Astronomie: James Webb Space Telescope

Astronomie: Die Lagrange-PunkteGehört zu: Teleskope
Siehe auch: Lagrange-Punkte

Stand: 10.01.2022

Das James Webb Space Telescope

Das von der NASA genannte “James Webb Space Telescope” (JWST) soll nun im Dezember 2021 endlich gestartet werden.

Zeitlich gesehen könnte man es als Nachfolger des im April 1990 gestarteten Hubble Space Teleskops (HST) ansehen, aber anders als das HST beobachtet das James-Webb-Telekop ja hauptsächlich im Infrarot. Sogesehen ist es eher ein Nachfolger des Spitzer-Teleskops.

Josef Gassner will das James Web Teleskop lieber Henrietta-Leawitt-Teleskop nennen.

Ursprünglich sollte das James Web Teleskop im März 2007 starten. Es kamen aber immer neue Startveschiebungen:

1. Geplantes Startdatum: 2011

x. Geplantes Startdatum: 2014

x. Geplantes Startdatum: 2018

x. Geplantes Startdatum: August 2020

11. Geplantes Startdatum  März 2021

12. Geplantes Stardatum: 31. Oktober 2021

13. Geplantes Startdatum: 12. Dez 2021

14. Geplantes Startdatum: 22. Dez 2021

Besonderheiten

Start von Kourou (ELA-3) mit einer Ariane-5-Rakete

Keine Erdumlaufbahn, sondern beim Lagrange-Punkt L2.

Gemeinschaftsprojekt von NASA, ESA und CSA.

Nach dem Start

Nach dem Start am 25.12.2021 wurde das JWST vielfach von Amateurastronomen fotogarfiert auf seinem Wege zum Lagrange-Punkt L2.

Auch in der Astro-Community Hamburg wurde viel über das JWST diskutiert. Unter anderem kam die Frage hoch, ob man im Hubble-Space-Teleskop Einzelheiten auf dem JWST erkennen könnte. Dazu habe ich ein kleines Excel erstellt:

Link: Das James Webb Teleskop mit der Auflösung des HST?

Astronomie: Teleskopsteuerung mit Stellarium (Goto)

Gehört zu: Teleskopsteuerung (Goto)
Siehe auch: Stellarium, EQMOD, Teleskopsteuerung mit Cartes du Ciel

Stand: 23.04.2023

Teleskopsteuerung mit Stellarium (Goto)

Meine Montierung Skywatcher HEQ5 Pro möchte ich über Software steuern; d.h. ein Zielobjekt soll motorisch angefahren werden.
Das gewünschte Zielobjekt möchte ich am liebsten “optisch” eingeben; d.h. durch Anklicken eines Objekts in einer Planetarium-Software.
Ich könnte das gewünschte Zielobjekt auch aus einer Liste auswählen oder gar die Ziel-Koordinaten per Hand eingeben.

Ob als Ergebnis dieses Anfahrens eines gewünschten Zielobjekts dieses Zielobjekt auch genau getroffen wird, ist für mich sekundär, da ich danach fotografisch weiterarbeite d.h. mit meiner Astro-Foto-Software APT den Zyklus “Foto – Platesolving – SYNC” mit erneutem Goto per Stellarium mache oder neuerdings auch mit meiner Astro-Fotosoftware N.I.N.A. und der Funktion “Center Target” (die ebenfalls Platesolving einsetzt). Bei N.I.N.A. benutze ich Stellarium aber lediglich zur Übernahme von Ziel-Koordinaten; den Rest (Goto, Platesolving und SYNC) kann ich dann gleich in N.I.N.A. machen.

Teleskop-Steuerung per Computer

Mit der Software Stellarium kann ich meine Goto-fähige Montierung statt über die Handbox auch über einen Computer steuern. Dafür muss die spezielle Montierung in geeigneter Weise mit dem Computer verbunden werden: Siehe dazu: Teleskop-Steuerung per Computer

Stellarium verfügt seit Version 0.10.3 über eine “Erweiterung” (Plugin) namens “Teleskopsteuerung”. Generell geht das dann so:

Einstellungsfenster [F2] –> Konfiguration –> Erweiterungen –> Teleskopsteuerung

Diese habe ich aktiviert; d.h. Häckchen bei “beim Starten laden”. Dies ist im Stellarium Wiki beschrieben: http://www.stellarium.org/wiki/index.php/Telescope_Control

Wenn das geschehen ist, gibt es in Stellarium mittlerweile unterschiedliche Möglichkeiter der “Teleskopsteuerung”

  • Über ASCOM (seit Stellarium Version 0.19.3)
  • Über INDI (seit Stellarium Version 0.17.0)
  • Direkt (Celestron NexStar, Mead LX200, Skywatcher Synscan Handbox)
  • Mit der Zusatz-Software Stellarium Scope, die ihrerseits ASCOM kann

Teleskopsteuerung mit ASCOM

Seit der Stellarium-Version 0.19.3  (Dez. 2019) besteht die elegante Möglichkeit, die Montierung (das Teleskop) über ASCOM zu steuern (also ohne StellariumScope).

Voraussetzung dafür ist natürlich eine Montierung mit ASCOM-Treiber. Für meine Montierung Skywatcher HEQ5 Pro benutze ich den ASCOM-Treiber EQMOD.

Als einmalige Vorbereitung richte ich diese meine Montierung in Stellarium ein und aktiviere die Verbindung:

  1. Zunächst muss das Teleskop (genauer: die Montierung) eingerichtet werden. Ich nehme für meie HEQ5 Pro  dann die Option “ASCOM”
  2. Dann muss die Montierung mit Stellarium verbunden werden.

Nun kann Stellarium beliebige Himmelsobjekte anfahren und zwar wie folgt:

  1. Das gewünschte Zielobjekt wird auf dem Bild des Sternenhimmels durch Anklicken ausgewählt.
  2. Die Erweiterung “Teleskopsteuerung” unten in der Stellarium-Leiste anklicken
  3. Im dann aufgehenden Dialogfenster anklicken “ausgewähltes Objekt”
  4. An anklicken Schaltfläche “Schwenken”

Teleskopsteuerung mit INDI

Diese Möglichkeit besteht im Prinzip seit der Stellarium-Version 0.17.0 (Dez. 2017)

Dafür benötigt man INDI-Treiber für seine Montierung – dies kommen aus der Linux-Welt, die ich nicht als meinen Mainstream erachte.

Ich bleibe lieber bei den bewährten ASCOM, was ich auch für viele andere Astro-Software verwende: z.B. APT, N.I.N.A., SharpCap,…

Teleskopsteuerung mit Stellarium “Direkt”

Dazu habe ich keine eigenen Erfahrungen.

Teleskopsteuerung mit StellariumScope

Mit der Software Stellarium kann ich meine Goto-fähige Montierung statt über die Handbox auch über meinen Windows-Computer steuern. Dafür muss die spezielle Montierung in geeigneter Weise mit dem Windows-Computer verbunden werden: Siehe dazu: Teleskop-Steuerung per Computer.

StellariumScope erweitert die Möglichkeiten der Stellarium-Teleskopsteuerung indem ASCOM-Treber eingesetzt werden; d.h. jede (im Prinzip) Montierung, für die wir einen ASCOM-Treiber installiert haben, kann über StellariumScope angesprochen werden.

StellariumScope wurde ursprünglich für Teleskope mit EQMOD-Steuerung entwickelt, es sollen aber (fast) alle ASCOM-Teleskopsteuerungen unterstützt werden. EQMOD ist eine Windows-Software, die die Handbox per Software auf dem PC abbildet und wurde für Montierungen mit Schrittmotoren entwickelt. Montierungen mit Servomotoren werden leider nicht unterstützt.

Links zu StellariumScope:

Nach der Installation von StellariumScope hat man ein neues Programm namens “StellariumScope”. Dieses ruft man auf und konfiguriert z.B. den Stellarium-Aufruf, Setzt den ASCOM-Teleskop-Driver und connected das Teleskop. Wenn man dann auf “Start Stellarium” klickt, kann’s losgehen…

Wenn das geschehen ist, ist die Vorgehensweise in Stellarium die folgende:

Stellarium verfügt seit Version 0.10.3 über eine “Erweiterung” (Plugin) namens “Teleskopsteuerung”. Generell geht das über eine Stellarium-Erweiterung, also:

Einstellungsfenster [F2] –> Konfiguration –> Erweiterungen –> Teleskopsteuerung

Diese habe ich aktiviert; d.h. Häckchen bei “beim Starten laden”. Dies ist im Stellarium Wiki beschrieben: http://www.stellarium.org/wiki/index.php/Telescope_Control

Stellarium selbst unterstützt aber kein ASCOM, sondern hat zwei Möglichkeiten:

  • Direkte Unterstützung von Celestron NexStar, Sky Watcher SynScan und Mead LX200
  • oder mit einer Zusatzsoftware Stellarium Scope, die dann ihrerseits ASCOM kann

StellariumScope erweitert die Möglichkeiten der Stellarium-Teleskopsteuerung indem ASCOM-Treber eingesetzt werden; d.h. jede (im Prinzip) Montierung, für die wir einen ASCOM-Treiber installiert haben, kann über StellariumScope angesprochen werden.

StellariumScope wurde ursprünglich für Teleskope mit EQMOD-Steuerung entwickelt, es sollen aber (fast) alle ASCOM-Teleskopsteuerungen unterstützt werden. EQMOD ist eine Windows-Software, die die Handbox per Software auf dem PC abbildet und wurde für Montierungen mit Schrittmotoren entwickelt. Montierungen mit Servomotoren werden leider nicht unterstützt.

Links zu StellariumScope:

Nach der Installation von StellariumScope hat man ein neues Programm namens “StellariumScope”. Dieses ruft man auf und konfiguriert z.B. den Stellarium-Aufruf, Setzt den ASCOM-Teleskop-Driver und connected das Teleskop. Wenn man dann auf “Start Stellarium” klickt, kann’s losgehen…

Ich habe dazu ein Youtube-Video gemacht:habe dazu ein Youtube-Video gemacht:

Abbildung 7: Mein Youtube-Video

Astronomie: Wizzard Nebula NGC7380

Gehört zu: Beobachtungsobjekte
Siehe auch: HII-Regionen, Filter, Emissionsnebel, Liste meiner Fotos
Benutzt: Fotos aus Google Drive

Astronomie: Wizzard Nebula NGC7380

Der Wizzard Nebula NGC7380 wird auch “Harry Potters Golderner Schnatz” genannt.

NGC7380 ist ein helleres Nebel-Objekt im Sternbild Cepheus.

Ein klassisches H-Alpha-Objekt für meine kleinen Refraktor ED80/600

  • Scheinbare Helligkeit von 7,2 mag
  • Scheinbare Ausdehnung von 20′
  • Der Goldene Schnatz NGC7380 ist ein Emissionsnebel und strahlt vorwiegend in H alpha und ist damit bestens für meinen Tri-Narrowband-Filter geeignet
  • Entfernung 7000 Lichtjahre.

Im September 2021 habe ich von meiner Terrasse in Hamburg-Eimsbüttel ein erstes “Beweisfoto” vom Goldenen Schnatz erstellen können.

Abbildung 1: Wizzard Nebula (Goldener Schnatz) unter starker Lichtverschmutzung (Google Drive: Rot_von_NGC7380-RGB-session_1-lpc-cbg-St3.jpg)

Diese Fotografie habe ich von meiner Innenhof-Terrasse in Hamburg-Eimsbüttel geschossen. Dabei hat mein Tri-Narrowband-Filter geholfen.

Astronomie: Nordamerika-Nebel NGC7000

Gehört zu: Beobachtungsobjekte
Siehe auch: HII-Regionen, Filter, Emissionsnebel, Liste meiner Fotos
Benutzt: Fotos aus Google Drive

Stand: 29. JUn 2024

Astronomie: Nordamerika-Nebel NGC7000

Der Nordamerikanebel NGC7000 ist ein klassisches großes Nebel-Objekt im Cygnus (Schwan)

Wikimedia: https://commons.wikimedia.org/wiki/File:NGC7000-RGB-session_1-St_beschriftet.jpg

Ein klassisches H-Alpha-Objekt für meine kleinen Refraktor ED80/600

  • Scheinbare Helligkeit von 4,0 mag
  • Scheinbare Ausdehnung von 150×150′  und 150’x75′
  • Der Nordamerikanebel NGC7000 ist ein Emissionsnebel und strahlt vorwiegend in H alpha und ist damit bestens für meinen Tri-Narrowband-Filter geeignet
  • Entfernung 2200 Lichtjahre.

Im September 2021 habe ich von meiner Terrasse in Hamburg-Eimsbüttel ein erstes “Beweisfoto” vom Nordamerikanebel erstellen können.

Abbildung 1: Nordamerikanebel unter starker Lichtverschmutzung (Google Drive: NGC7000-RGB-session_1-St.jpg)

Diese Fotografie habe ich von meiner Innenhof-Terrasse in Hamburg-Eimsbüttel geschossen. Dabei hat mein Tri-Narrowband-Filter geholfen.

Astronomie: Heart and Soul Nebula – IC1805 & IC1848

Gehört zu: Beobachtungsobjekte
Siehe auch: HII-Regionen, Filter, Nebel, Liste meiner Fotos
Benutzt: Fotos aus Google Drive

Heart and Soul Nebula – IC1805 & IC1848

Heart and Soul zu deutsch auch Herz- und Seelen-Nebel  ist ein klassisches großes Nebel-Objekt (IC1805 und IC1848) in der Cassiopeia.

Ein klassisches H-Alpha-Objekt für das Teleobjektiv.

  • Scheinbare Helligkeit von 6,5 mag
  • Scheinbare Ausdehnung von 150×150′  und 150’x75′
  • Der Herznebel und der Seelennebel sind Emissionsnebel und strahlen vorwiegend in H alpha und sind damit bestens für meinen Tri-Narrowband-Filter geeignet
  • Entfernung 7500 Lichtjahre.

Im November 2021 habe ich von meiner Terrasse in Hamburg-Eimsbüttel ein erstes “Beweisfoto” vom Herz- und Seelen-Nebel erstellen können.

Abbildung 1: Herz- und Seelen-Nebel unter starker Lichtverschmutzung (Google Drive: Rot_von_HeartAndSoul-RGB-session_1-lpc-cbg-csc-St_6.jpg)

Diese Fotografie habe ich von meiner Innenhof-Terrasse in Hamburg-Eimsbüttel mit meinem Fotoobjektiv Takumar 135mm geschossen. Dabei hat ein Tri-Narrowband-Filter geholfen.

Wohnung: E-Ladesäule

Gehört zu: Wohnung
Siehe auch: Auto

Stand: 25.11.2021

Wohnung: E-Ladesäule

Wir planen an unserem Tiefgaragen-Stellplatz eine E-Ladesäule (sog. Wallbox) einzurichten.

Deswegen habe ich heute am 25.10.2021 mit unserem Elektriker ein erstes Telefongespräch geführt.

Der Elektriker will nächste Woche mal vorbeikommen und sich vor Ort die Gegebenheiten anschauen, um dann ein Angebot zu erstellen.

Eine erste Frage des Elektrikers war: 11 kW oder 22 kW? Ich habe keine Ahnung was das für Auswirkungen hätte.

Bei 22 kW sagt der Elektriker, sei eine “Regelung” vorgeschrieben.

So eine Wallbox kostet ca. 1500,– bei 11 kW und 2700,– bei 22 kW.

Dabei ist immer schon eine Freischaltung per RFID-Karte dabei.
Im Internet werden auch billigere angeboten, die bekommen in Hamburg aber keine Zulassung.

Lieferzeit: 1Q2022.

Generell müssen alle Wallboxen, die in Hamburg von den Behörden (Stromnetz Hamburg?) zugelassen werden, “managebar” sein; d.h. vom Stromnetz Hamburg aus der Ferne herunterregelbar, für den Fall, dass das Stromnetz überlastet würde.

Man bekommt in Hamburg 900 Euro Förderung für eine E-Ladestation, das kann man schon beantragen, wenn noch keine konktetes Angebot vorliegt oder braucht man ein Angebot oder was braucht man für den Antrag….?

Im einfachsten Fall will der Elektriker einfach ein Kabel verlegen von “unserem” Stromzähler im Keller zu der Position der Ladebox in der Tiefgarage. Da mus man eigentlich niemanden fragen, meiner der Elektriker. Dann läuft der Strom einfach über unseren Zähler. Die Ladesäule kann nur über eine Freischaltung per RFID-Karte benutzt werden. Obtional knnte auch noch ein geeichter Zähler eingebaut sein (mit Mehrkosten).

Die Frage wäre, ob man eine Ladeinfrastruktur, die später mehrere nutzen könnten aufbauen will. Das wäre dann der umstädlichere Weg —> Verwalter —> WEG

Der Elektriker war heute (25.11.2021) vor Ort und wird nun ein Angebot erstellen.

Die Wohnungseigentümergemeinschaft hat zugestimmt.

Der Elektriker hat heute am 23.9.2022 die Ladesäule in der Tiefgarage installiert.  Sie ist vorläufig auf 11 kWh eingestellt, dass für 22 kWh ein Lastmanagement erforderlich ist. Das Modul für Lastmanagement ist aber zur Zeit (Sept. 2022) nicht kurzfristig lieferbar…

Nun läuft der Ladestrom über unseren Wohnungszähler.

Die Android-App “MyBMW” kann eine sog. “Ladehistorie” anzeigen und als Excel-Datei per E-Mail verschicken.

Ortungsdienste:

  1. Im Fahrzeug: iDrive -> Einstellungen -> Datenschutz -> GPS-Ortung
  2. In der MyBMW-App …?

 

Mathematik: Koordinatensysteme

Gehört zu: Tensoren
Siehe auch: Metrik-Tensor, Astronomische Koordinatensysteme, Raumkrümmung
Benutzt: Latex-Plugin

Stand: 23.10.2024

Medien-Hinweise

Prof. Wagner: https://youtu.be/c07r4pARzHw

Koordinatensysteme

In der Geometrie führt man gerne Koordinatensysteme ein, um die geometrischen Objekte (Punkte, Linien, Geraden, Flächen,…) mithilfe von Zahlen (Koordinaten) zu beschreiben und zu untersuchen. Das führt zur sog. Analytischen Geometrie.

Man spricht gerne von der Eukidischen Geometrie, dem Euklidischen Raum und den Euklidischen Koordinaten.

Kartesische Koordinaten

Nach Rene Decartes (1596-1650) nennt man die Euklidischen Koordinaten auch “Kartesische Koordinaten”.

Im herkömmlichen unserer Anschauung entsprechenden dreidimensionalen Raum \(\mathbb{R}^3 \) haben wir ja die klasssichen Kartesischen Koordinaten mit den Symbolen: x, y, z. Im höherdimensionalen Falle schreibt man dann eher x1, x2, x3, x4,…

Koordinatensysteme und Mannigfaltigkeiten

Man hat eine Menge M (Punktmenge) und ordnet jedem Element (Punkt) aus M ein-ein-deutig ein n-Tupel von Koordinaten zu. Dann kann man statt der Punkte über diese n-Tupel (also die n Koordinaten) sprechen.
So eine Koordinate ist im einfachsten Fall eine reelle Zahl, dann sind die Koodinaten also n-Tupel reeller Zahlen, also Elemente aus dem \( \mathbb{R}^n \). Im allgemeinen Fall nehmen wir für die Koordinaten einen Körper.

Wir hätten also eine ein-ein-deutige (d.h. bijektive) Abbildung zwischen Punkten aus M und n-Tupeln:

\( M \to \mathbb{R}^n \)

So eine Menge zusammen mit einem Koordinatensystem nennen wir (nach Bernhard Riemann 1816-1866) eine Mannigfaltigkeit.

In der Mathematik werden Mannigfaltigkeiten für sich noch sehr detailliert in genauer als hier behandelt. Für uns ist es wichtig zu einem Koordinatensystem zu kommen.

Kartesische Koordinaten

Im herkömmlichen unserer Anschauung entsprechenden dreidimensionalen Raum \(\mathbb{R}^3 \) habe wir ja die klasssichen Kartesischen Koordinaten mit den Symbolen: x, y, z. Im höherdimensionalen Falle schreibt man dann eher x1, x2, x3, x4,…

Krummlinige Koordinaten

Bei nicht-kartesischen Koordinaten, die wir als “allgemeine Koordinaten” bezeichnen, verwenden wir im allgemeinen die Symbole qi (i=1,2,..). Diese “allgemeinen Koordinaten” nennt man, um den Gegensatz zu den Kartesischen Koordinaten deutlich zu machen, auch gerne krummlinige Koordinaten.

Typische Beispiele für krummlinige Koordinaten sind z.B.

  • Ebene Polarkoordinaten
  • Kugel-Koordinaten
  • Zylinder-Koordinaten

Krummlinige Koordinaten gibt es auch in einem “flachen” Raum; z.B. ebene Polarkoordinaten.
Kartesische Koordinaten im “gekrümmten” Raum sind (global) nicht möglich (Raumkrümmung -> Krümmungstensor).

Kurven und Tangenten

Eine Kurve in einer Manigfaltigkeit M wird gegeben durch eine Abbildung von einem reellen Intervall auf Punkte in die Manigfaltigkeit. Man nennt so eine Abbildung auch eine Parameterdarstellung der Kurve.

Den Parameter aus einem reellen Intervall können wir schreiben als: \( t \in [t_a, t_e] \)

Die Abbildung ist dann:

\( [t_a, t_e] \to M \\\)

Wir haben also zu jedem Parameterwert \( t \in [t_a, t_e] \) einen Punkt aus der Manigfaltigkeit M.

Wenn wir den Punkt durch seine Koordinaten \( \left(q^i\right) \) ausdrücken, ist die  Kurve also eine Abbildung:

\( [t_a, t_e] \to \mathbb{R}^n \\\)

Wo also die Koordinaten qi eine Funktion des Parameters t sind: \( q^i = q^i(t) \)

Wenn die Kurve differenzierbar ist (also die Koordinaten der Parameterdarstellung), hat die Kurve auch Tangentenvektoren:

\(\vec{T}(t) = \left(T^i(t)\right) = \Large \left(\frac{dq^i}{dt} \right) \)

Die Kurve selbst liegt in der Manigfaltigkeit; der Tangentenvektor aber nicht, er ist an die Mannigfaltigkeit sozusagen “angeheftet”.

Die Tangentenvektoren liegen in einem eigenen Vektorraum

Koordinatenlinien

Ganz einfache Formen einer Kurve sind die sog. Koordinatenlinien.

Bei einem n-dimensionalen Koordinatensystem erhält man eine Koordinatenlinie indem man n-1 Koordinaten festhält und genau eine Koordinate als Parameter laufen lässt. So eine Koordinatenlinie kann man als (unendliche) Kurve auffassen.

Durch jeden Raumpunkt \( (p^i) = \left( p^1, p^2,\ldots, p^n \right)\) gehen dann n Koordinatenlinien: \( L_j\) mit \( j=1, 2,\ldots, n \).

Die Koordinatenlinie \( L_j\)  hat den Parameter \( t = q^j \) und die Werte:

\( q^i(t) = p^i \enspace (\text{falls } i \neq j)  \)
\( q^i(t) = t \enspace (\text{falls } i = j)  \)

Schöneres Latex:

\( q^i(t) = \left \{  \begin{array}{ll}   p^i & \text{falls } i \neq j \\ t & \text{falls } i = j \\    \end{array} \right. \)

Koordinaten-Hyperflächen

Bei einem n-dimensionalen Koordinatensystem bekommt man Koordinaten-Hyperflächen in dem man genau eine Koordinate festhält und alle anderen laufen lässt.

Durch jeden Raumpunkt \( (p^i) = \left( p^1, p^2,\ldots, p^n \right) \)  gehen dann n Koordinaten-Hyperflächen.

So eine Koordinaten-Hyperfläche kann man als sog. Teil-Mannigfaltigkeit auffassen.

Vektorbasis zu einem Koordinatensystem

Nun kann man an jedem Raumpunkt anhand des Koordinatensystems eine Vektorbasis definieren…

In jedem Raumpunkt kann man nun Basisvektoren so definieren, dass deren Länge 1 sei und sie Tangenten an die Koordinatenlinien durch diesen Punkt sind.

Astronomische Koodinatensysteme

Hierzu habe ich einen eigenen Artikel Astronomische Koordinatensysteme geschrieben.

Physik: Einstein ART Allgemeine Relativitätstheorie

Gehört zu: Physik
Siehe auch: Relativitätstheorie, Kosmologie, Expansion des Universums, Metrik-Tensor, Singularität
Benutzt: Latex-Plugin

Stand: 20.10.2024

Einsteins Allgemeine Relativitätstheorie (ART)

In Einsteins Allgemeiner Relativitätstheorie (ART) geht es um die Gravitation, die ja schon von Newton beschrieben wurde. Die Gravitation bewirkt, dass es keine Inertialsysteme gibt – und damit die SRT nur als vereinfachende Idealisierung verstanden werden kann.

Ein Ausgangspunkt für die ART ist das sog. Äquivalenzprinzip. Es besagt, dass ein gleichmäßig beschleunigtes Bezugssystem nicht von einem Bezugssystem mit einem homogenen Gravitatiosfeld unterschieden werden kann. Formelmäßig ist dann die sog. “träge Masse” identisch mit der “schweren Masse”….

Quelle: Youtube Video https://youtu.be/hU0Mcd2-XH4

Bekannt sind seine berühmten sog. Feldgleichungen:

\( \Large R_{\mu \nu} – \frac{1}{2} R g_{\mu \nu} + \Lambda g_{\mu \nu} = \frac{8 \pi G}{c^4} T_{\mu \nu} \\\)

Die obige Gleichung kann so kompakt hingeschrieben werden, weil sog. Tensoren verwendet werden. Solche Tensoren sind unabhängig vom verwendeten Koordinatensystem (invariant gegen Koordinatentransformationen).

Bei gegebenem Energie-Impuls-Tensor (auf der rechten Seite) beschreibt die linke Seite der Gleichung die dadurch verursachte Geometrie der Raumzeit (d.h. die Krümmung der Raumzeit).

Der Metrik-Tensor ist \( g_{\mu \nu} \). Gemäß Konvention laufen die Indices μ und ν = 0,1, 2, 3 wobei 0 die Zeit-Koordinate bedeutet.

Den Metrik-Tensor habe ich wohl verstanden und im Einzelnen in einem separaten Blog-Post beschrieben.

\( T_{\mu \nu} \\\) ist der sog. Energie-Impuls-Tensor, den man im Vakuum einfach auf Null setzt (sog. Vakuumlösungen).

Energie und Impuls werden gemäß der speziellen Relativitätstheorie mit sog. Vierervektoren beschrieben.  Wenn man noch Druck und Stress hinzunimmt, bekommt man den Energie-Impuls-Tensor.

Der Vierervektor der Raumzeit ist:

\(\vec{R} = \left( \begin{array}{c} c t \\ x \\ y \\ z\\ \end{array} \right) \\ \)

Der Vierervektor von Energie und Impuls ist:

\(\vec{P} = \left( \begin{array}{c} E \\ p_x c\\ p_y c\\ p_z c\\ \end{array} \right) \\ \)

Diese Vierervektoren sind aber noch abhängig vom benutzen Koordinatensystem. Um unabhägig vom Koordinatensystem zu werden, müssen wir Tensoren bemühen. Dazu bilden wir die kovariante Ableitung nach der Eigenzeit.

Der Engergie-Impuls-Tensor soll Massendichte, Energiedichte, Druck, Impuls, und Stress beschreiben. Dieser Tensor ist für die Entwicklung des Universums wichtig; siehe: Expansion des Universums.

Der Energie-Impuls-Tensor schreibt sich also:

\( T_{\mu \nu} =  \left( \begin{array}{rrrr} T_{00} & T_{01} & T_{02} & T_{03} \\ T_{10} & T_{11} & T_{12} & T_{13} \\T_{20} & T_{21} & T_{22}  & T_{23}\\T_{30} & T_{31} & T_{32} & T_{33}\\    \end{array} \right) \)

Λ (großes Lambda) ist die sog. kosmologische Konstante, die ursprünglich (1915) nicht in der Gleichung stand, sondern später von Einstein eingeführt wurde, um dem gravitativen Kollaps des Universums entgegen zu wirken.

\( R_{\mu \nu} \) ist der sog. Ricci-Tensor – keine Ahnung, was das sein soll.

Manchmal sieht mit die Einsteinschen Feldgleichungen auch in einer etwas anderen Form:

\( \Large G_{\mu \nu}  = \frac{8 \pi G}{c^4} T_{\mu \nu} \\\)

Mit dem sog. Einstein-Tensor:

\( \Large G_ {\mu \nu}  = R_{\mu \nu} – \frac{1}{2} R g_{\mu \nu} + \Lambda g_{\mu \nu}  \\\)

Was man immer wieder hört, ist dass nach Einstein große Massen die Raumzeit krümmen. Wobei die Krümmung der vierdimensionalen Raumzeit nicht in eine weitere Dimension (die fünfte) geht, sondern die Raumzeit “in sich” gekrümmt wird, soll wohl heissen, dass nicht mehr die Euklidische Metrik gilt, sondern eine andere Metrik, eine “Nichteuklidische Metrik“.

Lösungen

Unter bestimmten zusätzlichen Annahmen bekommt man Lösungen der obigen Formeln; z.B. bekommt man unter den Annahmen von Homogenität und Isotropie als Lösung die sog. Friedmann Gleichungen.

Eine Lösung der Einsteinschen Feldgleichungen nennt man eine Raumzeit.

Siehe hierzu: Krümmung der Raumzeit

 

Mathematik: Der Metrik-Tensor

Gehört zu: Vektoranalysis
Siehe auch: Allgemeine Relativitätstheorie, Koordinatensysteme, Vektorbasis, Tensoren, Gekrümmter Raum

Der Metrik-Tensor

Stand: 26.10.2021

Youtube-Videos von Prof. Paul Wagner:

Wir betrachten eine Riemansche Manigfaltigkeit; d.h. eine Punktmenge mit einem Koordinatensystem. Zu so einem Koordinatensystem, gehört ein Metrik-Tensor, der uns auch ein Linienelement definiert und damit so etwas wie eine Metrik.

Wir kommen aber nicht in einem Schritt von einem Koordinatensystem zu einem Metrik-Tensor, sondern betrachten zunächst, wie ein Koordinatensystem eine Vektorbasis definiert. Zu so einer Vektorbasis haben wir dann einen Metrik-Tensor.

Schlussendlich wollen wir ja Vektorfelder beschreiben. Dabei handelt es sich ja um eine Abbildung von Raumpunkten auf Vektoren. Dabei wird der Raumpunkt durch seine Koordinaten im Koordinatensystem und der Vektor durch seine Komponenten bezügliche “seiner” Vektorbasis beschieben. Wenn wir dann beispielsweise die Veränderung eines Vektors bei kleinen Veränderungen des Raumpunkts untersuchen, müssen wir nicht nur die Veränderung der Vektorkomponenten, sondern ggf. auch die Veränderung der Basisvektoren berücksichtigen, da die Basisvektoren ja im Allgemeinen (z.B. bei krummlinigen Koodinaten) auch vom Ort im Raum abhängig sein werden.
Das wird uns dann zur sog. Kontravarianten Ableitung führen.

Koordinatensystem und Vektorbasis

Zu einem Koordinatensystem bekommmen wir nämlich zwei möglicherweise verschiedene Vektorbasen:

1) Die Basisvektoren sind tangential zu den Koordinatenlinien: sog. kovariante Basis

2) Die Basisvektoren stehen normal (senkrecht) auf den Koordinatenhyperflächen: sog. kontravariante Basis

Bei Chartesischen Koordinaten sehen wir Besonderheiten:

  1. Kovariante Vektorbasis = Kontravarinate Vektorbasis
  2. Die Vektorbasis ist unabhängig vom betrachteten Raumpunkt, also überall die gleiche.

Bei nicht-chartesischen Koordinatensystemen (sog. krummlinigen) wird das beides anders sein.

Bei solchen nicht-chartesischen Koordinaten, die wir als “allgemeine Koordinaten” bezeichnen, verwenden wir im allgemeinen die Symbole qi (i=1,2,..). Diese “allgemeinen Koordinaten” nennt man, um den Gegensatz zu den Chartesischen Koordinaten deutlich zu machen, auch gerne krummlinige Koordinaten.

Wir betrachten nun einen Raum mit den allgemeinen (krummlinigen) Koordinaten: \( q^\alpha \) mit α =1,2,…,n und einem hilfsweise dahinterliegenden Chartesischen Koordinaten: \( x^i \) mit 1= 1,2,….n.

Als Hilfsmittel ziehen wir anfangs gerne die Chartesischen Koordinaten hinzu, wo wir dann im Fall von beliebig vielen Dimensionen die Symbole xi (i=1,2,…) verwenden, oder bei zwei und oder drei Dimensionen, manchmal auch: x,y,z.

Die kovarianten Basisvektoren nennen wir:

\(\Large {\vec{g}}_\alpha \)    wobei α=1,2,..,n

Diese Basisvektoren sind Tangenten an die Koordinatenlinien. Demnach sind die Komponenten (i=1,2,…n) dieser Basisvektoren im Chartesischen Koordinatensystem:

\(\Large \left( \vec{g}_\alpha \right)^i = \frac{\partial x^i}{\partial q^\alpha} \)

Die kontravarianten Basisvektoren nennen wir:

\(\Large {\vec{g}}^{\,\alpha} \)    wobei α=1,2,..,n

Diese Basisvektoren sind Normalen auf den Koordinatenhyperflächen. Demnach sind die Komponenten (i=1,2,…n) dieser Basisvektoren im Chartesischen Koordinatensystem:

\( \Large \left( {{\vec{g}}^{\,\alpha}} \right)^i = \frac{\partial q^\alpha}{\partial x^i} \)

Vektorbasis und Metrik-Tensor

Wenn wir eine Vektorbasis gefunden haben; z.B.:

Eine Vektorbasis: \( \vec{g}_\alpha \)  (α= 1,2,…,n)

Erhalten wir zu dieser Vektorbasis den dazugehörigen Metrik-Tensor als: \( \left(g_{ij}\right) = \vec{g}_i \cdot \vec{g}_j  \)

Merke: Zu einer Vektorbasis haben wir einen Metrik-Tensor.

Die Riemann-Metrik

Wir können auf einer Riemannschen Mannigfaltigkeit ein Tensor-Feld \( g_{ij} \) definiert haben, mit dem wir einen Abstandsbegriff (d.h. eine Metrik) definieren; genauer gesagt, mit dem wir die Länge einer Kurve in der Mannigfaltigkeit definieren wie folgt:

\(\Large s = \int\limits_{t_a}^{t_b} \sqrt{g_{ij}\frac{dq^i}{dt}\frac{dq^j}{dt}} \, dt  \)

So einen Tensor \( g_{ij} \) nennen wir Metrik-Tensor.

Allgemeine Weisheiten zum Metrik-Tensor

Der Metrik-Tensor ist also ein Tensor-Feld, das auf einer Riemannschen Mannigfaltigkeit definiert ist.

  • Wenn der Metrik-Tensor Elemente konstant sind (also nicht vom Ort abhängen) ist der Raum ein flacher Raum. Es kann dafür auch eine geeignete Koordinaten-Transformation benutzt werden.
  • Wenn die Komponenten des Metrik-Tensors aber vom Ort abhängen (keine Koordinaten-Transformation kann sie konstant machen), ist der Raum ein gekrümmten Raum.
  • So ein gekrümmer Raum kann in einen höherdimensionalen euklidischen (flachen) Raum eingebettet sein (z.B. die zweidimensionale Kugeloberfläche) muss es aber nicht.
  • Ein Euklidischer Raum, ist ein flacher Raum bei dem der Metrik-Tensor die Einheitsmatrix ist bzw. alle Diagonalelemente positiv sind.

Beipiel 1: Chartesische Koordinaten

Das Linienelement ist:

\( ds^2 = d{x_1}^2 + d{x_2}^2 + d{x_3}^2 + … \)

Also:

\( ds^2 = \sum\limits_{i=1}^{n}{{dx_i}^2} \)

Der Metrik-Tensor ist dabei ja ein Tensor vom Rang 2 und ist in diesem chartesischen Falle identisch mit der Einheitsmatrix (beispielsweise mit 3 Dimensionen):

\(\Large (g_{ij}) =  \left[ \begin{array}{rrr} 1 & 0 & 0\\  0 & 1 & 0 \\  0 & 0 & 1 \end{array} \right]  \\\)

Dieser Metrik-Tensor definiert dann unser Linienelement:

\( (ds)^2 = \sum\limits_{i=1}^n{\sum\limits_{j=1}^n{dx_i dx_j g_{ij}}} \)

Oder in der Einsteinschen kompakten Schreibweise (mit der sog. Summenkonvention):

\( (ds)^2 = g_{ij} dx^i dy^j \)

Beispiel 2: Ebene Polarkoordinaten

Im zweidimensionalen Euklidischen Raum (Ebene) haben wir als Chartesische Koordinaten: x1 = x,  x2 = y

Als krummlinigen Koordinaten nehmen wir Polarkoordinaten: q1 = r und q2 = φ

Zum Rechnen verwenden wird als Hilfsmittel gern die Chartesischen Koordinaten. Damit haben wir Koordinaten-Transformationen in beiden Richtungen:

\( x = r \cdot \cos{\phi} \\ \\ y = r \cdot sin{\phi} \)

Und in der anderen Richtung ist:

\( r = \sqrt{x^2 + y^2} \\ \phi =\arctan{\frac{y}{x}} \)

Zu diesen Koordinaten erhalten wir als kovariante Vektorbasis (Basis Vektorsystem):

\( \left( \vec{g}_\alpha \right)^i = \frac{\partial x^i}{\partial q^\alpha} \)

Zu diesen kovarianten Basisvektoren bekommen wir als kovarianten Metrik-Tensor:

\( \left(g_{ij}\right) =  \left[ \begin{array}{rr} 1 & 0 \\  0 & r^2  \end{array} \right]  \\\)

Wobei dieses Beispiel zeigt: (1) Der Metrik-Tensor ist ortsabhängig und (2) Die zugrundeliegende Vektorbasis ist zwar orthogonal, aber nicht orthonormal.

Und entsprechend das kovariante Linienelement:

\( (ds)^2 =  dr^2 + r^2 d\phi^2 \\ \)

Zu diesen Koordinaten erhalten wir als kontravariante Vektorbasis:

\( \left( {{\vec{g}}^{\,\alpha}} \right)^i = \frac{\partial q^\alpha}{\partial x^i} \\\)

Zu diesen kontravarianten Basisvektoren bekommen wir als kontravarianten Metrik-Tensor (wir können die Komponenten des kontravarianten Metrik-Tensors ausrechnen oder nehmen einfach das Inverse des kovarianten Metriktensors):

\( \left(g^{ij}\right) =  \left[ \begin{array}{rr} 1 & 0 \\  0 & \frac{1}{r^2}  \end{array} \right]  \\\)

Und entsprechend das kontravariante Linienelement:

\( (ds)^2 =  dr^2 + \frac{1}{r^2} d\phi^2   \)

Wir sehen auch, dass die beiden Metrik-Tensoren invers zueinander sind.

Beispiel 3: Zylinderkoordinaten

Im dreidimensionalen euklidischen Raum können wir neben den Chartesischen Koordinaten x ,y, z die Zylinderkoordinaten (r, φ, z) betrachten.
Dies sind also allgemeine (krummlinige) Koordinaten mit \( q^1 = r,  \, q^2 = \phi, \, q^3 = z \)

Aufgrund der Koordinaten-Transformationen bekommen wir:

Für den  kovarianten Metrik-Tensor:

\( \left(g_{ij}\right) =  \left[ \begin{array}{rrr} 1 & 0  & 0 \\  0 & r^2 & 0 \\ 0 & 0 & 1  \end{array} \right]  \\\)

Und entsprechend das kovariante Linienelement:

\( (ds)^2 =  dr^2 + r^2 d\phi^2  + dz^2 \\ \)

Und für den  kontravarianten Metrik-Tensor bekommen wir:

\( \left(g_{ij}\right) =  \left[ \begin{array}{rrr} 1 & 0  & 0 \\  0 & \frac{1}{r^2} & 0 \\ 0 & 0 & 1  \end{array} \right]  \\\)

Und entsprechend das kontravariante Linienelement:

\( (ds)^2 =  dr^2 + \frac{1}{r^2} d\phi^2 + dz^2 \)

Wiederum sehen wir auch, dass die beiden Metrik-Tensoren invers zueinander sind.

Beispiel 4: Kugelkoordinaten

Im dreidimensionalen euklidischen Raum können wir neben den Chartesischen Koordinaten x, y, z die Kugelkoordinaten (r, θ, φ) betrachten.
Dies sind also allgemeine (krummlinige) Koordinaten mit \( q^1 = r, \,  q^2 = \theta, \,  q^3 = \phi \)

Als kovariante Vektorbasis bekommen wir wieder die Tangenten an die Koordinatenlinien, also an die “Radialachse” (Zenith/Nadir), die “Meridiane” (Nord/Süd) und die “Breitenkreise” (Ost/West).

Als kovarianten Metrik-Tensor bekommen wir:

\( \left(g_{ij}\right) =  \left[ \begin{array}{rrr} 1 & 0  & 0 \\  0 & r^2 & 0 \\ 0 & 0 & r^2 \sin^2 \theta  \end{array} \right]  \\\)

Und entsprechend das kovariante Linienelement:

\( (ds)^2 =  dr^2 + r^2 d\theta^2  + r^2 \sin^2 \theta \, d\phi^2 \\ \)

Und als kontravarianten Metrik-Tensor bekommen wir:

\( \left(g_{ij}\right) =  \left[ \begin{array}{rrr} 1 & 0  & 0 \\  0 & \frac{1}{r^2} & 0 \\ 0 & 0 & \frac{1}{r^2 \sin^2 \theta}  \end{array} \right]  \\\)

Und entsprechend das kontravariante Linienelement:

\( (ds)^2 =  dr^2 + \frac{1}{r^2}d\theta^2  + \frac{1}{r^2 \sin^2 \theta}d\phi^2 \)

Wiederum sehen wir auch, dass die beiden Metrik-Tensoren invers zueinander sind.

Beispiel 5: Kugeloberfläche

Die Oberfläche einer Kugel mit dem (festen) Radius R ist ein zweidimensionaler Raum, wo wir als Koordinatensystem gut mit dem entsprechenden Teil der Kugelkkordinaten arbeiten können.

Also mit den allgemeinen (krummlinigen) Koordinaten mit \(  q^1 = \theta, \,  q^2 = \phi \), was also auf der Erdoberfläche prinzipiell der geografischen Breite und der geografischen Länge entsprechen würde.

Als kovariante Vektorbasis bekommen wir wieder die Tangenten an die Koordinatenlinien, also an die “Meridiane” (Nord/Süd) und die “Breitenkreise” (Ost/West).

Der Metrik-Tensor ergiebt sich dann ganz analog aus dem Vorigen:

Als kovarianten Metrik-Tensor bekommen wir:

\( \left(g_{ij}\right) =  \left[ \begin{array}{rr}  R^2 & 0 \\  0 & R^2 \sin^2 \theta  \end{array} \right]  \\\)

Und entsprechend das kovariante Linienelement:

\( (ds)^2 =  R^2 d\theta^2  + R^2 \sin^2 \theta \, d\phi^2 \\ \)

Der so definierte Riemansche Raum (Kugeloberfläche mit dem o.g. Koordinatensystem) ist ein Nichteuklidischer Raum, wie wir sehen werden. Zur Geometrie in solchen Nichteuklidischen Räumen haben wir ja noch nichts gesagt; aber die Standard-Weissheit ist ja die Winkelsumme im Dreieck und…