufnahmen schießen.

Deshalb habe ich eine Menge von SD-Karten über Amazon angeschafft:

  • SanDisk Ultra Android microSDHC 32GB
  • bis zu 80 MB/Sek Class 10 Speicherkarte
  • + SD-Adapter
  • Zum Preis von Euro 15,99 inkl. Versand

Wieviel Fotos passen auf eine 32GB-Speicherkarte?

Größe eines durchschnittlichen Fotos

  • Raw: 24000 kB
  • Jpg:  4500 kB
  • Gesamt (Raw+Jpg): ca. 29 MB
  • Also passen auf eine 32 GB Karte ca. 1103 Fotos

Zeitraffer / Time Lapse

Zum ruckelfreien Abspielen eines Zeitraffers bracht man 25 Frames pro Sekunde.
Für ein Video von 1 Minute braucht man also mindestens 60 x 25 = 1500 Frames.

Wie lang sollte ein Zeitraffer-Video sein?

In welchem Rhythmus man Aufnahmen macht hängt davon ab, wieviel Bewegung das Motiv bietet.
Hier ein paar Richtwerte:

  • Ziehende Wolken: ca. 5-15 Sekunden
  • Menschen auf einem Platz: 1-5 Sekunden
  • Sonnenuntergang: 5-15 Sekunden

Beispiel:

  • Von Sonnenuntergang 18:41 bis Ende der Dämmerung 19:56 sind es 75 Minuten oder 75 x 60 = 4500 Sekunden
  • Wenn ich jetzt alle 3 Sekunden (4500 /1500) ein Foto schieße, werden das 4500 / 3 = 1500 Frames; was für ein Video von 1 MInute reicht.

Astrofotografie mit leichtem Gepäck

Gehört zu: Astrofotografie
Siehe auch: meine Geräteliste, Nachführung, NanoTracker, Polar Alignment
Benutzt: Fotos aus Google Archiv

Stand: 25.4.2023

Astrofoto-Ausrüstung für die Flugreise

Als Kamera verwende ich meine gute alte Sony NEX-5R, wo ich über das E-Bajonett diverse gute alte manuelle Objektive (“Altglas”) anschließen kann.

Als Neuerwerbung habe ich in 2017 aus dem Nachlass eines Astro-Kollegen günstig eine astro-modifizierte Canon EOS 600D erstanden. Diese hat den großen Vorteil, dass sie als “Astro Mainstream” anzusehen ist. Sie kann über ein USB-Kabel mit einem Windows-Computer verbunden werden und von so mächtiger und kostenloser Software wie APT gesteuert werden.

Nachführung

Für die Nachführung habe ich mir 2012 einen NanoTracker angeschafft, um auch bei weiten Flugreisen (Südafrika) eine mobile Nachführungsmöglichkeit für meine Astro-Aufnahmen mit dem Fotoapparat (Sony NEX-5R) bzw. meiner neu erstanderen DSLR Canon EOS 600D zu haben.

Alternativen zur Nachführung mit NanoTracker wären:

  • Vixen Polarie  (teuerer)
  • Skywatcher Star Adventurer  (schwerer)
  • Skywatcher Star Adventurer Mini (warum nicht? neu und klein)
  • iOptron Skytracker (alt, schwer)

Abbildung 1: Startracker “nano tracker” (Google Archiv: DK_20170720_NanoTracker.jpg)

NanoTracker

NanoTracker

Stromversorgung für den NanoTracker

Den elektrischen Strom bekommt der NanoTracker über ein separates Kästchen mit 3 AA-Akkus.

Die Teile und das Gewicht

Als Flugreisegepäck ist das Gewicht besonders wichtig:

  • Der NanoTracker: Gewicht 384 g, Traglast 2 kg, PreisEuro 289.-
  • Die Akku-Einheit (mit Akkus): 163 g
  • Ein Kugelkopf Sirui E10:  263 g   (Euro 94,-)
  • Fotostativ Sirui ET-1204:  Gewicht 1048g, Traglast 8 kg, Preis 299,- inkl. Kugelkopf
  • Dreiwege-Neiger Rollei MH-4: Gewicht 252 g, Traglast 2,5kg,  Preis Euro 20,–  (alternativ: Star Adventurer Wedge 500g, Euro 71,– )
  • Kamera Sony NEX 5R mit Olympus 135mm: 676 g
  • Kamera Canon EOS 600D mit Olympus 135 mm: 926 g

Aufstellung – Stativ

Die NanoTracker soll auf ein stabiles Fotostativ (Dreibein, Tripod) mit einem Zweiwege-Neiger montiert werden.

Man sagt, dass der Stativkopf exakt waagerecht ausgerichtet sein soll. Das kann ich mit einer kleinen Wasserwaage/Libelle prüfen und ggf. die Stativbeine leicht ‘rauf bzw. ‘runter schieben.

Das Sirui ET-1204 (ET = Easy Traveller) ist aus leichtem und stabilen Carbon (1048g) und lässt sich mit den vierteilig ausziehbaren Beinen auf eine Packlänge von 42 cm  zusammenschieben.

Wenn ich die Mittelsäule unten am Haken noch mit ordentlich Gewicht beschwere, wird das leichte Reisestativ noch standfester.

Dann kann der Neiger (bzw. die Wedge) und der NanoTracker auf den Stativkopf gesetzt werden und bereits am Tage eine grobe Ausrichtung nach Norden und auf die Polhöhe (geografische Breite) vorgenommen werden.

Abbildung 2: Fotostativ Sirui ET-1204 (Google Archiv: DK_20170720_Stativ_1818.jpg)

Stativ Sirui ET

Stativ Sirui ET 1204 – Carbon, vier Segmente, Zusatzgewicht

Zweiwege-Neiger

Es ist günstig, auf das Fotostativ einen Neigekopf zu montieren, damit kann eine Pol-Ausrichtung einfacher vorgeommen werden: Eine Achse = Polhöhe, zweite Achse = Azimuth (Himmelsrichtung).

Abbildung 3: Neiger Rollei MH-4 auf Fotostativ (Google Archiv: DK_20170711_Neiger-02.jpg)

Neiger MH-4

Neiger MH-4 auf Stativ

Wenn man eine besonders genaue Pol-Ausrichtung vornehmen will (z.B. mit dem QHY PoleMaster s.u.), ist es noch praktischer, statt eines schlichten Neigekopfs (s.o.) eine sog “equatorial wedge” (z.B. SkyWatcher Star Adventurer Wedge)  zu verwenden. Damit lassen sich bequemer und feinfühliger kleine Korrekturen der Polhöhe und des Azimuts erreichen.

Einnorden – Polar Alignment

Einnorden mit iPhone-App

Auch den NanoTracker muss man Einnorden bzw. Einsüden. Der NanoTracker hat kein Polsucher-Fernrohr, sondern hat nur ein kleines Peil-Loch, mit dem man eine grobe polare Ausrichtung hinbekäme.

Ich nehme die polare Ausrichtung immer schon am Tage mit einer iPhone-App vor. Dazu benutze ich eine Virtual Reality Planetariums-Software, die auch das äquatoriale Koordinatennetz anzeigt und in der Mitte ein Fadenkreuz oder Telrad zeigt.

Da NanoTracker und iPhone große plane Flächen haben, kann ich sie so gut bündig ausgerichten und sicher mit einem starken Gummiband verbinden.

Abbildung 4: Smartphone mit Gummiband auf NanoTracker (Google Archiv: NanoTracker_0278.jpg)

NanoTracker Polar Alignment

NanoTracker Polar Alignment

Abbildung 5: SmartPhone mit Gummiband auf NanoTracker (Google Archiv: NanoTracker_0277.jpg)

Smartphone auf NanoTracker

Smartphone für Polar Alignment auf NanoTracker

Einnorden mit QHY PoleMaster

Wenn es dunkel ist und die ersten Sterne erscheinen, kann ich eine sehr genaue Ausrichtung mit meinem QHY PoleMaster vornehmen, für den ich einen Adapter auf 3/8-Zoll Fotogewinde erstanden habe.

In dem Gesichtsfeld des PoleMaster von 11° x 8° ist dann Polaris und ein paar dunklere Sterne in der Nähe bereits zu sehen. Es kann also die Pol-Ausrichtung per Software losgehen.

Abbildung 6: Polemaster auf NanoTracker (Google Archiv: DK_20170626_Nanotracker-02.jpg)

PoleMaster auf NanoTracker

QHY PoleMaster auf NanoTracker

Nach der parallaktischen Ausrichtung solle der NanoTracker festgeschraubt werden und dann nicht mehr anstossen werden.

Digital-Kamera auf dem NanoTracker mit Kugelkopf

Nach erfolgter Polausrichtung, die mit der Star Adventurer Wedge noch feinfühliger möglich war, wird nun der QHY PoleMaster abgeschraubt und die Digitalkamera Sony NEX-5R bzw. Canon EOS 600D mit einem Kugelkopf aufgeschraubt.

Jetzt brauche ich nur noch sternklares Wetter, um die Probe am echten Sternhimmel zu machen.

Abbildung 7: Sony NEX-5R auf NanoTracker (Google Archiv: DK_20170809_NanoTracker.jpg)

Sony NEX-5R auf NanoTracker

Sony NEX-5R auf NanoTracker mit Wedge

Ausrichten des Gesichtsfelds auf das Beobachtungsobjekt (sog. “Framing”)

Der auf den NanoTracker aufgeschraubte Kugelkopf lässt eine ganz flexible Ausrichtung der Kamera auf ein gewünschtes Beobachtungsobjekt zu. Allerdings bedeutet diese Flexibilität, dass beide Achsen (Rektaszension und Deklination) gemeinsam auf das Ziel hinbewegt werden. Einfacherer wäre eine Ausrichtung des Gesichtsfeldes (Framing) mit einem kleinen Zwei-Wege-Neiger, um so die Bewegung in beiden Achsen getrennt vornehmen zu können. Allerdings müsse so ein Zwei-Wege-Neiger ganz flexibel in alle Richtungen um 360° beweglich sein, ohne dass irgendwelche Teile an den NanoTracker stossen. Ausserdem sollte so ein Teil klein (Hebelwirkung) und leicht (Gesamttraglast) sein.

Hier der Manfrotto 3-Wege-Neiger 460MG:

Abbildung 8: Manfrotto 3-Wege-Neiger 460MG (Google Archiv: DK_20170821_1945.jpg)

Neiger auf NanoTracker

3-Wege-Neiger auf NanoTracker

Digital-Kamera auf dem NanoTracker mit Drei-Wege-Neiger

Nach erfolgter Polausrichtung, wird nun der PoleMaster abgeschraubt und die neue Digitalkamera Canon EOS 600D mit dem Manfrotto Drei-Wege-Neiger aufgeschraubt.

Jetzt brauche ich nur noch sternklares Wetter, um die Probe am echten Sternhimmel zu machen.

Abbildung 9: Canon mit Neiger auf NanoTracker (Google Archiv: DK_20170829_NanoTracker-02.jpg)

Canon EOS 600D auf NanoTracker

Canon EOS 600D auf NanoTracker

Framing mit Hilfe von Plate Solving

Im Gegensatz zu meiner Sony NEX-5R kann die Canon EOS 600D mit sehr vielen Funktionen per Windows-Computer gesteuert werden. Mit Hilfe der Software APT kann ich z.B. Einzelaufnahmen schießen und diese sofort d.h. innerhalb von Sekunden “Plate Solven” d.h. die Rektaszension und Deklination des Bildmittelpunkts feststellen.

Aus den Abweichungen der Koordinaten zum Ziel-Objekt kann ich sofort die nötigen Korrektur- Bewegungen ermitteln und diese manuell und feinfühlig mit dem Drei-Wege-Neiger ausführen. Erneut schiesse ich ein Foto und Plate Solve dieses in APT. Dies wiederhole ich solange bis das Ziel-Objekt schön mittig in Gesichtsfeld der Kamera steht.

Genauigkeit der Nachführung mit NanoTracker

Bisher hatte ich mit meiner Sony NEX-5R maximal 30 Sekunden belichtet und dabei Objektive von 16mm (Zenitar – z.B. Perseiden), 24mm (Vivitar – z.B. Nordlicht) und 50mm (Olympus – z.B. Magellansche Wolke) benutzt. Da war die Nachführgenauigkeit des NanoTracker überhaupt kein Problem.

Aber die Anforderungen an die Genauigkeit sind bei mir durch zwei Entwicklungen gestiegen:

  1. Ich habe ein Objektiv mit wesentlich längerer Brennweite bekommen: Takumar 135mm f/3.5 (neu: Olympus E.Zuiko 135mm f/3.5).
  2. Ich habe auch herausgefunden, wie ich mit meiner Sony NEX-5R länger als 30sec belichten kann. 30sec maximal macht die Sony per Programm mit Smart Remote, Langzeitbelichtung geht dann mit Bulb und einem Infrarot-Fernauslöser
  3. Schließlich bin ich von Sony auf eine Canon Kamera gewechselt, mit der ich per Software praktisch alle Funktionen steueren und mit anderen integrieren kann, so dass in der Tat die Grenzen nur noch durch  die Genauigkeit der Nachführung gesetzt werden.

Probefotos am 21.7.2017

mit meiner Sony NEX-5R und dem 135mm Objektiv bei 120sec Belichtung: Das Gesichtsfeld des 135mm-Objektivs mit dem APS-C-Sensor ist ca. 9,9 Grad mal 6,6 Grad. Die Kamera ist ungefähr horizontal ausgerichtet und zeigt auf das Sternbild Schwan. Der helle Stern links ist Alpha Cyg (Deneb), rechts Gamma Cyg.

Mit Nachführung durch NanoTracker sind die Sterne praktisch punktförmig (Deklination 40-45 Grad). Beim Hineinzoomen wird dann die Qualität der Optik sichtbar (Koma etc.).
Ohne Nachführung bekomme ich die Sterne als richtige Striche.

Abbildung 10: Bild mit Nachführung durch NanoTracker (120 sec, 135mm)    (Google Archiv: DK_20170721_01769.jpg)

Mit Nachführung durch Nanotracker

120 sec, f=135mm mit Nachführung durch Nanotracker

Abbildung 11: Das gleiche Bild (120sec, 135mm) ohne Nachführung   (Google Archiv: DK_20170721_01770.jpg)

Ohne Nachführung

120 sec, f=135mm ohne Nachführung

Astronomie Software: SGP Sequence Generator Pro

Gehört zu: Astro-Software
Siehe auch: N.I.N.A.APT, SharpCap

Was ist Sequence Generator Pro?

Eine im Internet viel erwähnte Software ist “Sequence Generator Pro” liebevoll abgekürzt “SGP” von der Firma “Main Sequence Software”.

Leider erschießt sich dem Anfänger überhaupt nicht, wofür das Teil eigentlich gut ist – möchte ich eine “Sequenz” generieren? Nein, eigentlich nicht. Ich möchte Fotografieren, Nachführen, Fokussieren, Framen, Stacken etc. aber wo für brauche ich um Himmels willen eine “Sequenz“? Eine Sequenz von WAS? Wenn man hardnäckig weiter probiert, kommt irgendwann die Erkenntnis: Es ist eine Sequenz von Fotos gemeint. Das heisst bei APT “Plan”.

Zum Ausprobieren habe ich mir mal die Version 2.5.1.14 heruntergeladen, die man 45 Tage kostenlos erproben darf.

Heute (April 2020) die 45-Tage-Trial-Version 3.1.0.457 heruntergeladen und installiert (als Vorbereitung für meinen Namibia-Aufenthalt im Juni 2020).

Download: http://mainsequencesoftware.com/Releases

Die Hauptfunktion von SGP ist “Image Capture“, also das Aufnehmen von Astrofotos.

Mit SGP verwaltet und steuert man sein Astro-Geräte (“Equipment”) wie:

  • Camera  (Canon, Nikon, ZWO ASI, QSI, SBIG)
  • Filter Wheel
  • Focuser  (ASCOM)
  • Telescope/Montierung (ASCOM)
  • Flat Box  (Alnitak)
  • Rotator  (auch: manuell)
  • Observatory (ASCOM, POTH,…)
  • Safety Monitor (ASCOM)
  • Environment Device  (ASCOM, OpenWeatherMap)

Das große Geheimnis: Was ist denn nun eine “Sequenz”???

Eigentlich ist es ja klar: eine Sequenz ist eine Folge von “Dingen”. Hier meinen die kryptischen Entwickler von SGP, dass eine “Sequenz” aus ein oder mehreren “Targets” bestehen kann, wobei ein “Target” ein Beobachtungsobjekt ist, dass durch seine Koordinaten (R.A. und Dekl.) sowie ein Zeitfenster definiert wird. Die “Targets” für SGP können z.B. aus AstroPlanner importiert werden.

Die “Events” zu einem “Target” sind im Wesentlichen Fotos (Light, Dark, Flat, Bias) mit Belichtungszeit, ggf. Filter, Binning etc.

Mein erster Eindruck von SGP

  • Ziemlich kompliziert
  • Die Unterstützung von Filtern macht es für den Color-Astro komplizierter als es sein müsste
  • Die Mosaik-Funktion scheint nett zu sein, habe ich aber noch nie gebraucht
  • Einzelfotos scheinen nicht zu gehen – nur “Sequenzen”
  • Unter den kostenpflichtigen Softwares noch die günstigste

Arbeiten mit SGP

SGP: Installation

Nach der eigentlichen Installation der Software SGP sollten wir Equipment Profile anlegen. Wenn wir als Plate Solver “Platesolve2” definieren, benötigen wir auch einen Sternenkatalog (z.B. APM und UCAC3).

SGP: Profile definieren

Aber beginnen wir mit dem Anfang: Wir müssen erst einmal “Profile” anlegen für die Geräte und für die Beobachter.

In der Menüleiste finden wir unter “Tools” den “Equipment Profile Manager” und den “User Profile Manager”

Als User definiere ich Personen aber auch Beobachtungsstandorte.

Als  Equipment definiere ich: Camera, Filter, Focus, Telescope, Plate Solver, Auto Guider und Other (Flat Box, Rotator, Observatory…).

Bestimmtes wird nur in der Pro-Version unterstützt:

Wenn man “Plate Solving” aktiviert (z.B. Plate Solve 2.29), benötigt man einen Sternkatalog wie z.B. den APM-Catalog oder den UCAC3 Catalog. Diese kann man mit dem PlateSolve Menü über “File -> Configure Catalog Directories…” herunterladen.

SGP: Aufnahmen machen

Wenn wir nun ein Beobachtungsobjekt fotografieren wollen, müssen wir eine “Sequenz” anlegen, ohne Sequenz geht gar nichts.

Dazu gehen wir in der Menüleiste auf: File –> New Sequence with Profile

Dann öffnet sich ein Fenster, wo wir ein Equipment Profile auswählen müssen.

xyz

Mein Workflow mit SGP

Version 2.6.0.23 konnte installiert werden.

Schritt 1: Profile anlegen

  • Menüleiste -> Tools -> Equipment Profile Manager
  • Menüleiste: Tools -> User Profile Manager

Schritt 2: Neue Sequenz anlegen

  • Menüleiste -> File -> New Sequence with Profile

Schritt 3: Profil auswählen

  • Equipment Profile Chooser

Schritt 4: Framing

  • Menüleiste -> Tools -> “Framing & Mosaic Wizard
  • Define an area of the sky…
    • Im Feld Object etwas eingeben z.B. M45
    • Auf die Schaltfläche “Fetch” klicken
    • Im Hauptfenser erscheint das Bild des gewünschten Objekts
  • Define the Target
    • Ein Rechteck auf dem Bild im Haptfenster zeichnen (mit der Maus)
    • Es werden dann ggf. die Mosaikstückchen angezeigt (entsprechend dem FoV der Kamera)
  • Create the Sequence
    • Schaltfläche (ganz unten) “Create Sequence”

 

Astronomie Software: BackyardEOS

Gehört zu: Astronomie Software
Siehe auch: Canon EOS, EOS Utility, Software APT
Benutzt:  Fotos von Google Archiv

Stand: 28.04.2023

Meine ersten Schritte mit der Software BackyardEOS

BackyardEOS (abgekürzt BYEOS) ist ein Tool, das Astro-Aufnahmen mit einer Canon EOS Kamera vom Windows-Notebook aus per Fernsteuerung sehr elegant möglich macht.

Link: http://www.jtwastronomy.com/products/guides/backyardguide.pdf

Alternativen zu BYEOS:

  • Die bekanteste Alternative zu BYEOS ist APTAstro Photography Tool“, das neben Kameras auch Montierungen unterstützt und relativ alt ist; wobei das User Interface etwas gewöhungsbedürftig ist, allerdings ist die Integration von Platesolving und Teleskopsteuerung bedenkenswert
  • Vom Hersteller Canon kommt eine ganz gute kostenlose Alternative: EOS Utility und DPP = Digital Photo Professional.
  • Seit 2019 wird auch ganz neu N.I.N.A. sehr empfohlen

Installation von BackyardEOS

Download und Installation

You may download the latest release on our website: http://www.BackyardEOS.com
Version 3.1.11
Man muss einen Account einrichten und kann dann die Software herunterladen und bekommt einen Lizenzschlüssel “30 Tage Trial”.

Vorbereitungen: EOS-Utility

Man sollte die Kamera-Fernsteuerung zuerst mit dem EOS-Utility ausprobieren.
Laut Canon-Website sind dazu keine Treiber erforderlich, die Kamera ist mit Windows 10 kompatibel und sollte automatisch als “Mediengerät erkannt werden, wenn man per USB-Kabel verbindet”.
Dazu muss man die Kamara einschalten und per USB-Kabel mit dem Computer (Windows Notebook) verbinden.
Das EOS-Utility kann nur von der Original CD installiert werden.

Connect mit BackyardEOS

 Die EOS600D hat eine DIGIC4-Prozessor, also sollte man den dritten Kasten “Canon215” anklicken.

Abbildung 1: BackyardEOS Connect Camera (Google Archiv: BackyardEOS01.jpg)

BackyardEOS

BackyardEOS Camera Driver

 

 

Astronomie: Software zur Beobachtungsplanung: AstroPlanner

Gehört zu: Beobachtungsplanung
Benutzt: Fotos aus Google Archiv

Stand: 29.04.2023

Beobachtungsplanung mit AstroPlanner

Mit der Software “AstroPlanner” von Paul Rodman kann man sehr gut planen, welche Beobachtungsobjekte man wann und wo beobachten kann,  Die haupsächlichen Funktionen von AstroPlanner sind:

  • Beobachtungsplanung
  • Beobachtungs-Logbuch
  • Steuerung der Teleskop-Montierung

AstroPlanner ist in der Grundversion (s.u.) kostenlos.

Installation und Konfiguration von AstroPlanner

AstroPlanner gibt es zur kostenlosen Nutzung für nicht registrierte User mit leichten Beschränkungen ( z.B. nur drei Sternkataloge,…)

Sternkataloge können nach-installiert werden durch: Menü -> File -> Catalogue Manager

Bevor man mit AstroPlanner loslegt, sollte man einige sog. “Resourcen” einstellen:

Als sog. “Ressourcen” können Beobachtungsorte, Teleskope etc. definiert werden (Menü -> Edit -> Resources…)

  • Standorte (Beobachtungsorte): mindestens den Hauptstandort, hier also Handeloh
  • Teleskop: Orion 80/600
  • Imagers (Kameras): Canon EOS 600 D APS-C Sensor
  • Okulare
  • u.v.a.m. (siehe Abb.)

Abbildung 1: AstroPlaner Resources (Google Archiv: AstroPlanner-03.jpg)

AstroPlanner-03 Ressources

Astroplanner: Resources Sites

Die so definierten “Resources” werden gespeichert in “D:\Users\<username>\AppData\Roaming\AstroPlanner\Resources

Beobachtungsplanung mit der Software AstroPlanner

Astro-Pläne werden in sog. “Plan-Dateien” gespeichert. Nach Start des Programmes wählt man die anzuzeigende bzw. zu bearbeitende Plan-Datei aus (im Beispiel: handeloh.apd).

Zur aktuellen Uhrzeit am aktuellen Standort werden in einem Info-Block oben  u.a. angezeigt: Local Siderial Time, Julian Date, Sonne & Dämmerung, Mond mit Phasen,…

Abbildung 2: AstroPlaner Info-Block (Google Archiv: AstroPlanner-02.jpg)

AstroPlanner Info-Block

AstroPlanner Info-Block

Erstellen eins neuen Plans

Ein Plan (Beobachtungsplan) besteht im Wesentlichen aus einer Liste von Beobachtungsobjekten; d.h. Deep Sky Objekte und Objekte des Sonnensystems.

Möglicherweise haben andere User bereits Pläne erstellt, die wir per Download nutzen können – dies geht aber nur für registrierte User.

Wir können einen neuen Plan auch mit dem “Plan Creation Wizard” erstellen.

Zum manuellen Erstellen eines neuen Plans gehen wir auf: Menü -> File -> New

Der neue Plan soll aus einer Liste von Beobachungsobjekten bestehen. Mit der Schaltfläche “+” (ganz unten links) können wir ein Objekt zum Plan hinzufügen.

Abbildung 3: AstroPlanner Objekte in einem Plan (Google Archiv: AstroPlanner-04.jpg)

AstroPlanner

AstroPlanner-04: Neues Objekt zum Plan hinzufügen

Wenn wir Glück haben, findet AstroPlanner das neue Objekt in einem seiner Kataloge, dann werden alle Felder des Objekts aus dem Katalog gefüllt; wenn nicht, müssen wir die wichtigsten Daten nun per Hand eingeben. Wenn wir Rektaszension und Deklination richtig eingeben, kann AstroPlanner die Sichtbarkeit ermitteln.

Wenn wir alle gewünschten Objekte in den Plan eingefügt haben, können wir den Plan abspeichern (Menü -> File -> Save).

Welche Daten pro Objekt in unserem Plan angezeigt werden, können wir bestimmen mit: Menü -> Edit -> List Columns

Beispielsweise könnten wir einblenden: “Best Time” oder “Observability”

Abbildung 4: AstroPlanner Columns (Google Archiv: AstroPlanner-06.jpg)

AstroPlanner: Edit Columns

AstroPlanner-06: Edit Columns

Sichtbarkeit von Objekten

Welche Objekte eines Plans zur Zeit am eingestellten Ort sichtbar sind, geht aus der Spalte “Vis” hervor.

Zusätzliche Information zur Sichtbarkeit geben die Spalten “Rise”, “Transit” und “Set”.

Wir können diese Sichtbarkeits-Daten auch für einen anderen Zeitpunkt erhalten, wenn wir oben rechts das Kontrollkästchen “Fix date” ankreuzen und dann Datum und Uhrzeit einstellen (diese Felder sieht man nur, wenn das AstroPlanner-Fenster breit genug ist).

Abbildung 5: AstroPlanner Datum (Google Archiv: AstroPlanner-05.jpg)

AstroPlanner-05 Fix date

AstroPlanner-05 Fix date

Spalte “Observability”

Was bedeutet “Gute Beobachtbarkeit”:   http://blog.astroplanner.net/?p=214

Der Wert in der Spalte “Observability” ist eine qualitative Angabe (von 0 bis 100), die von Astroplanner aus mehreren anderen Werten berechnet wird: Höhe des Objekts, Mondphase, Entfernung des Objekts vom Mond etc.

Grafiken zur Beobachtbarkeit

Wenn wir in der Liste ein Objekt auswählen (im Beispiel: M101),  können im oberen Bereich mehrere Grafiken zur Beobachtbarkeit angezeigt werden:

  • Short-term visibility
  • Long-term visibilty
  • Alt/Az Indicator
  • Constellation Indicator

Abbildung 6: AstroPlanner Objects (Google Archiv: AstroPlanner-07.jpg)

AstroPlanner-07

AstroPlanner-07

Grafik “Short-term visibility”

Zeigt die Sichtbarkeit am gewählten Tag (24h) an.

Abbildung 7: AstroPlanner Short-term Visibility (Google Archiv: AstroPlanner-08.jpg)

AstroPlanner Short Term

AstroPlanner-08 Short Term Visibility

Die Linie mit den “+”  Symbolen visualisiert die Höhe des ausgewählten Objekts (M101) im Laufe der Nacht.

Die Linie mit den “o” Symbolen visualisiert den Mond.

Die durchgezogene Linie zeigt den berechneten Wert für die “Beobachtbarkeit”.

Grafik “Long-term visibility”

Zeigt die Sichtbarkeit über die kommenden 12 Monate an.

Abbildung 8: AstroPlanner Long-Term Visibility (Google Archiv: AstroPlanner-09.jpg)

AstroPlanner-09 Long-Term Visibility

AstroPlanner-09 Long-Term Visibility

Die Linie mit den “+”  Symbolen visualisiert die Höhe des ausgewählten Objekts (M101) im Laufe der nächsten 12 Monate, jeweils am Sonnabend um 22 Uhr an (einstellbar mit Rechtsklick).

In diesem Beispiel ist als das Objekt M101 an einem Sonnabend Anfang Juni um 22 Uhr am höchsten.

Beobachtungen dokumentieren

xxxx

Teleskop-Steuerung mit AstroPlanner

Unterstützung von Montierungen

AstroPlanner hat interne (eingebaute) Treiber für eine Reihe von Montierungen u.a. für Takahshi Temma, SkyWatcher SyncScan etc. ansonsten ist ASCOM unterstützt.

Computer: Remote Control mit RealVNC

RealVNC (aus Wiki)

From Dietrich’s old Wiki

Computer: Remote Control mit RealVNC

Zur Fernsteuerung/Fernwartung (“Remote Control“) der von mir betreuten PCs setzte ich versuchsweise mal RealVNC ein, da der Remote Desktop bei Windows Vista Home Premium ja nicht mehr enthalten ist. VNC als solches ist zwar OpenSourceSoftware, einige der diversen daraus entstandenen Software-Produkte aber nicht.

Eine kostenfreie Lösung für die Fernsteuerung ist RealVNC  Home, die kostenfrei ist für “non-commercial use” und auf 5 remote Computer und 3 User limitiert ist.
Mit einem Server “VNC Connect” und einem Client “VNC Viewer”. Contine reading