Astronomie: Teilchenphysik

Gehört zu: Physik
Siehe auch: Quantenphysik, SVG, Kosmologie
Benötigt: WordPress Plugin Google Drive Embedder

Teilchenphysik

In der Teilchenphysik unterscheidet man Elementarteilchen und zusammengesetzte Teilchen. Wobei es sich im Laufe der Jahrhunderte immer etwas geändert hat, was als “elementar” angesehen wurde.

Die Teilchenphysik wurde von Murray Gell-Mann (1929-2019) sehr befruchtet. Er gilt als Entdecker der Quarks und schaffte Ordnung bei den Elementarteilchen.

Im Jahr 1969 wurde Gell-Mann im Alter von 40 Jahren für seine „Beiträge und Entdeckungen zur Ordnung der Elementarteilchen und ihrer Wechselwirkungen“ mit dem Nobelpreis für Physik ausgezeichnet.
Das heutige (2020) Verständnis dieser Elementarteilchen wird zusammenfassend dargestellt im sog. “Standardmodell”:

Standardmodell der Teilchenphysik

Direkt aus der Wikipedia:

Insert from URL

Symbole für Teilchen

Teilchen Symbol Bemerkungen
Photon γ Austauschteilchen der Elektromagnetischen Kraft
Gluon g Austauschteilchen der Starken Kernkraft (Farbladungen)
W-Boson W Austauschteilchen der Schwachen Kernkraft
Z-Boson Z Austauschteilchen der Schwachen Kernkraft
Up-Quark u
Down-Quark d
Charme-Quark c
Strange-Quark s
Top-Quark t
Bottom-Quark b
Elektron e
Myon μ schwereres Elektron
Tauon τ noch schwereres Elektron
Neutrino νe Elektron-Neutrino
μ-Neutrino νμ μ-Neutrino
τ-Neutrino ντ τ-Neutrino

Statt “Kraft” sagen wir auch gerne “Wechselwirkung” – also z.B. “Starke Wechselwirkung”

Anti-Teilchen

Zu jedem Teilchen kann es auch ein Anti-Teilchen geben. Anti-Teilchen werden im Allgemeinen mit einen “Quer-Symbol” versehen, z.B.  u und ū.

Antiteilchen haben die entgegengesetzte elektrische Ladung wie ihr “normales” Teilchen z.B.   e und e+ (hier benutzen wir das Quer-Symbol nicht).

Zusammengesetzte Teilchen

Danach sind Protonen und Neutronen (sog. Hadronen) sowie Mesonen keine Elementarteilchen mehr, sondern setzen sich aus Quarks zusammen:

Protonen und Neutronen bestehen aus drei Quarks:

  • Proton p: up up down
  • Neutron: n: up down down

Mesonen bestehen aus zwei Quarks:

  • Meson: ein Quark & ein Anti-Quark

Kräfte und Wechselwirkungen

Bei den Elementarteilchen unterscheidet man Fermionen (Materie) und Bosonen (Austauschteilchen für Wechselwirkungen). Die Bosonen stehen in der vierten Spalte des Standardmodells:

  • Photonen (γ) vermitteln die Elektromagnetische Kraft  (Wechselwirkung)
  • Gluonen (g) vermitteln die sog. Starke Kernkraft (Wechselwirkung), die hält beispielsweise die Protonen in einem Atomkern zusammen.
  • W-Bosonen vermitteln die sog. Schwache Kernkraft (Wechselwirkung), die kann beispielsweise aus einem Proton ein Neutron machen und umgekehrt, indem aus einem Up-Quark ein Down-Quark wird bzw. umgekehrt.

Feynman-Diagramme

In Feyman-Diagrammen läuft die Zeit von unten nach oben und der Raum von links nach rechts – allerdings ist dies nicht standardisiert.

Materie-Teilchen werden als Pfeile mit ausgezogener Linie dargestellt.
Wechselwirkungs-Teilchen werden anders dargestellt:

  • Photonen als Welle
  • Gluonen als Schraubfeder
  • Bosonen mit einer gestrichelten Linie

Zerfall bzw. Kollision zweier Objekte bilden einen sog. “Vertex”.

Beispiel 1:

Feynman Diagram: Electron absorbs a Photon

Beispiel 2: Beta-Zerfall

Feynman-Diagramm: Betazerfall (Halbwertzeit 10 Minuten)

Physik

Siehe auch: Quantenmechanik

Am Rande beschäftige ich mich auch mit Teilaskepten der Physik.

  • Grundlegend sind die Maßeinheiten:  SI-Einheiten
  • Die Kosmologie ist für den Astronomen auch ein wichtiger Punkt
  • Die Relativitätstheorie und die Quantenmechanik sind zum Verständnis ebenfalls unerlässlich
  • Die Kernfusion spielt bei der Entwicklung der Sterne eine wichtige Rolle
  • Die Teilchenphysik ist auch eine wesentlich Grundlage

….

 

Astronomie: Physikalische Größen

Gehört zu: Astronomie, Physik
Siehe auch: Scheinbare Helligkeit, Entfernungsbestimmung, Zeitmessung

Physikalische Größen / SI-Einheiten

Die französische Akademie der Wissenschaften erhält 1790 von der französischen Nationalversammlung den Auftrag, ein einheitliches System von Maßen und Gewichten zu entwerfen. Sie folgt dabei den Prinzipien, die Grundeinheiten aus naturgegebenen Größen abzuleiten, alle anderen Einheiten darauf zurückzuführen und alle, mit Ausnahme der Zeit, dezimal zu vervielfachen und zu unterteilen. Als Grundeinheiten Meter, Gramm und Sekunde gewählt.

1889 Gründung der Generalkonferenz für Maß und Gewicht (CGPM)

Aktuell sind als sog. SI-Einheiten sind international definiert:

  1. Meter (m)  – Länge
  2. Kilogramm  (kg) –  Masse
  3. Sekunde (s) –  Zeit
  4. Ampere (A) –  Stromstärke  (1948)
  5. Kelvin (K) –  Temperatur  (1954, 1968)
  6. Mol (mol) –  Stoffmenge  (1971)
  7. Candela (cd)  –  Lichtstärke   (1979)

Zeit: Sekunde

1790:  Erste Definution der Sekunde als 1/86 400ster Teil des mittleren Sonnentages

1967 hat man der Sekunde eine atomphysikalische Definition gegeben: “Die Sekunde ist das 9 192 631 770-fache der Periodendauer der dem Übergang zwischen den beiden Hyperfeinstrukturniveaus des Grundzustandes von Atomen des Nuklids Cs-133 entsprechenden Strahlung.”

Länge: Meter

1790: Erste Definition des Meters als zehnmillionster Teil des Erdmeridianquadranten

1960 wurde dieses “Urmeter” abgelöst durch eine neue Definition des Meters als Vielfaches der Wellenlänge eines Kyrpton-Lasers zu definieren.
Die Wellenlänge einer elektromagnetischen Strahlung, die vom Kryptonisotop 86Kr ausgestrahlt wird, wurde 1960 als Grundlage für die Definition des Meters gewählt.  Ein Meter wurde als das 1.650.763,73fache der Wellenlänge der vom Nuklid 86Kr beim Übergang vom 5d5 in den 2pl0-Zustand ausgesandten und sich im Vakuum ausbreitenden Strahlung definiert.

1983 hat die  17. Generalkonferenz für Maß und Gewicht das Verhältnis zwischen Lichtgeschwindigkeit und Meterdefinition umgekehrt.
Dabei wurde die Lichtgeschwindigkeit als Naturkonstante definiert zu 299 792 458 m/s und das Meter definiert als “Die Strecke, die Licht im Vakuum während der Zeit von 1/299 792 458 Sekunden zurücklegt.

Masse: Gramm / Kilogramm

1790: Erste Definition des Gramms als Gewicht, später als Masse von 1 cm3 reinem Wasser bei 4 °C und einem Druck von 760 mm Quecksilbersäule

Lichtstärke: Candela

Für die Messung der Himmelshelligkeit ist die Lichtstärke gemessen in Candela interessant. Wobei die SI-Definition besagt:

Eine Lichtquelle hat die Lichtstärke 1 cd, wenn sie monochromatisches Licht der Frequenz 540 x 1012 Hertz (555 nm) aussendet und dabei in einen Raumwinkel von 1 sr (Steradiant) eine Leistung von 1/683 Watt abgibt.

Abgeleitete Einheiten:

  • Lichtstrom  Φv , gemessen in Lumen (lm): Eine Lichtquelle der Lichtstärke 1 cd strahlt in einen Raumwinkel von 1 sr einen Lichtstrom von 1 lm (Lumen) ab. Also lm = cd sr
  • Leuchtdichte  Lv , gemessen in Candela pro Qudratmeter  (cd m-2 oder lm m-2 sr-1)
  • Beleuchtungsstärke E, gemessen in Lux (lx):  Lichtstrom pro m². Also lx = lm m-2

Die Wikipedia gibt für einen “Sternklaren Nachthimmel” eine Leuchtdichte (also Flächenhelligkeit) von   0,001 cd m-2 an. Nach der unten stehenden Umrechnungsformel wären das 20,08 mag/arcsec².

Wobei “mag” für Größenklassen (Magnituden) der klassischen astronomischen Helligkeitsskala steht.

Umrechnungen:

  • 1 cd/m²    =     12,58 mag/arcsec²
  • Allgemein gilt:  Leuchtdichte in  mag/arcsec² =  12,58 –  2,5 * log(LV)    (wobei LV: Leuchtdichte in cd/m²  und log der 10er Logarithmus ist)