Astronomie Software APT- Astro Photography Tool

Gehört zu: Astronomie Software
Siehe auch: Astrofotografie, Plate Solving, Mein Workflow mit APT, Cartes du Ciel, N.I.N.A.
Benutzt: Fotos von Google Drive

Stand: 10.01.2023

122085 Unique Visitors,  171695 Page-views

Zusammenfassung / Quick Starter

Astronomie Software APT

APT steht für “Astro Photography Tool” und unterstützt als Kameras einerseits digitale Kameras (DSLRs wie Canon EOS) und andererseits CCD/CMOS-Kameras (z.B. die ZWO ASI294MC Pro), sowie über ASCOM GoTo-Montierungen und diverse andere Geräte (Fokusser, Filterrad,…).

  • APT unterstützt Plate Solving: Reiter”Gear”, Schaltfläche “Point Craft”.
  • APT unterstützt Cartes du Ciel zum Anzeigen von Aufnahmen, die “gesolved” wurden.
  • APT unterstützt die Teleskopsteuerung; also die Funktionen “Goto” und “Sync” (wenn man eine Montierung mit EQMOD hat)
  • Ab Version 3.50 soll auch Stellarium unterstützt werden.

Versionen von APT

  • Version 3.81 per 25.11.2019
  • Version 3.84 per 17.04.2020
  • Version 3.87 per 14.11.2020
  • Version 3.88 per 06.05.2021  (neu: Autofokus per Hyperbel)
  • Version 3.90 per 18.11.2021  (neu: SessionCraft)
  • Version 4.00 per 15.05.2022  (neu: Polar Alignment, Summary Tab,…)
  • Version 4.01 per 10.06.2022  (neu: Fixes)
  • Version 4.10 per 10.12.2022
  • Version 4.20 per 03.04.2023

Bezugsquelle und Dokumentation

Installation von APT

  • ZIP-Datei herunterladen (siehe oben)
  • Setup.exe ausführen (Microsoft C++ Redistributable wird benötigt)

Alternativen zu APT

Die bekanteste Alternative zu APT bei Canon Kameras ist Backyard EOS “BYEOS”, das nur Kameras (EOS) und nicht Montierungen unterstützt aber ein moderneres und ergonomischeres User Interface hat.

Zum Einstieg in die Astrofotografie mit Canon EOS wäre es vielleicht sinnvoll, erst einmal die vom Hersteller angebotene Software zu nehmen: EOS Utility und DPP Digital Photo Processor.

SharpCap ist für bestimmte Funktionen auch nicht schlecht. Z.B. Polar Alignment, Live View, Zoom, Fokussieren,…

In 2019 ist auch noch N.I.N.A. als neuere Alternative hinzu gekommen.

Die Benutzeroberfläche von APT

Im rechten Bereich von APT gibt es verschiedene Reiter auf denen sich dann spezielle Schaltflächen befinden:

  • Reiter Camera
    • Connect Camera
    • Edit Plan   inklusive Script
    • Image Destination
    • Settings
  • Reiter Gear
    • Connect Scope
    • Guide für Auto Guiding mit PHD2 oder …
    • Point Craft für Plate Solving mit  PlateSolve2 oder AllSkyPlateSolver oder ASTAP
    • Objects zum Aufruf des APT-Objekt-Browsers
    • Connect Focusser zum Aufbau einer Verbindung zum Motorfokusser über ASCOM
    • Connect Wheel für …
    • Connect Rotator für …
  • Reiter Tools
    • Histograms
    • APT Settings mit Location, Planetarium usw.
    • Camera Calculator
    • Focus Aid
    • Magnifier
  • Reiter Img
    • Preview Effects
    • Image Preview
    • Current Folder

Meine Anwendungsfälle für APT

Um meine astrofotografischen Bemühungen besser mit Software zu unterstützen, habe ich mir im Juli 2017 eine Digitalkamera Canon EOS 600D angeschafft und dann begonnen, mich mit APT zu beschäftigen. Später (Jan. 2020) bin ich dann auf eine gekühlte Kamera ZWO ASI294MC Pro umgestiegen. Beide Kameras liessen sich problemlos an APT anschließen.

Ich möchte folgende Anwendungsfälle unterstützen:

  • Orion ED80/600 auf Goto-Montierung HEQ5 Pro (z.B. in Hamburg)
  • Canon EOS 600D auf Star Adventurer Mini (z.B. in Namibia)

    • Fotoserien aufnehmen (auch mit Langzeitbelichtung)
    • keine steuerbare Montierung – Goto und Framing manuell
    • Einzel-Foto
    • “Plate Solving” und “Show” in Cartes du Ciel
  • Canon EOS 600D auf Goto-Montierung HEQ5 Pro
    • Goto per Software
    • Framing (ausrichten des Bildausschnitts auf das Beobachtungsobjekt) per Software
    • Foto-Serie mit APT Plans Editor
  • Canon EOS 600D auf Goto-Montierung HEQ5 Pro mit Autoguiding durch PHD2 mit GuideScope50
  • Canon EOS 600D auf Goto-Montierung GP-DX (Namibia) mit Autoguiding durch PHD2 mit GuideScope50
  • ZWO ASI294MC Pro statt der Canon DSLR

Meine ersten Schritte mit der Software APT

Einstellung des Beobachtungsortes

Unter dem Reiter “Tools” befindet sich die Schaltfläche “APT Settings“. Dort können wir unter dem Reiter “Location” wo wir Beobachtungsorte einstellen können:

Tabelle 1: Beobachtungsorte

Name Hemisphere Lattitude Longitude Elevation Time Zone
Kiripotib Southern 23 19 43 S 17 57 13 E 1350 2.0
Hamburg-Eimsbüttel Northern 53 34 18 N 09 58 16 E 50 1.0
Handeloh ASW Northern 53 14 06.4 N 09 49 46.6 E 15 1.0

Einstellungen für Speicherung der Fotos

Wo: Image Destination

Reiter Tools -> APT Settings -> Main

Verbinden von APT mit Geräten und Software

Ich kann meine Astro-Geräte mit APT “verbinden” damit ich sie dann von APT aus bedienen und steuern kann:

  • Montierung (“Gear”)
  • Kamera
  • Motor-Fokusser

Und ich kann weitere  Software mit APT verbinden:

  • Stellarium oder Cartes du Ciel als Planetariumsprogramm für Goto und SYNC
  • Platesolving mit All Sky Plate Solver, Platesolve2 oder ASTAP
  • PHD2 Guiding für Autoguiding und Dithering

Verbindung mit der Software PHD2 Guiding

Die Verbindung zur Autoguiding-Software stelle ich in APT ein unter dem Reiter “Gear” mit der Schaltfläche “Guide”

Verbindung zur Software Cartes du Ciel

Die Verbindung zur Planetariums-Software Cartes du Ciel stelle in in APT ein unter dem Reiter “Tools”  –> Schaltfläche “APT Settings” –> Dialogbox –> Reiter “Planetarium”

Nach einem erfolgreichen Plate Solving kann ich z.B. die Schaltfläche “Show” klicken, um mir die Himmelsgegend in Cartes du Ciel anzeigen zu lassen.

Siehe meine weitere Beschreibung unten.

Verbindung zum Platesolving

Bei APT heisst das Plate Solving “PointCraft”.

Unter dem Reiter “Gear” gibt es eine Schaltfläche “PointCraft”.

Hier können verschiedene externe Platesolver eingestellt werden:

  • All Sky Plate Solver (Blind solving)
  • Platesolve2 (Near solving)
  • ASTAP

Verbindung von APT mit Montierung

Zunächst muss ich APT starten und mit der Kamera (Canon EOS 600D oder meiner ASI294MC Pro) und mit meiner Montierung per ASCOM verbinden (PHD2 Guiding kommt später).

Verbindung mit der Montierung: ASCOM konfigurieren

Zum Verbinden der Montierung mit APT muss ich, zuerst ASCOM konfigurieren und dann innerhalb von APT via ASCOM das Teleskop (Reiter “Gear”) verbinden.

Für die ASCOM-Verbindung muss ich, wie immer, auf zwei wichtige Punkte achten:

  • die Nummer der COM-Schnittstelle muss korrekt angegeben werden
  • die Handbox der Montierung muss auf “PC Direct Mode” eingestellt sein

Wenn man im APT auf die Schaltfläche “Connect Scope” ein “Shift-Click” macht, kann man eine Montierung auswählen per “ASCOM Telescope Chooser”:

Abbildung 1: APT – Gear – Connect Scope (Google Drive: APT_ConnectScope-01.jpg)


APT Connect Scope

Im ASCOM-Setup muss man dann als “Port” die COM-Schnittstelle auswählen, an der die Montierung hängt (z.B. per USB-Serielle-Adapter):

Nachdem wir im APT auf die Schaltfläche “Connect Scope” geklickt haben, erscheit das Fenster “ASCOM Setup”

Abbildung 2: APT Connect Scope: ASCOM Chooser (Google Drive: APT_ConnectScope-02.jpg)


APT EQMOD ASCOM Telescope Chooser

Verbindung mit der Montierung: APT über ASCOM mit meiner HEQ5 Pro verbinden

Hier kann man im APT-Reiter “Gear” mit “Connect Scope” die Verbindung zu einer ASCOM-Montierung aufbauen (Teleskopsteuerung).
Wenn ein Plus auf der Schaltfäche steht, kann man mit Shift-Click noch besondere Eingaben (einmalig, werden gepeichert) machen.
Z.B. wird damit der ASCOM-Treiber für die Montierung ausgewählt und ggf. dabei auch Einstellungen (Site Information, Mount Limits,…) für der ASCOM-Treiber vorgenommen.

Der Reiter “Gear”:

Die Verbindung zur Montierung und damit zum Teleskop wird hergestellt.

APT –> Reiter “Gear” –> Schaltfläche “Connect Scope”

Abbildung 3: APT Connect Scope (Google Drive: APT_Gear.jpg)


APT Gear

Verbindung von APT mit der Kamera

Um APT mit meiner Canon EOS 600D zu benutzen, verbinde ich die Kamera mittels eines USB-Kabels mit meinem Windows-Notebook. Unter Windows 10 wird die Canon EOS 600D ohne dass irgendwelche Treiber geladen werden müssten erkannt. Das mit der Kamera gelieferte USB-Kabel funktioniert genauso wie ein anderes standard-mäßiges USB-Kabel mit Mini-USB-Stecker für die Kamera. Wer es besonders “gut” machen will, nimmt vielleicht ein USB-Kabel mit Ferritkernen.

Windows 10 Geräte-Manager –> “Tragbare Geräte” –> Canon EOS 600D

Abbildung 4: Windows 10 Geräte-Manager –> Canon EOS 600D (Google Drive: Canon_Geraetetreiber.jpg)


Windows Geraetemanager: Canon EOS

Die Verbindung der Kamera mit der Software APT: Reiter “Camera”

Die Software APT benötigt einige Einstellungen.
Im Tab “Camera” kann man im Unter-Tab “Connect” die Kamera einstellen (ggf. Shift-Click): “What Camera type do you wnat to use?”

  • Canon EOS Camera
  • CCD Camera
    • ASCOM Camera
    • SBIG Camera
    • Altair Camera
    • INDI Camera
    • ZWO Camera

Bei meiner Canon EOS 600D wähle ich als Kamera “Canon EOS Camera” aus und dann im Drop-Down “Generation Digic 3, 4, 5, 5+”, wie im Bild unten. Also in APT –> Reiter “Camera” –> “Connect”

Abbildung 5: APT Select Camera Type (Google Drive: APT_Camera.jpg)


APT Select Camera Type: Canon EOS

Wenn ich nun auf den Reiter “LifeView” klicke, kann ich das Live-Bild der Kamera auf dem Computer-Bildschirm sehen; wobei ich rechts unten die Einstellungen für Belichtungszeit, ISO etc. vornehmen kann.

In das Live-Bild kann ich hinein und heraus Zoomen (Reiter “Zoom+” und “Zoom-“) und ich kann unter dem Reiter “Tools” (rechts oben) z.B. “Focus Aid” aktivieren um z.B. mit FWHM die Güte der Fokussierung zu messen.

Im Echt-Einsatz würde man Fotosequenzen als sog. “Plans” im Vorhinein anlegen. Ich kann aber auch ein spontanes Probefoto machen indem ich auf den Reiter “Shoot” klicke. Dann verschwindet das Live-Bild und das aufgenommene (Probe-)foto wird, wenn es fertig ist, angezeigt (wenn Preview ausgewählt wurde).

Für meine Kamera ZWO ASI294MC Pro wähle ich als Kamera “CCD/CMOS” aus und darf dann nicht “ASCOM Camera”, sondern muss “CCD: ZWO Camera” auswählen. Dann zeigt APT auch die Funktion LiveView.

Der Object Browser bei APT

Der Objekt Browser bei APT enthält die Koordinaten wichtiger Himmelsobjekte und kann für diverse Zwecke innerhalb von APT eingesetzt werden. Die Anwedungsmöglichkeiten sind:

  • Plate Solving “Near Solving”
  • Goto

Standard-Funktionen des Object Browsers bei APT

Objects Browser für Near Solving

Wenn man den Objects Browser für das “Near Solving” verwenden will, ruft man den Object Browser aus dem “Point Craft”- Fenster auf. Dann werden die Felder Approx. RA/DEC aus dem Objekt Browsers heraus gefüllt – im Beispiel der Stern Deneb.

APT –> Reiter “Gear” –> Schaltfläche “Point Craft” –> Dialogbox “Point Craft” –> Schaltfläche “Objects+”

Abbildung 6: APT Object Browser (Google Drive: PointCraft_2019_06_06 13_21_07.jpg)


APT PointCraft Objekt Browser Stars

Wenn man sein Objekt ausgewählt hat, klickt man of die Schaltfläche “OK” und die Koordinaten des Objekts werden übernommen als Approx. RA und Approx DEC für den Startpunkt beim Platesolving mit Platesolve2.

APT –> … –> Dialogbox “Point Craft” –> Approx. RA & DEC –> Schaltfläche “Solve”

Abbildung 7: APT PointCraft (Google Drive: PointCraft_2019_06_06 13_24_00.jpg)


APT Point Craft Near Solving über Objectlist: Approx RA, Approx DEC

Objects Browser für GoTo

Wenn man den Objects Browser für das “GoTo” verwenden will, ruft man den Object Browser aus dem Reiter “Gear” auf. Dann werden die Felder GoTo RA/GoTo Dec aus dem Objekt Browsers heraus gefüllt – Beispiel siehe nächster Abschnitt.

Erweiterung des Object Browsers

Die unter dem Reiter “Stars” erscheinenden Sterne sind in der Datei “stars.xml” gespeichert. Diese Liste von Sternen habe ich wie folgt erweitert:

Zusätzliche Objekte

Einige Sterne, die ich gerne für den ersten Goto nach der Polausrichtung nehme, sind nicht in der APT-Objektliste. Wenn ich sie der APT-Objektliste hinzufüge, kann ich mein erstes Plate Solving schneller machen und danach das SYNC absetzen.

  • Alpha Centauri (Rigel Kentaurus)
  • Beta Cassiopeiae (Caph)
  • Epsilon Cassiopeiae (Segin)

Zusätzliche Informationen

Die Eigennamen der Sterne (im Feld “Name”) sind weder standardisiert noch geeignet, den Stern eindeutig zu identifizieren. Ich habe deshalb im Feld “HInt” an den Anfang die Bayer-Notation der Sterne eingefügt.

Goto mit APT (“Pointing”)

Wenn ich mir ein Beobachtungsobjekt für die Nacht ausgesucht habe und es in der APT-Objektliste steht, muss ich das Objekt mit dem Teleskop anfahren; d.h. zu den Ziel-Koordinaten bewegen.

Alternativ zu APT könnete man Pointing auch mit einer Planetarium-Software (z.B. Cartes du Ciel) machen; das wäre dann schön “visuell”.

Dazu muss das Teleskop “Connected” sein und ich sehe dann im Reiter “Gear” die Eingabefelder: GoTo RA und GoTo Dec. Das sind die Zielkoordinaten. Diese kann ich per Hand füllen oder auch durch Auswahl aus der Objektliste.

Aus dem APT Objects Browser wird das Objekt M81 ausgewählt

Abbildung 8: APT Object Browser M81 (Google Drive: APT-Goto-01.jpg)

Die Zielkoordinaten aus dem Objects Browser werden automatisch in GoTo RA und GoTo Dec im Reiter “Gear” übernommen.

Abbildung 9: APT GoTo RA und GoTo Dec (Google Drive: APT-Goto-02.jpg)

Durch Klicken auf die Schaltfläche “GoTo” bewegt sich nun die Montierung von den gegenwärtigen Koordinaten (hier: Dec = 90 Grad) auf die Zielkoordinaten.

Abbildung 10: APT – Reiter Gear – Schaltfläche Goto (Google Drive: APT-Goto-03.jpg)

Die Steuerungssoftware der Montierung “glaubt” jetzt, dass die Ist-Koordinatern der Montierung (09:55:34 69:04:02) nun exakt die vorgegebenen Ziel-Koordinaten sind. Das wird aber nicht ganz stimmen, denn wir hatten ja noch kein genaues 3-Star-Alignment mit der Montierung gemacht.

Die tatsächliche Ist-Position können wir aber sehr leicht ermitteln, indem wir jetzt ein Foto machen (nächster Absatz) und von diesem Foto die Mittelpunkt-Koordinaten bestimmen per Platesolving (übernächster Absatz).

Fotografieren mit APT

Hierzu habe ich einen separaten Blog-Artikel geschrieben.

Plate Solving mit APT

Dies habe ich in einem separaten Blog-Artikel beschrieben.

Dithering mit APT

Zum Thema “Dithering” habe ich einen eigenen Beitrag geschrieben.

Guiding

xyz

Ablage der Fotos auf dem PC: APT-Reiter “Camera”

Ob die Fotos nur auf der Kamera oder auch auf dem PC gespeichert werden, stellt man im Reiter “Camera” im Drop-Down “Image Dest” ein:

Abbildung 11: APT –> Reiter “Camera” –> Drop-Down: “Image Dest” (Google Drive: APT_Camera_ImageDest.jpg)


APT Image Destination

Wo genau auf dem PC die Fotos gespeichert werden, stellt man im Reiter “Tools” unter der Schaltfläche Settings ein.

Dateiname der Fotos: Reiter “Tools”, Schaltfläche “APT Settings”

Im ersten Reiter “Main” Habe ich das Feld “Images Path” und die Schaltflächen “Files Grouping” sowie Name Parts”.

Bei Speicherung auf dem PC kann auch noch eingestellt werden, aus welchen Teilen sich der Dateiname eines Fotos zusammensetzen soll. Ich habe eingestellt:

Name Parts: Plan Type, Filter Image ID, ISO/Bin, Exposure, EXIF/CCD, Object Name

Achtung: Bei Speicherung auf der SD-Karte der Kamera gilt dieses Namemsschema nicht.

 

APT-Reiter “Tools”

Hier können diverse Funktionen aufgerufen werden:

  • APT Settings
  • Histogramm
  • Focus Aid
  • u.v.a.m.

APT-Reiter “Img”

Normalerweise ist hier als Ordner der Speicher-Ordner für die mit APT aufgenommenen Fotos eingestellt und man kann also diese betrachten bzw, auswählen.

Man kan aber auch als Ordner einen beliebigen anderen Ordner per Hand einstellen, um dort vorhandene Fotos zu betrachten bzw. auszuwählen.

Das hier ausgewählte Foto wird im Hauptfenster (LiveView / Img Preview) angezeigt und kann z.B. für Plate Solving benutzt werden.

Elegantes Goto-Alignment: Erst Plate Solving, dann SYNC

Alternativ zum klassischen Goto Alignment kann ich ganz einfach mit APT ein Foto machen und dann mit “Point Craft” ein Plate Solving machen. Wenn das funktioniert, kann ich auf die durch Plate Solving ermittelten Koordinaten Sync-en. Damit wird eine Art “Pointing Modell” aufgebaut und weitere Gotos werden immer genauer.

Abbildung 12: APT –> Reiter “Gear” –> Schaltfläche “Point Craft” –> … (Google Drive: APT_20180904-01.jpg)


APT PointCraft

Quellen: http://aptforum.com/phpbb/viewtopic.php?t=795

vUnread post Tue May 31, 2016 3:52 pm

Hi Ivo, i need a little help.

I have purchase a CCD Camera, and this is the very first time i use it.

I have used APT with Eos, but i want if possibile to continue using APT with this ATIK 420C CCD camera.

In have understand how i can reach focus and colling aid, but i need to understand how i can sync Mount Eq6 with EQMODE drivers and APT.

I have think this, but i don’t know if work:

1) First start normal Goto to the 1 star after polar allignment.
2) Mount, do wrong Goto
3) Start pointcraft
4) Select a star used for normal Goto on Object tab
4) Pointcraft start image exposure
5) After Pointcraft try to solve immage
6) Select AIM
7) Select GOTO ++
8) APT try to move the mount where the stars can be.
9) APT, after some attempt, find star object and center it.
10) After Pointcraft centering, on gear tab i press SYNC
11) APT trasfer coordinates to EQmode
12) Do another normal Goto to another star
13) Do same things from point 3 to 11
14) Repeat this for 3 stars.

Then after this i can reach a rasonable precision sync of APT with Mont with EQmode driver ?

Thanks to all can be suggestion or help about.

Unread post Tue May 31, 2016 4:33 pm

Hi Vince,

Congrats on the new camera! Definitely you can continue to use APT with the CCD

As for your question. I assume that you have installed both ASPS and PS2. So the steps are:

1. Turn on you mount and enter site, time and etc.
2. Connect the camera and the scope to APT
3. Make some focus (there is no need to be perfect)
4. Take one image no matter where the scope points
5. Blind solve the image
6. Click Sync

That’s all. You are ready to go. It replaces the 3 star alignment If your target is not in the field after regular GoTo you can use GoTo++ 😉

Clear skies,
Ivo
May the weather be with you!Astro Photography Tool (APT v3.54.1) – The Imaging Catalyst
My images (6 AAPODs, 1 Published)

Automatisiertes Alignment mit einem APT “Plan”

Man kann bei APT ja einen sog. “Plan” einrichten (unter dem Reiter “Camera”), um eine Sequenz von “Aktionen” automatisch ablaufen zu lassen – Meist benutzt man einen solchen “Plan” um eine Reihe von Fotos zu schießen…. Man kann in einem “Plan” aber auch andere Aktionen automatisch ausführen lassen….
Eine Zeile in einem Plan ist
  • entweder eine Aktion “Add/Edit Exposure”
  • oder eine Aktion “Script or Command

Ein schönes Beispiel findet man im APT-Forum: https://aptforum.com/phpbb/viewtopic.php?f=19&t=2239

Die Benutzung von “GotoAltAz” (statt Deklination & Rektaszension) ist vorteilhaft, weil man damit sicher auf Himmelsgegenden zeigen kann, die in der aktuellen Horizontlage, tatsächlich sichtbar sind.

Falls die Montierung keine Gotos in Altitude und Azimuth unterstützt, werden diese von APT in R.A. und Dekl. umgerechnet, wobei die gegenwärtige Zeit und der gegenwärtige Standort (geogr. Länge, Breite) dazu verwendet werden. Allerdings muss dann im APT unter Tools -> APT Settings -> Location die Latitude und Longitude angegeben werden und unter “Synchronize the selected Location” ausgewählt werden “Use only in APT” (damit werden mögliche Probleme mit dem ASCOM-Treiber vermieden…

Wichtige Script-Befehle

#Goto

#GuideControl Off

#Tracking Off

#Park

 


Astronomie: Nano Tracker

Gehört zu: Nachführung
Siehe auch: Montierungen
Benutzt:  Fotos aus Google Archiv

Stand: 28.04.2023

Nachführung mit dem NanoTracker

Reise-Nachführungen (Star Tracker)

Für die Nachführung habe ich mir 2012 einen NanoTracker angeschafft, um auch bei weiten Flugreisen (Südafrika) eine mobile Nachführungsmöglichkeit für meine Astro-Aufnahmen mit dem Fotoapparat (Sony NEX-5R) bzw. meiner neu erstanderen DSLR Canon EOS 600D zu haben.

Mein ganzes Anwendungs-Szenario habe ich beschieben in “Astrofotografie mit leichtem Gepäck“.

Alternativen zur Nachführung mit NanoTracker wären:

  • Vixen Polarie  (teuerer 0,64 kg, Periodic Error 35″)
  • Skywatcher Star Adventurer  (schwerer: 1,2 kg) hat ST4
  • Skywatcher Star Adventurer Mini (warum nicht? neu, klein und leichter: 0,65 kg, Periodic Error 50″) kein ST4
  • iOptron Skytracker (alt, schwer 1,2 kg, Periodic Error 100″)
  • Astrotrac (klobig, schwer  1kg)

Abbildung 1: Der Nano Tracker (Google Drive: DK_20170720_NanoTracker.jpg)


NanoTracker

NanoTracker Data Sheet

  • Der NanoTracker: Gewicht 384 g, Traglast 2 kg
  • Die Akku-Einheit (mit Akkus): 163 g
  • Hersteller: Sightron Japan Inc.
  • Preis: Euro 289,..
  • Anschlüsse: Stativ 1/4 Zoll, Kamera 1/4 Zoll (ggf. Reduzierstück 1/4 auf 3/8 Zoll verwenden)
  • Stromversorgung: Separates Kästchen mit 3 AA-Akkus
  • Bedienung: Schalter An/Aus, Nord/Süd, Nachführgeschwindigkeit
  • Antrieb:
    • Schrittmotor mit Schnecke
    • Schnecke treibt Zahnrad auf R.A. Achse in Kugellagern
    • Das Zahnrad hat 50 Zähne was eine Schneckenperiode von 28,72 Minuten bedeutet

Die Schneckenperiode von 28,72 Minuten ergibt sich wie folgt:

  • Länge eines Sterntages in Sekunden:   86164,091
  • Länge eines Sterntags in Minuten:       1436,06818
  • Dividiert durch 50 (Anzahl Zähne):     28,7213637 Minuten

Siehe dazu auch die Web-Seite von Lorenzo Comolli: www.astrosurf.com/comolli/strum56.htm

Besonderheiten des NanoTrackers

Den elektrischen Strom bekommt der NanoTracker über ein separates Kästchen mit 3 AA-Akkus.
Das finde ich sehr praktisch von der Handhabung und ausserdem vermindert das die Traglast auf dem Stativ.

Maximale Belichtungszeit ohne Nachführung

xxxx

 Nachführung mit Getriebspiel und Periodic Error

Das Getriebespiel (Backlash) kann man vermeiden, wenn man den NanoTracker fünf Minuten vor eine Aufnahme “vorlaufen” lässt. Dann sollte der Backlash “vorbei” sein.
Was dann bleibt, ist der Schneckenfehler (Periodic Error).

Der Periodic Error (PE) könnte mit PEMPRO V2.8  gemessen werden.

Beispiel:

  • Meine Canon EOS 600D hat eine Pixel Size von 4,3μ
  • Bei einer Brennweite von 135mm ergibt das eine Pixel Scale von 6,56 arcsec / Pixel   (Formel)
  • Bei einem PE von angenommen 100 arcsec wären das 100 arcsec / 28,7 Minuten = 3,5 arcsec / Minute
  • Man könnte also im Schnitt 2 Minuten belichten ohne dass der PE sichtbar würde

Gestiegene Anforderungen an die Genauigkeit bei der Nachführung

Bisher hatte ich mit meiner Sony NEX-5R maximal 30 Sekunden belichtet und dabei Objektive von 16mm (Zenitar – z.B. Perseiden), 24mm (Vivitar – z.B. Nordlicht) und 50mm (Olympus – z.B. Magellansche Wolke) benutzt. Da war die Nachführgenauigkeit des NanoTracker überhaupt kein Problem.

Aber die Anforderungen an die Genauigkeit sind bei mir durch zwei Entwicklungen gestiegen:

  1. Ich habe ein Objektiv mit wesentlich längerer Brennweite bekommen: Takumar 135mm f/3.5 (neu: Olympus E.Zuiko 135mm f/3.5).
  2. Ich habe auch herausgefunden, wie ich mit meiner Sony NEX-5R länger als 30sec belichten kann. 30sec maximal macht die Sony per Programm mit Smart Remote, Langzeitbelichtung geht dann mit Bulb und einem Infrarot-Fernauslöser

Wie genau ist meine Nachführung?

Für eine sehr geneue Pol-Ausrichtung sorge ich mit meinem QHY PoleMaster. Dann sollten weitere Fehler auf den NanoTracker selbst und da im Wesentlichen auf den PE (Periodic Error) oder auch Schneckenfehler zurückzuführen sein. Aber wie kann ich ganz einfach mal die Genauigkeit der Nachführung (quasi end-to-end) messen?

Meine ganz simple Idee ist, einfach eine Serie von Aufnahmen von ein und demselben Objekt mit eingeschalteter Nachführung zu machen (z.B. 15 sec Belichtung, 15 sec Pause und das 30 Minuten lang – weil die Scheckenperiode 28,72 Minuten sein soll). Diese Aufnahmeserie könnte ich z.B. Plate Solven und die Ergebnisse dann in Excel darstellen….

In CloudyNights  https://www.cloudynights.com/topic/210905-how-to-measure-periodic-error/ finde ich dazu einen ähnlichen Rat:

  • Posts: 678
  • Joined: 07 Feb 2006

Posted 16 March 2009 – 10:27 AM

Hi all,

I used my Atlas EQ-G with the Orion 102ED f/7 scope this weekend to shoot my first set of astro pictures (will post some results here at a later time). However, since I don’t have an Auto-guider setup and I heard a lot of good things about the Atlas I figured I’ll see how long the mount can track accurately and was a little surprised to only get relatively short exposures. At 60s I had to throw out almost half of the exposures due to some star trailing (in RA direction), 30s exposures consistently looked good, except for a few. I also took some 120s exposures and also had to throw out at least half. Not quite what I had in mind. Did I expect too much here?

Anyhow, I drift aligned the mount to the best of my abilities actually using the DSLR since I also don’t have a cross hair eye piece, yet. I used the technique where you expose for 5s to mark the star and then move the mount forward in RA for about 60s at twice the siderial rate and then essentially stop the tracking for another 60 seconds, all while the shutter is open. The result is a V shaped line in the image if there is any misalignment. Worked like a charm and I might actually perform the alignment this way in the future instead of using the eye piece. I adjusted the mount as needed and got no more drift in the image for up to 3 minutes.

So, to make a long story short, the only reason for the star trails that I can think of now is RA tracking errors in the mount. I’d like to actually “see” the periodic error, etc. somehow in an image but can’t quite figure out how I would go about doing that. Do you guys have any suggestions?

Thx in advance,
/ThJ

Posted 16 March 2009 – 11:14 AM

The short answer:
Take a series of short exposure images (may need a brightish star) that totals longer than the period of the worm (typ 10min).
Use a stacking program that measures and records (to a file) the x,y coordinates of the star (the program should find the star’s centroid). AIP4WIN does this.
Import the recorded coordinates into Excel (or another spreadsheet program) and plot the x and y values vs exposure number. The PE will easily be seen in the plot.
Some calculation using the scopes focal length and the pixel sizes will give you PE in Arcsec.
If you align the camera so that RA is along the pixel rows (x-coordinate) then there should be no movement in the y direction if your polar alignment is perfect. Any change in the y is polar misalignment.
I have a spreedsheet at home from my Super Polaris mount. Let me know if you need more help on this part.

Astronomie: Software zur Beobachtungsplanung: AstroPlanner

Gehört zu: Beobachtungsplanung
Benutzt: Fotos aus Google Drive

Stand: 29.04.2023

Beobachtungsplanung mit AstroPlanner

Mit der Software “AstroPlanner” von Paul Rodman kann man sehr gut planen, welche Beobachtungsobjekte man wann und wo beobachten kann,  Die haupsächlichen Funktionen von AstroPlanner sind:

  • Beobachtungsplanung
  • Beobachtungs-Logbuch
  • Steuerung der Teleskop-Montierung

AstroPlanner ist in der Grundversion (s.u.) kostenlos.

Download AstroPlanner

Bezugsquelle: https://www.astroplanner.net/download.html

Version: 2.4 vom 9. 5.2024

Installation und Konfiguration von AstroPlanner

AstroPlanner gibt es zur kostenlosen Nutzung für nicht registrierte User mit leichten Beschränkungen ( z.B. nur drei Sternkataloge,…)

Sternkataloge können nach-installiert werden durch: Menü -> File -> Catalogue Manager

Bevor man mit AstroPlanner loslegt, sollte man einige sog. “Resourcen” einstellen:

Als sog. “Ressourcen” können Beobachtungsorte, Teleskope etc. definiert werden (Menü -> Edit -> Resources…)

  • Standorte (Beobachtungsorte): mindestens den Hauptstandort, hier also Handeloh
  • Teleskop: Orion 80/600
  • Imagers (Kameras): Canon EOS 600 D APS-C Sensor
  • Okulare
  • u.v.a.m. (siehe Abb.)

Abbildung 1: AstroPlaner Resources (Google Drive: AstroPlanner-03.jpg)


Astroplanner: Resources Sites

Die so definierten “Resources” werden gespeichert in “D:\Users\<username>\AppData\Roaming\AstroPlanner\Resources

Beobachtungsplanung mit der Software AstroPlanner

Astro-Pläne werden in sog. “Plan-Dateien” gespeichert. Nach Start des Programmes wählt man die anzuzeigende bzw. zu bearbeitende Plan-Datei aus (im Beispiel: handeloh.apd).

Zur aktuellen Uhrzeit am aktuellen Standort werden in einem Info-Block oben  u.a. angezeigt: Local Siderial Time, Julian Date, Sonne & Dämmerung, Mond mit Phasen,…

Abbildung 2: AstroPlaner Info-Block (Google Drive: AstroPlanner-02.jpg)


AstroPlanner Info-Block

Erstellen eins neuen Plans

Ein Plan (Beobachtungsplan) besteht im Wesentlichen aus einer Liste von Beobachtungsobjekten; d.h. Deep Sky Objekte und Objekte des Sonnensystems.

Möglicherweise haben andere User bereits Pläne erstellt, die wir per Download nutzen können – dies geht aber nur für registrierte User.

Wir können einen neuen Plan auch mit dem “Plan Creation Wizard” erstellen.

Zum manuellen Erstellen eines neuen Plans gehen wir auf: Menü -> File -> New

Der neue Plan soll aus einer Liste von Beobachungsobjekten bestehen. Mit der Schaltfläche “+” (ganz unten links) können wir ein Objekt zum Plan hinzufügen.

Abbildung 3: AstroPlanner Objekte in einem Plan (Google Drive: AstroPlanner-04.jpg)


AstroPlanner-04: Neues Objekt zum Plan hinzufügen

Wenn wir Glück haben, findet AstroPlanner das neue Objekt in einem seiner Kataloge, dann werden alle Felder des Objekts aus dem Katalog gefüllt; wenn nicht, müssen wir die wichtigsten Daten nun per Hand eingeben. Wenn wir Rektaszension und Deklination richtig eingeben, kann AstroPlanner die Sichtbarkeit ermitteln.

Wenn wir alle gewünschten Objekte in den Plan eingefügt haben, können wir den Plan abspeichern (Menü -> File -> Save).

Welche Daten pro Objekt in unserem Plan angezeigt werden, können wir bestimmen mit: Menü -> Edit -> List Columns

Beispielsweise könnten wir einblenden: “Best Time” oder “Observability”

Abbildung 4: AstroPlanner Columns (Google Drive: AstroPlanner-06.jpg)


AstroPlanner-06: Edit Columns

Sichtbarkeit von Objekten

Welche Objekte eines Plans zur Zeit am eingestellten Ort sichtbar sind, geht aus der Spalte “Vis” hervor.

Zusätzliche Information zur Sichtbarkeit geben die Spalten “Rise”, “Transit” und “Set”.

Wir können diese Sichtbarkeits-Daten auch für einen anderen Zeitpunkt erhalten, wenn wir oben rechts das Kontrollkästchen “Fix date” ankreuzen und dann Datum und Uhrzeit einstellen (diese Felder sieht man nur, wenn das AstroPlanner-Fenster breit genug ist).

Abbildung 5: AstroPlanner Datum (Google Drive: AstroPlanner-05.jpg)


AstroPlanner-05 Fix date

Spalte “Observability”

Was bedeutet “Gute Beobachtbarkeit”:   http://blog.astroplanner.net/?p=214

Der Wert in der Spalte “Observability” ist eine qualitative Angabe (von 0 bis 100), die von Astroplanner aus mehreren anderen Werten berechnet wird: Höhe des Objekts, Mondphase, Entfernung des Objekts vom Mond etc.

Grafiken zur Beobachtbarkeit

Wenn wir in der Liste ein Objekt auswählen (im Beispiel: M101),  können im oberen Bereich mehrere Grafiken zur Beobachtbarkeit angezeigt werden:

  • Short-term visibility
  • Long-term visibilty
  • Alt/Az Indicator
  • Constellation Indicator

Abbildung 6: AstroPlanner Objects (Google Drive: AstroPlanner-07.jpg)
AstroPlanner-07

Grafik “Short-term visibility”

Zeigt die Sichtbarkeit am gewählten Tag (24h) an.

Abbildung 7: AstroPlanner Short-term Visibility (Google Drive: AstroPlanner-08.jpg)


AstroPlanner-08 Short Term Visibility

Die Linie mit den “+”  Symbolen visualisiert die Höhe des ausgewählten Objekts (M101) im Laufe der Nacht.

Die Linie mit den “o” Symbolen visualisiert den Mond.

Die durchgezogene Linie zeigt den berechneten Wert für die “Beobachtbarkeit”.

Grafik “Long-term visibility”

Zeigt die Sichtbarkeit über die kommenden 12 Monate an.

Abbildung 8: AstroPlanner Long-Term Visibility (Google Drive: AstroPlanner-09.jpg)


AstroPlanner-09 Long-Term Visibility

Die Linie mit den “+”  Symbolen visualisiert die Höhe des ausgewählten Objekts (M101) im Laufe der nächsten 12 Monate, jeweils am Sonnabend um 22 Uhr an (einstellbar mit Rechtsklick).

In diesem Beispiel ist als das Objekt M101 an einem Sonnabend Anfang Juni um 22 Uhr am höchsten.

Beobachtungen dokumentieren

xxxx

Teleskop-Steuerung mit AstroPlanner

Unterstützung von Montierungen

AstroPlanner hat interne (eingebaute) Treiber für eine Reihe von Montierungen u.a. für Takahshi Temma, SkyWatcher SyncScan etc. ansonsten ist ASCOM unterstützt.

Astrofotografie: Zeitraffer – Timelapse

Gehört zu: Astrofotografie

Wie mache ich ein Zeitraffer-Video aus Einzelaufnahmen?

Wenn ich mit einem Intervallometer (z.B. Tempus, qDlsrDashboard, QUMOX Time Lapse,…) viele Einzelaufnahmen hintereinander geschossen habe, kann ich diese zu einem Zeitraffer-Video (“Time Lapse”) zusammenbauen. Dazu bedarf es:

  • Planung der Foto-Sequenz (Vielviele Aufnahmen, zeitlicher Abstand zwischen den Aufnahmen)
  • Software zum Erstellen des Videos aus den Einzelaufnahmen

Anwendungsbeispiel: Totale Mondfinsternis

Zeitraffer-Planung

Wenn ich später das Video mit 20 Bildern pro Sekunde ablaufen lassen will, benötige ich als 20 Fotos pro Video-Sekunde. Wenn das Video eine Laufzeit von 1 Minute haben soll, sind es also 60 * 20 = 1200 Aufnahmen (nennen manche auch “Frames”).

Wie groß man den zeitlichen Abstand zwischen den einzelnen Aufnahmen machen soll hängt von der Bewegungsgeschwindigkeit des Motivs ab.
Es ist eine Frage des Gesichtsfelds (FoV) und wie schnell das Motiv durch dieses Gesichtsfeld läuft.
Wenn ich beispielsweise möchte, dass das Motiv in 30 sec einmal durch das Gesichtsfeld läuft und dabei 10 Einzelaufnahmen gemacht werden, um eine flüssiges Video zu erhalten, so bedeutet das:  XYZ

Tabelle 1: Berechnungen für Zeitraffer

Brennweite Gesichtsfeld Motiv Geschwindigkeit Intervall Kommentar
 135mm

 ziehende Wolken 0,2°/sec  5-15 sec
 50mm 26°  Menschen auf Platz  0,25°/min  1-15 sec
 24mm  50°  aufgehende Knospen, Blüten  30-60 sec
 16mm 70°  Sonnenaufgang/-untergang   5-15 sec

Zeitraffer-Software

Dafür gibt es eine ganze Reihe von Software-Lösungen. Da ich Microsoft “Movie Maker” auch in anderen Zusammenhängen benutze, habe ich es zuerst einmal damit versucht.

Das geht ganz gut:

  • Laden aller Fotos in den Movie Maker
  • Selektieren aller Fotos in der erwünschen Reihenfolge
  • Klicken auf “Menü -> Bearbeiten” und  “Dauer” auf 0,05 Sekunden setzen. Mit 0,05 Sekunden bekomme ich ein Video mit 20 Bildern pro Sekunde.
  • Dann “Menü -> Datei -> Film speichern -> Für hochauflösende Anzeige”

Astrofotografie: Software – AstroImageJ

Gehört zu: Astro-Software
Siehe auch: Plate Solving

Analyse von Astrofotos mit AstroImageJ

AstroImageJ is an research-grade image analysis software.

Home Page: http://www.astro.louisville.edu/software/astroimagej

Links:

  • http://astrobites.org
  • xyz

AstroImageJ is built on Java, and runs easily on multiple platforms e.g. Windows Mac, Linux.

Firstly AstroImageJ is an image viewer for the FITS format (and also supports JPG, PNG, TIFF etc.)

Some features:

  • Plate Solving mit nova.astrometry.net
  • Anzeige von Astronomischen Koordinaten mit WCS
  • Object Identification via SIMBAD
  • Annotationen
  • Image Serien und Kurven
  • xyz

Plate Solving mit AstroImageJ

AstroImageJ benutzt zum Plate Solving astronomy.net

Unfortunately, AIJ will not currently work with the local astrometry.net
server (AIJ is hard coded to look for the nova server at astrometry.net).

Astrofotografie: Polar Aligment – Einsüden – Wie finde ich Sigma Octantis?

Gehört zu: Polar Alignment
Siehe auch: Mein Astro-Equipment, Star Adventurer Mini, Namibia
Benutzt: Fotos von Google Drive

Polar Alignment im Süden: Wie finde ich Sigma Octantis?

Bei verschiedenen Methoden zum “Polar Alignment” ist es erforderlich, die Position des Himmelsnordpols bzw. des Himmelssüdpols am Sternenhimmel (SCP = South Celestial Pole) eindeutig auszumachen.

Sowohl beim Polfernrohr als auch beim QHY PoleMaster muss man Gegend des Himmelspols (Nord bzw. Süd) eindeutig im FoV auffinden können. Was beim Südpol nicht so einfach ist, weil es keinen hellen Polarstern am Südpol gibt (Sigma Octantis ist 5,45 mag hell).

Ich habe mehrere Methoden zum Auffinden des SCP gefunden:

  • Wikipedia: Southern Cross
  • Alain Maury: Beta Hydri
  • Hannes Pieterse: Achenar
  • Skywatcher Star Adventurer

Polhöhe vorweg mit elektronischem Neigungsmesser einstellen

Wenn man Schwierigkeiten hat mit dem Verstellen zweier Achsen (Azimuth und Pohlhöhe), das Ziel-Objekt im Polfernrohr zu finden, kann man einfach die Polhöhe schon mal im Vorwege richtig einstellen und braucht dann im Dunklen nur noch ein bisschen im Azimuth zu suchen.

Von dem Astro-Kollegen Frank auf Kiripotib bekam ich den Tipp, doch einen digitalen Neigungsmesser zu verwenden, um die Polhöhe im Vorwege genau richtig einzustellen.

Im Nachgang zu meinem Aufenthalt in Namibia. beschaffte ich mit deshalb am 1.8.2018 den “Neoteck Digitaler LCD Winkelmesser Neigungsmesser Inklinometer Wasserdicht Bevel Box Winkelmessgerät” über Amazon für EUR 25,99.

Abbildung 1: Neoteck Digitaler Neigungsmesser (Google Drive: DK_20190512_134700.jpg)


Neoteck Digitaler Neigungsmesser

Ich konnte den Neigungsmesser in der Vixen-Aufnahme des Star Adventurer mittels eines kleinen Bleistifts fest klemmen. Der Winkelmesser muss bei dieser Befestigung 90 Grad minus geografische Breite anzeigen…

Method #1: Wikipedia Method Southern Cross

In der Wikipedia findet man mehrere Aufsuchmethoden, die erst einmal helfen,  grob die Gegend des SCP zu finden.

Eine Methode geht vom Kreuz des Südens aus:
Abbildung 2: Methode “Southern Cross” (Google Drive: Pole01-eng.jpg)


From the Southern Cross to the Southern Celestial Pole

Method #2: Beta Cen und Achenar

Die Methode von Hannes Pieterse sagt nicht, wie man das “Trapez” im Octant findet, sondern beschreibt wie, von diesem Trapez ausgehend, die genaue Position des SCP gefunden werden kann.
http://assabfn.blogspot.de/2010/08/find-south-celestial-pole-scp.html

Method #3:  Acrux – Fliege – Octans

Im user manual des Star Adventurer wird eine Methode zum “coarse alignment” beschrieben, die von dem Stern Acrux (alpha Crucis) ausgeht, dann geht man zu Alpha Muscae und weiter zu Gamma Musca (ist der nächst-hellste Stern). Die gerade Linie von Acrux über Gamma Mus zeigt genau zum SCP. Der Abstand auf dieser geraden Linie zum SCP  ist etwa ein gespreizte Hand breit.

Abbildung 3: Methode Acrux – Fliege – Octans (Google Drive: sky-watcher_star_adventurer_mini_manual.jpg)


Skywatcher: South Celestial Pole

Method #4: Starten mit SMC, 47 Tuc und Beta Hydri

Im Internet hat Alain Maury in seinem Blog eine sehr schöne Beschreibung für den Südhmmel abgegeben: http://www.spaceobs.com/en/Alain-Maury-s-Blog/How-to-polar-align-in-the-southern-hemisphere

Da die Gegend um den Himmelssüdpol keinerlei hellere Sterne aufweist, beginnen wir das Aufsuchen mit einigen markanten, helleren Objekten: LMC, SMC, 47 Tuc, Beta Hydri und “hoppen” von Beta Hydri aus über Gamma-1-2-3 Octantis zum Trapez aus Sigma, Tau, Chi, Ypsilon Octantis.

Wir starten mit der Kleinen Magellanschen Wolke (SMC) und sehen ganz in der Nähe 47 Tuc.

Die beiden nehmen wir als Basis für ein gleichschenkliges spitzes Dreieck in Richtung des Himmelssüdpols, wo die Spitze der Stern β Hydri sein soll.

Wenn wir die Linie dieses spitzen Dreiecks weiter gehen, kommen wir zu einer kleinen Gruppe aus drei Sternen: γ1, γ2 und γ3 Octantis. Diese drei Sterne bilden ein stumpfes gleichschenkliges Dreieck. Die stumpfe Spitze zeigt auf das Trapez, was wir suchen.

Abbildung 4: Methode SMC, 47 Tuc,  Beta Hydri, Gamma 1-2-3 Oct (Google Drive: pole4.jpg)


Aufsuchkarte South Celestial Pole – Copyright Alain Maury

Üben an echten Fotos

Zum Üben dieser Auffinde-Methode eignet sich ein schönes Weitwinkel-Foto des Südhimmels, das ich in einem Reisebericht von Stefan Westphal gefunden habe:

http://www.astrofreunde-franken.de/namibia_2014_sw.html

Am Ende des Berichts findet sich ein Link auf seine Fotosammlung, wo dann das Foto “Nächtliche Stimmungsaufnahme” sehr schön zum Auffinden von Sigma Octantis geeignet ist:

Abbildung 5: Üben an echtem Foto (Google Drive: pole_landschaft.jpg)


South Celestial Pole – Kiripotb – Copyright: Stefan Westphal

Astronomie: Einnorden – Polar Alignment mit dem Polfernrohr

Gehört zu: Montierung
Siehe auch: Polar Alignment am Südhimmel, Polar Alignment mit SharpCap, Polar Alignment
Benutzt: Fotos aus Google Drive

Stand: 29.04.2023

Zur Erzielung einer guten Nachführung für die Astrofotografie muss die Montierung eingenordet werden.

Polar Alignment mit einem Polfernrohr  (SmartEQ Pro, SkyTracker,…)

Polar Alignment ohne Himmelspol

Mit dem N.I.N.A.-Plugin ThreeStarAlignment geht es auch ohne Sicht auf den Himmelspol.

Klassische Voraussetzung: Der Himmelspol

Voraussetzung: bei Nacht freie Sicht auf den Polarstern bzw. Sigma Octantis

Das Polfernrohr befindet sich in der Stundenachse meiner parallaktischen Montierung. Es muss grob auf den Himmelspol ausgerichtet sein, sodaß  Polaris (im Norden) bzw. Sigma Octantis (im Süden) im Gesichtsfeld des Polfernrohrs (FoV = 6 °) stehen.

Wie man Polaris (am nördlichen Himmel) findet, ist sehr bekannt und einfach: die hinteren beiden Sterne des “Großen Wagen” (Alpha und Beta UMa 2,0 mag und 2,3 mag) 5 mal nach oben verlängern und schon hat man Polaris (Alpha UMi 1,95 mag) gefunden. Alle diese Sterne sind recht hell, sodass man sie problemlos mit bloßem Auge finden kann.

Sigma Octantis (und das “Trapez”) am Südlichen Sternhimmel ist nicht so leicht zu finden, da es sich um relativ schwache Sterne handelt (Sigma Oct 5,45 mag). Hierzu habe ich einen separaten Artikel geschrieben.

Einfluss der Präzession

Die Rotationsachse der Erde ist um ca. 23,4 Grad gegen die Ekliptik geneigt. Deshalb ist der Himmelspol 23,4 Grad entfernt vom Pol der Ekliptik, der im Sternbild Draco liegt.

Die Erdachse ist aber nicht ganz fest im Raum, sondern beschreibt eine langsame Kreiselbewegung, Präzession genannt. Die Periode beträgt ca. 25750 Jahre und wird auch “Platonisches Jahr” genannt.

Deshalb beschreibt also der Himmelspol in 25750 Jahren einen Kreis mit Radius 23,4 Grad um den ekliptischen Pol. Diese Bewegung beträgt rechnerisch ca. 50 Bogensekunden pro Jahr.

Der Stern Alpha Ursae Minoris wird also noch viele Jahrzehnte als Polarstern dienen können. Heute (2021) ist er ca. 40 Bogenminuten vom Himmelspol entfernt und nähert sich dem in den nächsten Jahrzehnten noch etwas an.

Makierungen im Polfernrohr

Die SmartEQ Pro hat ähnlich wie ich es von dem “iOptron SkyTracker” her kenne, ein beleuchtetes Polfernrohr mit konzentrischen Kreisen, die als Zifferblatt mit 12-Stundenteilung dargestellt sind (andere Fabrikate können leicht anders aussehen):

Abbildung 1: Blick durchs Polfernrohr (Google Drive: PolarScope.jpg)


Polar Alignment with Polar Scope bei iOptron

Das obige Bild zeigt, wie es genau im Polfernrohr der iOptron SmartEQ ausssieht; bei anderen Montierungen wird der Anblick im Polfernrohr sehr ähnlich sein.

Der Himmelsnordpol soll in der Mitte sein. Dafür muss Polaris im aktuellen Abstand vom Pol auf den entsprechenden Kreis gesetzt werden und die Position auf dem Kreis (12 Stunden-Zifferblatt) muss der aktuellen Position von Polaris (Stundenwinkel oder so ähnlich – s.u.) entsprechen. Man muss also die aktuelle Position von Polaris zum Zeitpunkt des Einnordens kennen (s.u.).

Wenn man nun eine halbwegs bequeme Stellung für den lockeren Blick durch das Polfernrohr gefunden hat, kann man die Polausrichtung leicht durchführen. Das Okular meines Polfernrohrs hat bei normal ausgezogenem Stativ eine Höhe von 1,07 Meter über dem Boden. Wenn ich auf meinem “normalen” Klappstuhl für astronomische Beobachtungen sitze, habe ich eine Augenhöhe von 1,16 m über Boden. Ich müsste also einen Beobachtungsstuhl haben, dessen Sitzfläche 9 cm niedriger ist; d.h. statt 45 cm müssten es 36 cm sein. Vielleicht nehme ich da einen höhenverstellbaren Klavierschemel oder eine stabile Holzkiste, die eine Kantenlänge von 36 cm hat.

Bestimmung der aktuellen Polaris-Position

Für die Einstellung im Polfernrohr benötigt man die aktuelle Position von Polaris bezogen auf den Himmelsnordpol. Diese Position kann mit unterschiedlichen Mitteln bestimmt werden.

Polaris-Position per Kochab-Methode

Als “Kochab-Methode” habe ich von Astrohardy gelernt, schaut man einfach, welche Position Kochab (Beta UMi) in Bezug auf den Himmelpol einnimt. Polaris steht genau gegenüber von Kochab, bezogen auf den Himmelspol d.h. die Verbindungslinie Kochab-Polaris geht genau durch den Himmelspol. Im umkehrenden Polfernrohr muss Polaris also auf seinen 40′-Kreis gesetzt werden und zwar genau in Richtung (Zifferblatt) von Kochab, wie man ihn mit dem blossen Auge sieht.

Abbildung 2: Die Kochab-Methode (Google Drive: kochab-03.jpg)


Kochab-03 Polar Alignment

Auf diesem Bild ist die Position von Kochab  auf einem Zifferblatt in Bezug auf den Himmelspol etwa “5 Uhr”.

Polaris-Position in Stellarium

Auch das schöne Planetariumprogram Stellarium zeigt ja für jeden Ort und jede Zeit die Position von Polaris an – auch als Stundenwinkel und Deklination.

Beispiel: Ort:  53° 34′ N 9° 58′ E, Datum und Zeit:  26.02.2017 um 19:00 Uhr MEZ (UTC+1)

Wenn man jetzt Stellarium auf Polaris schwenkt und Polaris anklickt, zeigt Stellarium viele Daten von Polaris an:

Abbildung 3: Der Polarstern in Stellarium (Google Drive: kochab-02.jpg)


Polar Alignment: Stellarium zeigt die Daten von Polaris an

Die Zeile mit “Stundenwinkel/DE” ist für uns interessant.
Die Deklination von Polaris soll also 89° 19′ 35.9″ sein; d.h. sein Abstand vom Himmelsnordpol ist:  r = 40′ 24.1″
Der Stundenwinkel von Polaris ist 2h 11m 55.75s, wobei dieser normale Stundenwinkel als Nullpunkt den Südmeridian hat und nach Westen (rechts) zunimmt.

Um aus dem Stundenwinkel die Zifferblatt-Position von Polaris zu ermitteln, sind folgende Schritte erforderlich:

  • Unser Zifferblatt-Kreis ist nicht 24h, sondern 12h, also den Stundenwinkel t ersteinmal halbieren:  t/2  = 1h 05m 57.6s
  • Statt nach Süden blicken wir nach Norden. Der Nullpunkt liegt zwar oben, aber Westem liegt jetzt links; also ist die Zifferblattposition:    – t/2  (+ 12h) = 10h 54m 02.4s
  • Das Polfernrohr kehrt um: oben/unten und rechts/links; also plus 6h:  – t/2 + 12h  + 6h = 16h 54m 02.4s

Da wir die Zifferblatt-Position Modulo 12 nehmen wollen, ergibt sich als vollständige Formel:

Zifferblatt-Position = (18h – t/2) mod 12h   — was man mathematisch auch als (6h – t/2) mod 12h schreiben könnte

Also 4h 54m, was mit unserem Kochab-Wert von “ca. 5h” gut übereinstimmt.

Polaris-Position per App (Android & iOS)

Für mein iPad habe ich die kostenlose App “Polar Scope Align” von Dimitros Kechagias geholt.

Für mein Android-Tablet nehme ich das kostenlose “Polar Finder” von TechHead (jol@netavis.hu).

Beide Apps bieten die Möglichkeit sich die Ansicht der gängigsten Polsucherfernrohre einzustellen (Kreise und Skalen von iOptron, Skywatcher,…).

Abbildung 4: App auf meinem Android-Smartphone (Google Drive: PolarFinder_Android.jpg)


Android App: PolarFinder

Abbildung 5: App auf meinem iPhone (Google Drive: PolarScopeAlign_iOS.jpg)


iPhone App: Polar Scope Align

Polaris-Position in der Handbox

Die Handbox der Montierung liefert als Komfort auch noch eine Anzeige der Polaris-Position. Bei der iOptron SmartEQ macht man das so (bei anderen Montierungen mit Handbox ist das ähnlich):

Handbox: Menue -> Align -> Pole Star Position

Abbildung 6: Handbox Go2Nova: Pole Star Position (Google Drive: DK_20160501-PolarAlignment-01.jpg)


Polar Alignment mit Handbox Go2Nova

Dann wird die Position von Polaris für eine aktuellen Ort und die aktuelle Zeit im Hand-Controller wie folgt angezeigt:

Abbildung 7: Handbox Go2Nova: Position of Polaris (Google Drive: DK_20160501-PolarAlignment-04.jpg)


Polar Alignment mit Handbox Go2Nova

Dazu muss die Go2Nova Handbox (Hand-Controller) selbstverständlich genau auf geografische Koordinaten und Uhrzeit eingestellt sein.

Astronomie: Einnorden – Polar Alignment mit QHY PoleMaster

Gehört zu: Montierung, Einnorden
Siehe auch: SharpCap, Liste meiner Geräte, QHY PoleMaster, Einnorden mit N.I.N.A.
Benutzt: Fotos aus Google Archiv, Videos von Youtube

Stand: 30.12.2022

Generelles zu Einnordung / Einsüdung / Polar Alignment

Eine parallaktische Montierung muss “eingenordet” sein, damit das Goto und die Nachführung richtig funktionieren.

Hat man keine fest aufgebaute Montierung, sondern eine mobile Montierung, die jedesmal wieder neu aufgestellt werden muss, so hat man die Prozedur des Einnordens immer wieder erneut durchzuführen und man fragt sich, wie man das einfach, genau und bequem gestalten kann.

Einnorden muss man also immer, wenn man parallaktisch per Motor nachführen will – z.B. wegen längerer Belichtungszeiten.

Zur “Einnordung” gibt es verschiedene Methoden, die ich im Überblick in diesem Artikel dargestellt habe. Dies sind:

  • Scheinern – Drift Alignment
  • Polfernrohr mit Fadenkreuz und Sternenmaske
  • Spezielle Funktion von computerisierten Montierungen (per Handbox)
  • Software “AlignMaster” mit ASCOM Goto Montierungen
  • QHY PoleMaster (Hardware und Software)
  • Software “SharpCap
  • N.I.N.A.  Three Point Polar Alignment

Ich benutze zum Einnorden meiner Montierungen SkyWatcher HEQ5 Pro und iOptron SmartEQ Pro den QHY PoleMaster. Das Einnorden/Einsüden meines NanoTrackers (neu: Skywatcher Star Adventurer Mini) versuche ich ebenfalls mit QHY PoleMaster ggf. muss ich mit SharpCap Aufnahmen machen, die dann für ein Plate Solving auf dem Windows-Notebook zur Verfügung stehen. um definitiv zu wissen, welche Stern im Gesichtsfeld stehen.

QHY PoleMaster verkauft

Neuerdings (seit 2020) verwende ich das Polar Alignment der Software SharpCap anstelle des QHY PoleMasters. den PoleMaster habe ich verkauft.

QHY PoleMaster Review

Autor: Chuck’s Astrophotography

Abbildung 1: How to Use the QHYCCD PoleMaster Software (YouTube https://www.youtube.com/watch?v=DJvfYAAxXsA&t=75s)

AstroBackyard Review: https://astrobackyard.com/qhy-polemaster-review/

Polar Alignment mit PoleMaster QHYCCD

Warum QHY PoleMaster?

Im Rentenalter wollte ich mein Astronomie-Hobby aus der Jugendzeit wieder aufnehmen, nachdem ich fast 40 Jahre garnichts astronomisches gemacht hatte.

Ich schielte von Anfang an auf die Astrofotografie und wollte mit einer kleinen mobilen parallaktischen Montierung anfangen, mit der ich auch die in den letzten Jahrzehnten möglich gewordenen neuen Dinge wie GoTo und Autoguiding mal praktisch ausprobieren wollte. Meine Wahl fiel vor zwei Jahren auf eine iOptron SmartEQ Plus. Mittlerweile (2017) habe ich eine gebrauchte Skywatcher HEQ5 Pro….

Mein hauptsächlicher Beobachtungsort ist die Innenterrasse meiner Erdgeschosswohnung in Hamburg-Eimsbüttel (also Lichtverschmutzung durch Stadtlicht). Ich habe dort keine fest eingerichtete Terrassensternwarte, sondern muss die Montierung für jede Beobachtungsnacht neu aufstellen und einjustieren.

Für die Füße des Dreibeinstativs habe ich auf den Terrassenfliesen Markierungen mit Nagellack gemacht.

Belichtungszeit

Ich habe gelesen, dass man für vernünftige Astrofotos sehr lange belichten soll (Poisson-Verteilung der ankommenden Photonen). Beispielsweise so etwa mindestens 30 Einzelaufnahmen (sub exposures) mit je 300 sec Belichtungszeit.

Die maximal mögliche Belichtungszeit (bei festem ISO von z.B. 800) muss man experimentell herausfinden. Je heller der Himmel ist (Lichtverschmutzung) desto kürzer wird die maximale Belichtungszeit werden (Histogramm ganz rechts, Bild ganz hell) . In Handeloh kann ich z.B. 300 Sekunden bei ISO 800 belichten.

Damit die für solche Belichtungszeiten benötigte Nachführung gut funktioniert, ist eine exakte Aufstellung der Montierung erforderlich. D.h.

  • Waagerechte Aufstellung
  • Einnordung (Polar Alignment)

Die Auflageplatte der Montierung soll exakt waagerecht liegen, also muss der Polkopf abgeschraubt werden und eine Wasserwaage daher, um die Stativbeine genau auf eine waagerechte einzustellen. Dann kommt der Polkopf (Achsenkreuz) wieder drauf und die Stundenachse muss genau auf den Himmelspol ausgerichtet werden…

Danach erst kann das Goto Alignment geschehen, damit ich meine Beobachtungsobjekt leicht per Goto in die Bildmitte einstellen kann und damit die Nachführung dann gut funktioniert.

Die Nachführung durch die Montierung selbst (manche sagen das Tracking) sollte für 30-60 Sekunden gut sein. Falls das noch weiter verbessert werden soll, wäre schließlich ein Autoguiding angezeigt.

Einnorden

Für das sog. Einnorden gibt es ja viele Techniken. Meine schöne iOptron SmartEQ Pro Montierung (die HEQ5 Pro auch) hat dafür in der Stundenachse ein beleuchtetes Polfernrohr mit konzentrischen Ringen und einer Zifferblatt-Mimik. In der Praxis war das aber für mich viel zu unbequem (Foto: Kniefall).

Abbildung 2: Kniefall zum Einnorden durch das Polfernrohr (Google Drive: PolarScope_20170223_1 Kopie.jpg)


Der Kniefall: So bequem schaut man durch das beleuchtete Polfernrohr

Deswegen war ich begeistert, als ich von dem neuen Produkt „QHY PoleMaster“ lass und Erfahrungsberichte dazu in Google und Youtube fand.

  • Dietrich Kracht auf YouTube
  • QHYCCD PoleMaster Polar Alignment Camera by Jeffrey Geiss P1:

  • QHYCCD PoleMaster Polar Alignment Results, Software, Hardware P2:

     

Was ist QHY PoleMaster?

Was der QHY PoleMaster genau ist und wie er funktioniert haben andere schon sehr schön im Web erklärt.

Kurzgesagt ist es eine kleine USB-Kamera mit einem lichtstarken Objektiv (f=25mm) und einem Sensor 1280×960 (Aptina ASX340, 1/3″, 3,75µ) wie bei der QHY5L II, die auf die Montierung gesteckt wird und mit der man die Gegend um den Himmelpol fotografiert (FoV 11×8 Grad). Die kleine Kamera wird per USB mit einem Notebook-Computer verbunden auf dem eine spezielle PoleMaster-Software von QHY installiert ist.

Installation der Software für QHY PoleMaster auf dem Windows-Notebook

Am 27.2.2017 habe ich dann den QHY PoleMaster bei Teleskop-Express für EUR 355,00 erstanden.
Zunächst ist ein Treiber für die im QHY PoleMaster enthaltene Kamera erforderlich. Was mitgeliefert wird ist ein proprietärer Treiber, der eine vom Hersteller erfundene Gruppe “AstroImaging Equipment” im Windows-Gerätemanager aufmacht: PoleMasterDriverLatestEdition.zip

Nach erfolgreicher Installation des Treibers erscheint die Kamera im Windows-Gerätemanager wie folgt:

Abbildung 3: POLEMASTER im Windows-Gerätemanager (Google Drive: Polemaster-02.jpg)


QHY PoleMaster Driver

Das Herzstück der PoleMaster-Lösung ist dann die spezielle Software, die das Bild der Kamera auf dem Window-Notebook anzeigt und dann durch die Prozedur des Polar Alignments führt.

Abbildung 4: Der Rotationskreis der Stundenachse (Google Drive: Polemaster_006.jpg)


QHY PoleMaster Rotation

Abbildung 5: Himmelspol und Rotationszentrum zur Deckung bringen (Google Drive: DK_20170726_Polemaster.jpg)

Wie funktioniert das Einnorden mit QHY PoleMaster?

Im ersten Schritt richtet man die Kamera auf die Polgegend, identifiziert Polaris durch Doppelklick und die Software errechnet aufgrund des Sternfeldes insgesamt, wo sich genau der Himmelspol befindet.

Im zweiten Schritt soll man die Montierung mehrfach um die Stundenachse drehen und dabei die Drehung eines “anderen” Sterns verfolgen und Doppelklicks machen um die Position an die Software zu übergeben. Daraus ermittelt die Software den Rotationskreisbogen und damit genau wohin die Rotationsachse (Stundenachse) der Montierung zeigt.

Im dritten Schritt muss man die Montierung so im Azimut und in der Polhöhe einstellen, das beides zur Deckung kommt – was auf dem Bildschirm durch zwei Markierungen angezeigt wird.

Das ganz soll nur 3 Minuten dauern und eine Genauigkeit von 30″ liefern.

Zusammenfassung Schritt für Schritt:

  1. USB-Stecker an Kamera soll nach rechts schauen, USB-Kabel mit Laptop-Computer verbinden
  2. Montierung auf Home-Position stellen
  3. PoleMaster-Programm auf Laptop-Computer starten.
  4. Oben links auf “Connect” klicken.
  5. Zoom einstellen
  6. Region Selection: North
  7. Belichtungszeit aufdrehen bis auch die dunkleren Sterne (dunkler als Polaris) auf dem Display sichtbar werden.
  8. Ggf. Fokussierung des PoleMasters überprüfen
  9. Doppelklick auf Polaris und softwaremäßiges Rotieren einer Maske von Umgebungssternen bis sie übereinanderliegen (damit ist der Himmelspol identifiziert)
  10. Selektieren eines anderen Sterns als Polaris mit Doppelklick (dieser Stern dient dazu, den Drehpunkt der Stundenachse zu messen, muss also bei Rotation im Bildfeld bleiben)
  11. Physisches Drehen um die Rotationsachse des Geräts zweimal um jeweils 30-40 Grad und Doppelklick auf den “anderen” Stern. Daraus berechnet die Software den Drehkreis des “anderen” Sterns und damit ist der Drehpunkt der Montierung identifiziert
  12. Montierung zurück in die Home-Position fahren. Dabei muss der “andere” Stern entlang des berechneten Kreises laufen.
  13. Die Software zeigt jetzt die errechneten Positionen des Himmelspols (grüner Kreis) und des Drehpunkts der Montierung (roter Kreis) an. Diese müssen an der Montierung durch manuelles Verstellen von Azimut und Polhöhe zur Deckung gebracht werden.

Befestigung des QHY PoleMaster auf einer Skywatcher HEQ5 Pro

Wie wird die PoleMaster Kamera auf der Montierung befestigt? Die Kamera selbst hat unten drei M3 Schrauben kreisförmig in Winkeln von 120 Grad angeordnet. Die werden von oben auf eine Adapter-Scheibe geschraubt, die mit ihrer unteren Seite auf der Öffung des Polfernrohrs ihrer Montierung befestigt wird. Je nach Montierung gibt es verschiedne Adapter-Unterteile z.B. für:

  • EQ6/AZEQ6
  • HEQ5
  • iOptonCEM60 ZEQ25/CEM25 iEQ45 iEQ30
  • AZEQ5
  • Celestron AVX CGEM
  • EM200/EM11

11. Juli 2017: Ich plane nun von meiner SmartEQ Pro auf eine Skywatcher HEQ-5 Pro Synscan umzusteigen.

Für diese Montierung gibt es einen passenden Adapter, den ich z.B. bei Teleskop Express gefunden habe. Um den QHY PoleMaster auf einer Montierung Skywatcher HEQ5 Pro zu befestigen, gibt es (z.B. bei Teleskop-Express) den Adapter “PoleMaster Adapter für Skywatcher H-EQ5 Montierung” (AL70410 für EUR 39,00).

http://www.teleskop-express.de/shop/product_info.php/info/p8803_ALccd-PoleMaster-Adapter-fuer-Skywatcher-H-EQ5-Montierung.html

Der Adapter kommt auf die Öffnung des Polfernrohrs der HEQ5, dabei bleibt eine Öffnung, so dass das Polfernrohr weiter benutzt werden könnte.

Abbildung 6: Polemaster Adapter für die HEQ5 (Google Drive: PoleMaster_20190219_124331.jpg und PoleMaster_20190219_124618.jpg)


PoleMaster Adapter for HEQ5 Pro

PoleMaster on HEQ5 Pro

Befestigung des QHY PoleMaster auf der Montierung SmartEQ Pro

Ich habe ja, wie gesagt, eine Montierung, die nicht ganz so „Mainstream“ ist, nämlich einen iOpton SmartEQ Pro. Mein deutscher Lieferant konnte keinen passenden Adapter liefern. Ich spielte schon mit dem Gedanken, meine Montierung zu wechseln (etwa CEM25), dann fand ich aber im Internet bei der englischen Firma „Modern Astronomie“ den Adapter für die SmartEQ Pro. Den habe ich mal als erstes alleine bestellt, um die prüfen, ob das Ding auch das tut, was ich für den PoleMaster benötige. Gestern kam das Paket mit dem Adapter aus England hier an. Man montiert das Teil auf die vordere Öffnung des Polfernrohrs, die damit blockiert ist (anders als bei anderen Adaptern). Es passt auf meine Montierung und sieht insgesamt gut aus.

Abbildung 7: Polemaster Adapter für die Montierung SmartEQ Pro (Google Drive: DK_20170303_1315.JPG)


QHY Polemaster Adapter auf iOptron SmartEQ Pro

Da der Adapter OK war, habe ich nun auch den eigentlichen PoleMaster bestellt (ohne Adapter). Mein deutscher Lieferant hatte den auf Lager und lieferte extrem schnell.

Abbildung 8: QHY Polemaster auf SmartEQ Pro (Google Drive: DK_20170303_1316.JPG)


QHY Polemaster on SmartEQ Pro

Befestigung des QHY PoleMaster auf dem Star Adventurer Mini

Als kleinen Tracker für DSLR auf Fotostativ bin ich ja vom NanoTracker (s.u.) auf den Star Adventurer Mini umgestiegen.

Der funktionierte auch auf der Südhalbkugel sehr gut, allerdings musste man den schwachen Stern Sigma Octantis ersteinmal ins Gesichtsfeld bekommen. Was recht zeitaufwendig sein kann, wenn man in zwei Freiheitsgraden sucht (rechts-links und oben-unten). Das kann man vereinfachen auf einen Freiheitsgrad, indem man die Polhöhe vorher schon exakt einstellt, dann hat man nur noch die Einstellung des Azimuths als einen Freiheitsgrad (siehe dazu: Elektronischer Neigungsmesser).

Im Juni 2018 ist mir das beispielsweise auf Kiripotib, Namibia, gelungen, wie das Foto zeigt.

Abbildung 9: Polemaster auf der Südhalbkugel (Google Drive: 20180606_polemastersouth-01.jpg)

Befestigung des QHY PoleMaster auf dem NanoTracker

5. April 2017: Um den QHY PoleMaster auf einem ganz normalen 3/8-Zoll Fotogewinde zu befestigen, gibt es von der Firma Cyclops Optics einen speziellen Adapter namens “Universal Portable Mount Adapter PM-ST”.

https://www.cyclopsoptics.com/adapter/cyclops-optics-universal-portable-mount-adapter-t6061-cnc-for-polemaster/

Die eine Scheibe befestigt man mit drei kleinen Schrauben hinten am PoleMaster; diese Scheibe hat nach unten ein 3/8-Zoll Innengewinde. Mit einem 3/8-Zoll auf 1/4-Zoll Zwischengewinde kann ich das dann auf den NanoTracker schrauben. Die zweite Scheibe dient dann als (große) Kontermutter, um die Verbindung nach unten in der gewünschten Richtung (hier: USB nach rechts) zu fixieren

Wenn ich statt des NanoTrackers den Skywatcher Star Adventurer Mini verwende ist das Ganze noch einfacher…

Abbildung 10: QHY Polemaster mit Spezialadapter auf NanoTracker (Google Drive: DK_20170628_Nanotracker-01.JPG)


QHY Polemaster mit Spezialadapter auf NanoTracker

Am 8. Juli 2017 konnte ich damit ein Polar Alignment meines NanoTrackers auf dem Fotostativ “Sirui ET-1204” mit einem Stativkopf “Rollei MH-4“erfolgreich durchführen.

Den Stativkopf Rollei MH-4 habe ich am 16. Mai 2017 bei Amazon für Euro 24,99 gekauft (Belastbarkeit 2,5 kg).

Das Fotostativ Sirui ET-1204 habe ich am xxx gekauft (für die Flugreise: Carbon, 4 Segmente,…)

Für das Polar Alignment mit der PoleMaster-Software waren erforderlich:

  • Stabile Aufstellung des Fotostativs: Das ging durch beschweren der Mittelsäule mit einer Plastiktüte mit schwerem Inhalt
  • Nivellieren in die Waagerechte: Das ging mit einer kleinen Wasserwage
  • Drehen der Kamera um die Rotationsachse des Motors: Das ging, wenn man die Kontermutter etwas lockerte
  • Kleine Bewegungen der “Montierung” im Azimut und Polhöhe: Das ging mit Hilfe des Neigekopfs MH-4

Den Rollei Stativkopf (Neigekopf) MH-4 habe ich eigens zur einfacheren Einnordung angeschafft:

Abbildung 11: Neigekopf Rollei MH-4 (Google Drive: DK_20170711_1789.JPG)


Neigekopf Rollei MH-4

Statt dieses MH-4 Neigers habe ich mir später den Manfrotto MG460 Neiger, angeschafft.

Noch eleganter fand ich schliesslich die Lösung mit einer Wedge, die zum Star Adventurer Mini gehört. Damit fand ich es am einfachsten, die Höhe und das Azimuth des Himmelspols einzustellen.

Astrofotografie: Kometen

Gehört zu: Das Sonnensystem
Siehe auch: Welche Objekte, Liste meiner Fotos
Benutzt: Fotos von Google Drive

Stand:  01.05.2023

Beobachtungsobjekt Kometen

Unter allen Beobachtungsobjekten ist ein Komet, wenn er schön eindrucksvoll sein soll, schwer vorherzusagen.

Historisch hatten wir einige “große” Kometen: an die ich mich “erinnere”:

  • Komet Arend-Roland  C/1956 R1
  • Komet West  C/1975 V1
  • Komet Hale-Bopp C/1995 O1

Ich persönlich habe nur wenige persönliche Beobachtungen geschafft.

Historie meiner Kometenbeobachtungen

Ich habe in meiner Jugend mal den Kometen Burnham 1959k (C/1959 Y1) von Bremen aus fotografiert. Das Foto ist aber verschollen. Der Komet stand damals im UMi, glaube ich. Wir hatten länger belichtet und per Hand auf den Kometen nachgeführt. Die Sterne wurden dann kleine Striche.

Später am 24. März 2013 habe ich dann mal den Versuch gemacht, einen Kometen über der Hamburger Aussenalster zu fotografieren. Das müsste C/2011 L4 (Panstarrs) gewesen sein. Da war ich noch ganz am Anfang meiner wiederaufgenommenen amateurastronomischen Bemühungen und hatte keine Ahnung, wie ich ein nicht mit blossem Auge sichtbares Objekt fotografieren sollte.

Am 17. Jan 2016 habe ich dann einen weiteren Versuch gemacht, einen Kometen zu fotografieren.  Das war der Komet Catalina C/2013 (von meiner Terrasse in Eimsbüttel).

Für das Jahre 2017 hatte ich mir vorgenommen, irgendeinen Kometen mal endlich “systematisch” abzulichten. Die Wetterbedingungen und die persönliche Energie führten dazu, dass es fast zu spät wurde im ersten Halbjahr 2017. Ein Kollege zeigte mir am 21. Mai 2017 sein gelungenes Foto von C/2015 V2 (Johnson), was mich erneut motivierte, es auch einmal zu probieren.

Dann, im Sommer 2020, war es endlich so weit: Ein “richtiger” Komet (soll heissen mit Schweif) war knapp am aufgehellten Nordhorizont zu sehen: C/2020 F3 (Neowise).

Aktuelle Kometenbeobachtungen

C/2022 E3 (ZTF)

Anfang 2023 war ein kleiner Komet zu beobachten.

Es gibt viele Websites, die die Koordinaten des Kometen zeigen. Eine davon ist:

https://theskylive.com/where-is-c2022e3

Da es in Hamburg kalt ist und das Wetter auch nicht astro-freundlich ist, versuche ich es mal über iTelescope.net.

Damit gelang mit am 13.02.2023 folgendes Beweisfoto von Utah aus (T2 TOA150, QHY268C, 9x60sec).

Abbildung 1: Komet C/2022 E3 (ZTF) (Google Drive: 20230213_Utah_C2022E3_stacked_4.jpg)


Komet C/2022 E3 (ZTF)

C/2020 F3 (Neowise)

Am 11. Juli 2020 konnte ich den Kometen Neowise vom Fußballplatz in Eimsbüttel beobachten und fotografieren.
Die nautische Dämmerung endet um 23:53 Uhr und beginnt wieder um 03:01 Uhr

  • Ort: Fußballplatz, Hamburg Eimsbüttel
  • Zeit: 11.7.2020  02:07 Uhr
  • Kamera: Canon EOS 600Da mit Olympus E.ZUIKO 135mm
  • Belichtungszeit 11 x 4 Sekunden ISO 800, Blende 3,5
  • Fotostativ Sirui ET-1240

Abbildung 1: Das Ergebnis von der Südecke des Fußballplatzes nach Nord-Nord-Ost (Google Drive: DK_20200711_0067_beschriftet.jpg)


Komet Neowise C/2020E3

C/2015 V2 (Johnson)

Am 18. Juni 2017 war es dann soweit. Die Wettervorhersage prognostizierte eine sternklare Nacht. Allerdings hatten wir hier in Hamburg schon die “weißen Nächte”; d.h. es wurde in der Nacht nicht richtig dunkel. Die nautische Dämmerung (-12°) sollte um 00:22 Uhr enden, aber die astronomische Dämmerung  (-18°) sollte erst wieder am 30. Juli enden und dann erst eine wirklich dunkle Nacht bescheren. So lange wollte ich aber nicht warten.

Beobachtungsplanung C/2015 V2 (Johnson)

Die Beobachtungsplanung mit Stellarium ergab folgendes:

  • Ort: Handeloh   53° 14′ 06,4″ N, 09° 49′ 46,6″ E
  • Zeit: 18.6.2017 ab 22:00 Uhr
    • Sonne: Nautische Dämmerung   (h = -12° 14′)
    • Mond:  h = -18°,  Phase= 0,34 abnehmend
    • Komet: h = +30°,  mag = 6,80
  • Montierung: SmartEQ Pro  mit Stromversorgung
  • Kamera: Sony NEX-5R, IR-Fernauslöser, mit Objektiv Takumar 135mm FoV 6°x9°
  • Computer: Windows-Notebook, iPad, iPhone
  • Koordinaten des Kometen (für Goto):    14:19:42, +02:53:47     (sagte Stellarium am 17.6.2017)

Beobachtungsprotokoll

  • Montierung aufgestellt, mit Wasserwaage nivelliert.
  • Einnordung mit QHY PoleMaster   (30″ genau)
  • Fokussierung Kamera
  • 1-Star-Alignment auf Arkturus
  • Goto Komet   (Abweichung 10′)
  • Probefoto: ISO 3200, 30 Sekunden, f/3.5:   zu hell
  • Himmelshelligkeit  SQM-L  20,1 mag/arcsec²
  • Belichtungsserie: 40 x 15 Sekunden – Komet als schwacher Lichtfleck in der Mitte erahnbar
  • Dunkelbilder: 10 x 15 Sekunden

Bildbearbeitung

  • Plate Solving mit ASPS: Positionierungsgenauigkeit: 10′,  Dokumentation in Excel
  • Stacking: DSS Ergebnis als FITS speichern
    • Die Lightframes: 012277-01244 hatten einen Score von um die 800, während die 01245-1265 eine Score von mehr als 3000 haben.
  • Fitswork: Stacking-Ränder beschneiden, Vignettierung entfernen, Himmelshintergrund neutrale Farbe, speichern als 16-Bit-TIFF
  • Gimp:  Stretchen
  • Flats: gleiche Blende, am besten gleich nach den Lights wegen der aktuellen Lage der Staubkörner,… gleiches ISO, T-Shirt vor Lichtquelle (z.B. Notebook-Display)

Abblidung 2: Der Komet C/2015 V2 (Johnson) Google Drive: DK_20170618_01227-01265_5.jpg)


Komet C/2015 V2 (Johnson)

C/2013 US10 (Catalina)

Am 18. und 19. Jan 2016 machte ich einen weiteren Versuch:

Der Komet sollte 5,2 mag hell sein und zwischen Zeta UMa (Mizar) und Alpha Dra stehen.

  • Ort: Hamburg, Terrasse Eimsbüttel
  • Zeit: 18./19.1.2016
  • Kamera: Sony NEX-5R
  • Objektiv: Brennweite: 50 mm
  • Blende: f/2,8
  • Belichtungszeit: 30 sec
  • ISO: 400

Ergebnis: leider ist auf den Fotos kein Komet zu sehen

C/2011 L4 (Panstarrs)

Am 24. März 2013 macht ich einen ersten Versuch.

  • Ort: Hamburg, Aussenalster Ostufer
  • Zeit: 24.3.2013 19:00 Uhr
  • Kamera: Panasonic Lumix DMC-FZ28
  • Objektiv: Zoom Leica DC VARIO-ELMARIT Brennweite: 4,8 mm
  • Blende: f/2,8
  • Belichtungszeit: 15 sec
  • ISO: 100

Auf diesem Foto Richtung Westen über die Außenalster ist der Komet schwach in der Dämmerung zu sehen.

Abbildung 3: Komet C/2011 L4 (Panstarrs) (Google Drive: DK_20130324_Komet_1140624b.jpg)


Komet C/2011 L4 (Panstarrs)