Astrofotografie mit der Software qDslrDashboard 2018

Software: qDlsrDashboard per WLAN auf Notebook

Kultig ist auch die Windows-Software qDslrDashboard, die es für Canon und Nikon gab und neuerdings auch für Sony. qDlsrDashboard gibt es für Windows, iOS und für Android.

Im Einsatz bei mir ist die Version v3.5.1 für Windows von http://dslrdashboard.info/

Mit “qDslrDashboard” kann ich vom Windows-Notebook her die Kamera per WLAN fernbedienen; wobei nicht alle Funktionen, die bei direkter Bedienung der Kamera möglich sind, auch per Ferbedienung unterstützt werden. Per Fernbedienung kann ich:

  • Den Live-View der Kamera remote auf dem Notebook betrachten
  • Den Aufnahmenodus einstellen (M=manuell, A=Blendenpriorozät, S= Verschusszeitpriorität,…)
  • Die Empfindlichkeit einstellen: ISO 100 – ISO 25600
  • Die Belichtungszeit einstellen: 1/4000 Sekunde bis 30 Sekunden (Bulb ist nicht möglich)
  • Die Blende einstellen (wenn ein Objektiv mit elektischer Verbindung benutzt wird)
  • Den Fokus einstellen (wenn ein Objektiv mit elektischer Verbindung benutzt wird)
  • Gitternetz bzw. Fadenkreuz einblenden
  • Eine Aufnahme auslösen (“capture”)
  • Settings: Rückblick-Bildgröße: “Original” oder “2M”
  • Settings: Rückblick-Bild: Anzeigen nach der Aufnahme: Ein, 2 Sek, Aus
  • Settings: “Optionen speichern” Nach der Aufnahme das Rückblick-Bild auf dem Smartphone (iPad) zu speichern…

Fotos, die mit qDslrDashboard als Fernauslöser aufgenommen werden, werden auf der SD-Karte der Kamera gespeichet und auf den Windows-PC heruntergeladen. Dafür wird ein Ordner auf dem PC angegeben. Die Fotos werden als JPGs von der Kamera auf den PC übertragen und zwar in Originalgröße – allerdings haben die JPG-Dateien auf der Kamera und auf dem PC völlig verschiedene Namen.

Astrofotografie: Remote Control – Aufnahme-Software – Capturing

Astrofotografie: Remote Control – Aufnahme-Software – Capturing

Bei der Astrofotografie benötigt man neben einer Kamera auch gleich so etwas wie eine “Fernbedienung” oder “Fernsteuerung” für die Kamera.

Unter “Fernsteuerung” kann man sehr einfache oder auch umfassendere Fern-Funktionalität verstehen; etwa vom einfachen Drahtauslöser bis zu einer umfangreichen Fernsteuerung der Kamera über einen Windows-Computer, Tablet oder so.

Fern-Funktionalitäten können sein:

  • Einstellen von Belichtungszeit, ISO, Blende für die nächste Aufnahme
  • Starten (Benden) einer Aufnahme
  • Programmieren einer Sequenz von Aufnahmen (“Intervallometer”)
  • Betrachten eines Bildes auf einem Windows-Computer, Tablet, Smartphone,…
  • Speichern eines Bildes auf dem Windows-Computer
  • Analyse eines Bildes auf dem Windows-Computer (z.B. Plate Solving)
  • Steuern nicht nur der Kamera, sondern auch anderer astronomischer Geräte wie Montierung, Filterrad, Motorfokusser,…
  • ….

Je nach Kamera gibt es meistens verschiedene Möglichkeiten für “Fernsteuerung”. Die Kamera muss ja mit dem Fernsteuerungs-Gerät irgendwie verbunden sein.

Verbindungen können sein:

  • Dirkete Verbindung zur Kamera (spezielles Draht, Kabel,…)
  • USB-Kabel
  • Infrarot
  • WLAN

Fernsteuerung für die DSLR Sony NEX-5R

Zur Steuerung meiner Sony NEX-5R habe ich mehrere Möglichkeiten:

Fernsteuerung für die DSLR Canon EOS 600D

Zur Steuerung meiner Canon EOS 600D verwende ich Software auf meinem Windows-Computer. Die Verbindung wird dabei per USB-Kabel hergestellt.

 

Meine Anforderungen an eine mobile Montierung für Astrofotografie

Auswahl einer mobilen Montierung für Astrofotografie

Auf meiner Geräteliste ist die Montierung ein ganz wichtiges Teil.

Als in der Großstadt Hamburg lebender Wiedereinsteiger in die Amateurastronomie möchte mit einfachen Mitteln Astrofotos machen, die für mich persönlich Beobachtungen festhalten, die ich so noch nie gemacht habe.

Das bedeutet insbesondere:

  • Die Geräte müssen leicht transportabel sein (z.B. mit dem Auto) und im Felde leicht aufstellbar und betreibbar sein (-> Gewicht, Alignment, Stromversorgung)
  • Es müssen Belichtungszeiten von 30 Sekunden oder mehr möglich sein (-> Nachführung)
  • Die Optik (z.B. Kamera) muss einfach und sicher auf das Beobachtungsobjekt positioniert werden können   (-> Sucher, -> GoTo )
  • Die Optik (z.B. Kamera) muss auf das Beobachtungsobjekt genau scharf gestellt werden (-> Fokussierung)

Angefangen habe ich mit einer Montierung von iOptron, nämlich der SmartEQ ProSeit 2017 bin ich umgestiegen auf eine SkyWatcher HEQ5 Pro.

Contine reading

Astrofotografie Software: FireCapture

Warum FireCapture?

Um meine USB-Kamera Altair GPCAM zu betreiben, benötige ich eine Software auf meinem Windows-Computer, die die Funktionen der USB-Kamera bedient:

  • Betrachtung des Bildes (“Life View”)
  • Einstellen von Belichtungszeit etc.
  • Aufnehmen von Einzelfotos (“image acquisition”, “capture”, “still images”)
  • Polar Alignment – Einnorden / Einsüden
  • Programmieren von Foto-Serien (“sequencing”)
  • Aufnehmen von Videos
  • Diverses (Fadenkreuz, Stacking, Bahtinov,…)

Zu diesem Zweck gibt es verschiedene Windows-Software:

  • Altair Capture – mitgeliefert vom Hersteller der Kamera
  • SharpCap – allgemein bekannte Software, die auch vom Hersteller für meine Altair GPCAM empfohlen wird
  • FireCapture –  unterstützt ab der Version 2.5 auch meine Altair GPCAM
  • APT Astronomy Photography Tool – das wird von einer großen Community benutzt — unterstützt neben Canon alle Kameras, die ASCOM können

Download und Installation von FireCapture

FireCapture ist eine kostenlose Software und kann bezogen werden von: http://www.sharpcap.co.uk/sharpcap/downloads

FireCapture ist eine Java-Anwendung.  Eine java Virtual machine (JVM) ist in FireCapture gebündelt und mus nicht separat installiert werden.

Ab der Version 2.5 wird ….. unterstützt.

Benutzung von FireCapture

Capture Folder

 

 

 

Computer: Bluetooth

Bluetooth ist ein Industriestandard für die Datenübertragung zwischen Geräten über kurze Distanz. Bluethooth bildet eine Schnittstelle über die sowohl Smartphones als auch Computer und Peripheriegeräte miteinander kommunizieren können. Hauptzweck von Bluetooth st das Ersetzen von Kabelverbindungen.

Bluetooth benutzt das sog ISM-Band d.h. den Frequenzbereich zwischen 2,402 GHz und 2,480 GHz. Es werden Reichweiten von 10 bis 50 Meter erzielt.

Verbindungsaufbau: Ein Bluetooth Master versucht sich mit einem anderen in Reichweite befindlichen Bluetooth-Gerät, dem “Slave” zu verbinden.

Daten werden zwischen Bluetooth-Geräten gemäß sogenannten Profilen ausgetauscht. Sobald eine Bluetooth-Verbindung aufgebaut wird, wählen die Geräte das jeweils benutzte Profil aus und legen damit fest, welche Dienste sie für die jeweiligen anderen Partner zur Verfügung stellen müssen und welche Daten oder Befehle sie dazu benötigen. Ein Headset fordert beispielsweise von einem Bluetooth kompatiblen Mobiltelefon einen Audiokanal an und steuert über zusätzliche Datenkanäle die Lautstärkeeinstellung oder -regelung.

Die folgende Tabelle listet einige Profile auf, die für Bluetooth implementiert sind. Es kommen immer wieder neue Profile hinzu, somit kann die Standardisierung für Bluetooth flexibel auf neue Geräteanforderungen reagieren.

Quelle: https://de.wikipedia.org/wiki/Bluetooth-Profile

Abkürzung Bedeutung verwendet für
A2DP Advanced Audio Distribution Profile Übertragung (Streaming) von Audiodaten
AVRCP Audio Video Remote Control Profile Fernbedienung für Audio/Video
BIP Basic Imaging Profile Übertragung von Bilddaten
BPP Basic Printing Profile Drucken
CIP Common ISDN Access Profile ISDN-Verbindungen über CAPI
CTP Cordless Telephony Profile schnurlose Telefonie
DI Device ID Profile zusätzliche Informationen über die Bluetooth-Klasse des Geräts
DUN Dial-up Networking Profile Internet-Einwahlverbindung
ESDP Extended Service Discovery Profile erweiterte Diensteerkennung
FAX, FAXP FAX Profile Faxen
OBEX-FTP File Transfer Profile Dateiübertragung
GAP Generic Access Profile Zugriffsregelung
GATT Generic Attribute Profile Sensordaten, ernergieeffiziente Übertragung kleiner Datenmengen [1]
GAVDP Generic AV Distribution Profile Übertragung von Audio-/Videodaten
GOEP Generic Object Exchange Profile Objektaustausch
HCRP Hardcopy Cable Replacement Profile Druckanwendung
HDP Health Device Profile sichere Verbindung zwischen medizinischen Geräten
HFP Hands Free Profile schnurlose Telefonie im Auto
HID Human Interface Device Profile Eingabe – Aus der USB-Spezifikation übernommen.[2]
HSP Headset Profile Sprachausgabe per Headset
ICP, INTP Intercom Profile Sprechfunk
LAP LAN Access Profile (nur Version < 1.2) PPP Netzwerkverbindung (neu siehe PAN)
MAP Message Access Profile Nachrichtenaustausch zwischen Geräten
MDP Medical Device Profile sichere Verbindung zwischen medizinischen Geräten (veraltet, neu siehe HDP)
OBEX Object Exchange generische Datenübertragung zwischen zwei Geräten
OPP Object Push Profile Senden von einzelnen Dateien (Bilder, Lieder, Visitenkarten, Termine)
PAN Personal Area Networking Profile Netzwerkverbindungen
PBA, PBAP Phonebook Access Profile Zugriff auf Telefonbuch (nur lesend)
SAP, SIM, rSAP SIM Access Profile Zugriff auf SIM-Karte (inoffiziell auch rSAP wegen engl. remote)
SCO Synchronous Connection-Oriented link Zugriff sowohl auf das Mikrofon als auch auf den Ohrhörer eines Headsets
SDAP Service Discovery Application Profile Ermittlung vorhandener Profile
SPP Serial Port Profile serielle Datenübertragung
SYNCH, SYNC Synchronisation Profile Datenabgleich
VDP Video Distribution Profile Übertragung von Videodaten
WAPB Wireless Application Protocol Bearer

xxxyyyzzz

Astrofotografie – Autoguiding mit Lacerta M-GEN

Wenn man mit der “normalen” Nachführung seiner Montierung nicht mehr ausreicht, benötigt man ein sog. “Autoguiding”.

Sehr beliebt ist die Autoguiding-Löung mit der Software PHD2 Guiding auf einem Notebook-Computer.

Lacerta M-GEN dagegen ist eine sog. “Stand-Alone Lösung” für Autoguiding; d.h. sie funktioniert ohne einen Notebook-Computer. Dadurch wird die Komplexität im Felde reduziert.

Nachteile von M-GEN:

  • Sehr teuer (ca. EUR 650,–)
  • Zusätzliche Stromversorgung für das Gerät

MGEN Daten

Generell

  • Aktuelle Version: V2.40  — Neu: Einnorden nach Scheiner
  • Strom 12V 120 mA

Kamera

  • Sony CCD Chip ICX279AL-E, 752×582 Pixel, 3,6×2,7 mm. Pixelgröße 4,7μ
  • T2-Gewinde  (Aussengewinde)

Handbox

  • Firmware 2.42
  • Display 128×64 Pixel
  • Live View

Astronomie: Physikalische Größen

Physikalische Größen / SI-Einheiten

Als sog. SI-Einheiten sind international definiert:

  1. Meter   – Länge
  2. Kilogramm –  Masse
  3. Sekunde  –  Zeit
  4. Ampere  –  Stromstärke  (1948)
  5. Kelvin  –  Temperatur  (1954, 1968)
  6. Mol –  Stoffmenge  (1971)
  7. Candela  –  Lichtstärke   (1979)

Für die Messung der Himmelshelligkeit ist die Lichtstärke gemessen in Candela interessant. Wobei die SI-Definition besagt:

Eine Lichtquelle hat die Lichtstärke 1 cd, wenn sie monochromatisches Licht der Frequenz 540 x 10 12 Hertz (555 nm) aussendet und dabei in einen Raumwinkel von 1 sr (Steradiant) eine Leistung von 1/683 Watt abgibt.

Abgeleitete Einheiten:

  • Lichtstrom  Φv , gemessen in Lumen (lm): Eine Lichtquelle der Lichtstärke 1 cd strahlt in einen Raumwinkel von 1 sr einen Lichtstrom von 1 lm (Lumen) ab. Also lm = cd sr
  • Leuchtdichte  Lv , gemessen in Candela pro Qudratmeter  (cd m-2 oder lm m-2 sr-1)
  • Beleuchtungsstärke E, gemessen in Lux (lx):  Lichtstrom pro m². Also lx = lm m-2

Die Wikipedia gibt für einen “Sternklaren Nachthimmel” eine Leuchtdichte (also Flächenhelligkeit) von   0,001 cd m-2 an. Nach der unten stehenden Umrechnungsformel wären das 20,08 mag/arcsec².

Wobei “mag” für Größenklassen (Magnituden) der klassischen astronomischen Helligkeitsskala steht.

Umrechnungen:

  • 1 cd/m²    =     12,58 mag/arcsec²
  • Allgemein gilt:  Leuchtdichte in  mag/arcsec² =  12,58 –  2,5 * log(LV)    (wobei LV: Leuchtdichte in cd/m²  und log der 10er Logarithmus ist)

Astronomie: Scheinbare Helligkeit

Die Helligkeit von Sternen

Die (scheinbare) Helligkeit misst der Astronom in „Größenklassen“, auch „Magnituden“ (mag) genannt.

Das geht auf die Babylonier zurück und wurde von Hipparch (190-120 v.Chr.) für seinen berühmten Sternkatalog übernommen.

Die hellsten Sterne sind „Größenklasse 1“ z.B. Antares, Regulus,…

Die dunkelsten, gerade noch sichtbaren Sterne sind „Größenklasse 6“. 

Noch dunklere Sterne, die nur noch in Teleskopen sichtbar sind, haben also Größenklassen wie 7, 8, 9,…

Es gibt aber auch hellere Sterne z.B.

  • Wega 0,0 mag
  • Sirius -1,45 mag
  • Venus (max.) -4,3 mag
  • Vollmond -12,7 mag
  • Sonne -26,8 mag
  • Die ISS: -2,0 mag bis -4,7 mag

In der Neuzeit wurde für die Helligkeiten eine logarithmische Skala definiert, weil das Auge Helligkeiten nach dem Weber-Fechner’schen Gesetz logarithmisch wahrnimmt.
Erhalten bleibt der klassische Helligkeitsunterschied von 5 Magnituden, der einen Helligkeitsunterschied vom Faktor 100 bedeutet. Ursprünglich wollte man die Helligkeitsskala so positionieren, das der Polarstern genau 2,0 mag hat.

Δ m = m1 – m0 = (-5 * log(Φ10))/log(100)

Wobei Φ der Lichtstrom (gemessen in Lumen)  ist, was ich in meinem Artikel über die physikalischen Maßeinheiten näher erläutere.

Die scheinbare Helligkeit eines Objekts beeinflusst auch seine Eignung als Beobachtungsobjekt  (z.B. Grenzgröße, Lichtverschmutzung etc.).

 

Astronomie: Der Mond – “Supermond”

Wie super ist der Supermond?

Der Erdmond bewegt sich mit einer leicht exzentrischen Bahn um die Erde (genauer: um den gemeinsamen Schwerpunkt des Systems Erde-Mond). Dabei beträgt die mittlere Entfernung bekanntlich 384400 km. Auf Grund der leichten Exzentrizität kann die Mondentfernung schwanken zwischen 363300 km und 405500 km.

Scheinbare Größe

Die scheinbare Größe der Mondscheibe (also das, was man sieht) ergibt sich aus dem Monddurchmesser und seiner Entfernung. Bei einem Durchmesser von 3474 km kommen wir auf einen mittleren scheinbaren Durchmesser der Mondscheibe von 31,1 Bogenminuten (3474/384400)*180*60/Pi.

Entsprechend errechnen wir als minimalen Durchmesser 29,5 Bogenminuten und als maximalen Durchmesser 32,9 Bogenminuten. Damit ist der kleinste Mond also 5,2% kleiner und der größte Mond 5,8% größer als der mittlere scheinbare Monddurchmesser. Dieser Unterschied in der scheinbaren Größe entspricht genau der Variation der Entfernung des Mondes; d.h. der Exzentrizität der Mondbahn von 0,055

Wenn man diese leicht unterschiedlichen Mondgrößen nebeneinander hält (siehe untenstehende gerechnete SVG-Grafik – mit neutralem Hintergrund) kann man den Unterschied wohl erkennen. Wenn man zur Zeit aber immer nur einen Mond sieht und den Vergleichsmond viele Tage später, dürfte es schwierig werden. Dann helfen vielleicht Fotos.

Wenn man bedenkt, dass z.B. Normalbenzin 91 ROZ hat und Superbenzin 95 ROZ hat (also 4,4% mehr), kann man wohl mit einer ähnlichen Logik bei einem um 5,8% größeren Mond von einen “Supermond” sprechen, auch wenn man mit dem bloßen Auge den Unterschied nicht wahrnehmen kann.

Einen größeren Effekt auf die subjektiv wahrgenommene Größe der Mondscheibe hat ja bekanntlich der Hintergrund vor dem man den Mond sieht.

 

Scheinbare Helligkeit

Wenn wir nach der Helligkeit des “Supermondes” fragen, sieht das aber etwas anders aus.

Wenn der Durchmesser 5,8% größer ist, ist die Fläche zu multiplizieren mit 1,058078 x 1,058078 = 1,119530.
Die Fläche des Supermondes ist also 11,95 % größer als die des mittleren Mondes.

Der Supermond ist auch entsprechend 5,8% näher an der Erde. Die Flächenhelligkeit nimmt mit dem Quadrat der Entfernung ab. Dementsprechend ist auch die Flächenhelligkeit mit 1,058078 x 1,058078 = 1,119530 zu multiplizieren.

Damit ergibt sich für die Gesamthelligkeit des Supermondes ein Faktor 1,119530 x 1,119530 = 1,2533 d.h. eine Steigerung der Gesamthelligkeit von 25,33 % gegenüber dem mittleren Mond. Wenn wir das in eine Differenz von astronomischen Größenklassen umrechnen, entspricht ein Faktor von 1,2533 einer Magnitudendifferenz von  0,2451 mag.

 

 

Erstellen Windows Live-Stick

Ich mache einen erneuten Versuch, ein Windows-System von einem USB-Speicherstick zu starten (um im Notfall ein kaputtes System zu starten).

Die Quelle ist jetzt: https://www.com-magazin.de/praxis/windows-7/so-erstellen-windows-live-stick-213485.html

Man soll ein Tool namens “WinBuilder” dazuverwenden: erstellen Sie einen Windows Live-Stick.

Ich habe zwei verschieneden Dowload-Links für dieses Tool gefunden:

  1.   http://w8pese.cwcodes.net/Compressed
  2.   http://win81se.cwcodes.net/Compressed

Der eine Unterschied ist die Windows-Version: einmal heisst es “8” und bein anderen “8.1”.

Der andere Unterschied sind die Buchstaben “PE”.

Auf jeden Fall beötigt man als zweite Zutat einen Windos 8 bzw. 8.1 Darentäger…