Astrofotografie: Die Software SiriL

Gehört zu: Astrofotografie, Stacking
Siehe auch: Deep Sky Stacker, PixInsight

Astrofotografie mit der kostenlosen Software SiriL

SiriL ist eine kostenlose Software mit dem Schwerpunkt Stacking, kann aber noch einiges anderes mehr…

Aufmerksam geworden bin ich auf SiriL durch das unten angegebene YouTube-Video von Frank Sackenheim im März 2020. Dann hat Cuiv “The Lazy Geek” aus Tokio im August 2020 auch das Thema SiriL aufgegriffen. Deswegen mache ich jetzt einen zweiten Versuch, SiriL zu verstehen…

Als Alternative zum traditionellen Deep Sky Stacker ist das modernere SiriL vielleicht ganz interessant. Auch als kostenlose Alternative zu PixInsight kann SiriL mit Fotometrischer Farbkalibrierung und Background Extraction punkten.

Ein Youtube-Tutorial von Frank Sackenheim: https://www.youtube.com/watch?v=qMD2QQUtxYs
Das Youtube-Video von Cuiv “The Lazy Geek”: https://youtu.be/dEX9KbbzALc

Vorteile von SiriL

  • kostenlos
  • Für Windows und Linux
  • Stacking mit vielen manuellen Einflussmöglichkeiten, aber auch “vollautomatisch” per Skript
  • Nach dem Stacken: Bildnachbearbeitung: Zuschneiden
  • Nach dem Stacken: Bildnachbearbeitung: Background Extraction
  • Nach dem Stacken: Bildnachbearbeitung: Green Noise Reduction
  • Nach dem Stacken: Bildnachbearbeitung: Color Calibration (auch photometrisch)
  • Nach dem Stacken: Bildnachbearbeitung: Color Saturation
  • Nach dem Stacken: Bildnachbearbeitung: Histogram Transformation

Installation und Konfiguration

Software Download: https://www.siril.org/download/#Windows

Aktuelle Version:  Beta-Version: 0.99.6 (23. September 2020). Diese Beta-Version hat ein komplett verändertes GUI – deshlab helfen fast alle Tutorials im Moment kaum noch.

Die Konfigurationsdatei ist: c:\users\<name>\AppData\Local\siril\siril.config

In dieser Config-Datei speichert SiriL auch den Namen des letzten Working Directory, was man hier oder später auf der SiriL-Komandozeile mit dem Befehl “cd” ändern kann.

Einstellen des “Themes“:  Edit -> Einstellungen (Preferences) -> Verschiedenes (User Interface) -> Aussehen (Look and Feel): Dort können wir z.B. das “Dark Theme” auswählen.

Auch die Sprache können wir hier einstellen. Deutsch mögen viele da gern, aber dann muss man mit zum Teil komischen Übersetzungen leben und Tipps und Tricks aus der SiriL-Community sind mit “Englisch” meist besser zu verstehen…

Erste Schritte mit SiriL

Generell geschieht das Bearbeiten unserer Bilder päckchenweise. Diese “Päckchen” heißen bei SiriL “Sequences” und müssen einen Sequence-Namen bekommen. Als erstes müssen in SiriL unsere Bild-Dateien in das FITS-Format umgewandelt werden.

Beispiel Nummer 1:  Farb-Kamera (OSC) mit Lights und Darks – ohne Flats und ohne Biases

Damit ich selber mal lerne, wie das mit dieser für mich neuen Software funktioniert, wende ich das was Frank in seinem Tutorial zeigt, parallel auf einen eigenen Fall an. Ich habe gerade kürzlich eine Aufnahme mit 60 Lights und 30 Darks (keine Flats und keine Biases) gemacht.

Arbeitsverzeichnis einstellen

Einstellen des Arbeits-Ordners (Arbeitsverzeichnis, Working Directory).  Wenn man später mit Scripts arbeiten will, müssen dort die Unter-Ordner: Biases, Lights, Darks, Flats angelegt sein
In der Beta-Version (0.99.6)  von SiriL mache ich das unten in der sog. Kommandozeite mit dem Befehl “cd”.

Dark-Frames in eine Sequenz umwandeln

Zuerst müssen die Dark-Frames geladen und umgewandelt werden und einen Sequenz-Namen bekommen. Als Sequenz-Namen nehmen wir “Pacman_Darks”.
Auch wenn die Dateien schon im richtigen Format (FITS) vorhanden sind (weil meine ASI294MC Pro sie als FITs erstellt hat), muss diese “Umwandlung” in SiriL erfolgen, weil SiriL dann eine SEQ-Datei benötigt. Da die Dateien schon im (für SiriL) richtigen Format sind, werden sie lediglich kopiert.

Man kann beim “Umwandeln” auch “Symbolic Link” anhaken, dann werden die Dateien nicht echt kopiert, sondern es werden SymLinks erstellt. SymLinks funktionieren aber nur, wenn in Windows der “Developer Mode” eingestellt ist…

  • Input: Meine original Dark Frames
  • Reiter: “Umrechnen”   (Convert)
  • Auf das Symbol “+” klicken und dann die gewünschten Dateien an ihrem Platz aussuchen (bei mir: P:\Alben\Album_Astronomie\20200920_Bundesstrasse_Pacman\Darks) –> Schaltfläche “Hinzufügen”
  • Namen für die Sequenz angeben: “Pacman_Darks”
  • Schaltfläche “Umwandeln” klicken  (Kästchen Symbolischer Link, Debayern nicht anhaken)
  • Output: Sequence Pacman_Darks.seq

Die Ergebnisse einer solchen “Umwandlung” (auch “Konvertieren” genannt) werden oben im Arbeitsordner abgelegt. Zum Beispiel werden meine Darks in Arbeitsordner unter den Dateinamen  Pacman_Darks_00001.fit, Pacman_Darks_00002.fit etc.  kopiert (wobei “Pacman_Darks” der Sequenzname war) und es wird eine SEQ-Datei namens “Pacman_Darks.seq” im Arbeitsordner angelegt.

Die neu erstellte Sequenz wird von SiriL automatisch als “aktuelle Arbeits-Sequenz” geladen.

Master Dark erstellen

Ich mache dann aus diesen Darks ein sog. Master-Dark.
Das geht über den Reiter “Stacking” mit folgenden Einstellungen (wobei vom vorigen Schritt schon die richtige Sequenz ausgewählt bleibt):

  • Input: Sequence Sequence Pacman_Darks.seq     (sollte schon die aktuelle Arbeits-Sequenz sein)
  • Reiter “Stacking”
  • Stacking-Methode: Median-Stacking
  • Normalisierung: Keine Normalisierung
  • Schaltfläche: “Starte Stacking”
  • Output: Das Ergebnis ist die Datei Pacman_Darks_stacked.fit im Arbeitsordner

Light Frames in eine Sequenz umwandeln

Dann müssen die Light-Frames geladen und umgewandelt werden und einen Sequenz-Namen bekommen. Als Sequenz-Namen nehmen wir “Pacman_Lights”

  • Input: Meine original Light Frames
  • Reiter: “Umwandeln” (Convert)
  • Auf das Symbol “+” klicken und dann die gewünschten Dateien an ihrem Platz aussuchen (bei mir: P:\Alben\Album_Astronomie\20200920_Bundesstrasse_Pacman\Lights) –> Schaltfläche “Hinzufügen”
  • Namen für die Sequenz angeben: “Pacman_Lights”
  • Schaltfläche “Umwandeln” klicken  (Kästchen Symbolischer Link, Debayern nicht anhaken)
  • Output: Sequence Pacman_Lights.seq

Die “umgewandeten” Lights stehen nun im Arbeitsordner unter den Dateinamen Pacman_Lights_00001.fit, Pacman_Lights_00002.fit,…

Die Ergebnisse einer solchen “Umwandlung” (auch “Konvertieren” genannt) werden oben im Arbeitsordner abgelegt. Zum Beispiel werden meine Lights in Arbeitsordner unter den Dateinamen  Pacman_Lights_00001.fit, Pacman_Lights_00002.fit etc.  kopiert (wobei “Pacman_Lights” der Sequenzname war) und es wird eine SEQ-Datei namens “Pacman_Lights.seq” im Arbeitsordner angelegt.

Die neu erstellte Sequenz wird von SiriL automatisch als “aktuelle Arbeits-Sequenz” geladen.

Master Dark von den Light Frames abziehen

Nun folgt das “Pre Processing” der Lights: Es wird das Master Dark abgezogen, wir haben keine Flats und auch keine Offsets/Biases…

  • Input: Sequence Pacman_Lights.seq
  • Reiter “Pre Processing”:
  • Hier auswählen: Offset benutzen: Nein
  • Hier auswählen: Dark-Frame benutzen: Ja   und den Namen eintippen: Pacman_Darks_stacked.fit  (sonst erscheint eine Meldung: “master.dark.fit.[Datei-Erweiterung]” nicht gefunden. / KEINE Dark-Frame-Benutzung: kann Datei nicht öffnen)
  • Hier auswählen: Flat-Fame benutzen: Nein
  • Ausgabe-Präfix: pp_
  • Schaltfläche: “Starte Pre-Processing”
  • Output: Sequence pp_Pacman_Lights.seq

Die pre-prozessierten Lights stehen nun im Arbeitsordner unter den Dateinamen: pp_Pacman_Lights_00001.fit, pp_Pacman_Lights_00002.fit,…  (wobei pp_ ja der Präfix der Ausgabe-Sequenz ist).

Es wird eine SEQ-Datei namens “pp_Pacman_Lights.seq” im Arbeitsordner angelegt. Die neue Sequenz pp_Pacman_Lights.seq wird geladen.

De-Bayering der Light Frames

Das Debayering darf nicht zu früh im Workflow erfolgen. Unmittelbar vor dem Registrieren ist gut.

Vorher sollten wir noch einen Blick auf die Einstellungen für das De-Bayering werfen, welche man unter dem “Hamburger Menü” bei “Einstellungen” (Preferences) findet. Dort klicke ich “FIT/SER debayer” an…

Das De-Bayering wird manchmal auch “De-Mosacing” genannt, weil das Bayer-Pattern z.B. RGGB auch gerne Mosaik genannt wird.

Also  erfolgt das “Debayering” der Lights jetzt. In Siril steht die Funktion “Debayering” leider nur beim Reiter “Umwandeln (Convert)” zur Verfügung. Deshalb geht das so:

  • Input: Die Light-Frames von denen das Master-Dark bereits abgezogen wurde
  • Reiter: Umwandeln
  • Laden der Dateien: pp_Pacman_Lights_00001.fit, pp_Pacman_Lights_00002.fit,…,  –> Schaltfläche “Hinzufügen”
  • Sequenz-Namen vergeben: “db_pp_Pacman_Lights”
  • Schaltfläche “Umwandeln” klicken – Dabei das Häckchen bei Debayering setzen
  • Output: Sequence db_pp_Pacman_Light

Die “be-bayerten” Lights stehen nun als RGB-Dateien im Arbeitsordner unter den Dateinamen db_pp_Pacman_Lights_00001.fit, db_pp_Pacman_Lights_00002.fit,…

Es wird eine SEQ-Datei namens “db_pp_Pacman_Lights.seq” im Arbeitsordner angelegt. Die neue Sequenz db_pp_Pacman_Lights.seq wird geladen.

Registrieren der Light Frames

Das Registrieren legt alle Einzelbilder passgenau übereinander. Dazu wird eines der Bilder als “Referenzbild” genommen und aus allen Bildern die Sterne extrahiert, welche dann mit denen im Referenzbild verglichen werden.

Als Referenzbild wird standardmäßig das erste Bild der Sequenz genommen, es sei denn, man bestimmt in der “Frame List” der Sequenz ein anderes als Referenzbild.

Das Registriren erfolgt im Einzelnen so:

  • Input: Sequence db_pp_Pacman_Lights.seq
  • Reiter “Registrieren”
  • Registrieren alle Bilder der Sequenz
  • Registrierungsmethode: “Allgemeine Sternausrichtung (Deep Sky)”
  • Registrierungs-Layer: Grün
  • Praefix: r_
  • Algorithmus: bikubisch
  • Schaltfläche:  “Führe Registrierung aus”
  • Output: Sequence r_db_pp_Pacman_Lights.seq

Die registrierten Bilder stehen nun im Arbeitsordner unter den Dateinamen: r_db_pp_Pacman_Lights_00001.fit, r_db_pp_Pacman_Lights_00002.fit,…

Es wird eine SEQ-Datei namens “r_db_pp_Pacman_Lights.seq” im Arbeitsordner angelegt. Die neue Sequenz r_db_pp_Pacman_Lights.seq wird geladen.

Stacken der Light Frames

Die registrierten Light Frames werden nun “gestapelt” englisch: stacked mit folgenden Einstellungen:

  • Input: Sequence r_db_pp_Pacman_Lights.seq
  • Reiter: Stacking
  • Stacking-Methode: Durchschnittswert-Stacking mit Ausschleusung
  • Normalisierung: Additiv mit Skalierung
  • Ausschleusung: Wisorized Sigma Clipping
  • Save in:  r_db_pp_Pacman_Lights_stacked.fit
  • Schaltfläche: “Starte Stacking”
  • Output: Ergebnisdatei r_db_pp_Pacman_Lights_stacked.fit im Arbeitsordner (diese wird im SiriL-Fenster gleich angezeigt)

So sieht das in SiriL dann aus:

Siril-Stacking-Ergebnis

 

Bildnachbearbeitung: Zuschneiden

Durch das Stacken (speziell wenn man beim Fotografieren Dithering eingestellt hat) gibt es meist schmale dunkle Ränder, die wir jetzt abschneiden wollen.

  • Input: Die aktive Bilddatei  r_db_pp_Pacman_Lights_stacked.fit
  • MIt der Maus auf einem Graubild (Red, Green, Blue) ein Rechteck ziehen (wie Markieren),
  • Klick mit der rechten Maustaste und auf “Zuschneiden” (“Crop”) klicken
  • das zugeschnittene Bild wird von Siril automatisch gespeichert und im Fenster neu angezeigt
  • Output: Dieselbe Bilddatei r_db_pp_Pacman_Lights_stacked.fit  (Achtung: destruktiv!!!)

Bildnachbearbeitung: Hintergrund-Extraktion

Ähnlich wie in PixInsight kann auch SiriL den Bildhintergrund ermitteln und dann abziehen. Das macht man gerne um z.B. Gradienten zu entfernen.

  • Input: Die aktive Bilddatei  r_db_pp_Pacman_Lights_stacked.fit
  • Menüleiste -> Bildbearbeitung (Image Processing) -> Hintergrund-Extraktion
  • Samples für den Hintergrund manuell setzen  (dahin wo kein Nutzsignal ist)
  • Korrektur: Subtraktion
  • Schaltfläche: Anwenden (Apply)
  • Schaltfläche: Schließen (Close)
  • Output: Dieselbe Bilddatei    (Achtung: destruktiv!!!)

Bildnachbearbeitung: Farb-Kalibrierung

Um schöne Sternfarben zu bekommen sollte man unbedingt eine Farb-Kalibrierung machen. SiriL bietet dafür zwei Möglichkeiten an: “Farbkalibrierung” und “Photometrische Farbkalibrierung”.

Bei der Photometrischen Farbkalibrierung wird das Bild “ge-platesolved” (astrometrische Lösung) und dann anhand eines Sternkatalogs die sog. B-V-Indices der Sterne benutzt.

  • Input: Die aktive Bilddatei
  • Menüleiste -> Bildbearbeitung (Image Processing) -> Farb-Kalibrierung -(Color Calibration) > Photometrische Farb-Kalibrierung (Photometric Color Calibration)
  • Image Parameters: Eingabe NGC281 gefundene Koordinaten aus einem Katalog übernehmen
  • Brennweite (Focal distance): 510 mm
  • Pixel Größe (Pixel Size): 4,6 µ
  • Photometrischer Sternkatalog: NOMAD oder APASS
  • Sternerkennung: Automatisch
  • Hintergrund-Referenz: automatic detection
  • Normalisierung ja Kanal: On Lowest
  • Schaltfläche: OK
  • Schaltfläche: Close
  • Output: Dieselbe Bilddatei    (Achtung: destruktiv!!!)

Bildnachbearbeitung: Grünrauschen entfernen

Bei DSLRs und auch bei Astrokameras mit Farb-Sensor (“OSC”) haben wir oft eine Überbetonung der grünen Farbe.

  • Input: Die aktive Bilddatei
  • Menüleiste -> Bildbearbeitung (Image Processing) -> Grün-Rauschen entfernen (Remove Green Noise)
  • Protection Method: Average Neutral
  • Amount:  1.00
  • Schaltfläche: Apply
  • Schaltfläche: Close
  • Output: Dieselbe Bilddatei    (Achtung: destruktiv!!!)

Bildnachbearbeitung: Farbsättigung anheben

Vor dem “Stretchen” soll man die Farbsättigung anheben.

  • Input: Die aktive Bilddatei
  • Menüleiste -> Bildbearbeitung (Image Processing) -> Farbsättigung (Color Saturation)…
  • Hue: Global
  • Amount: + 0.66
  • Schaltfläche: Apply
  • Output: Dieselbe Bilddatei    (Achtung: destruktiv!!!)

Bildnachbearbeitung: Histogramm-Transformation

Menüleiste -> Bildbearbeitung -> Histogramm Transformation

Bildnachbearbeitung: Speichern

Menüleiste -> Datei -> Speichern als…

Astrofotografie: Welche Probleme kann ich mit Stacking lösen?

Gehört zu: Bildbearbeitung, Stacking
Siehe auch: Belichtungszeit, Mein Workflow, Flat Frames

Was ist Stacking, was ist Calibration?

Für meine Astrofotografien will ich sehr häufig lange Belichtungszeiten haben; z.B. 2 oder auch 4 Stunden. Warum lange Belichtungszeiten häufig erforderlich sind, ist eine andere Geschichte. Siehe dazu: Belichtungszeiten.

Stacking bedeutet, nun dass man statt eines Fotos mit dieser langen Belichtungszeit (beispielsweise 1 Foto mit 240 Minuten), alternativ mehrere Fotos mit kürzerer Belichtungszeit macht, die in der Summe wieder der langen Belichtungszeit entsprechen (beispielsweise 120 Fotos mit 2 Minuten). Diese vielen “Einzelfotos” (sog. Subs oder Sub-Frames) werden dann per Software wieder zu einem einzigen Foto, dem Summenbild, zusammen “gestapelt” (stacking).

Beim Stacken richtet die Stacking-Software die Einzelbilder so aus, dass alles exakt übereinander passt – das wird von den Spezialisten “Registrieren” genannt. Stacking-Software unterstützt verschiedene Stacking-Methoden:

  • Mittelwert
  • Summe
  • Median
  • Sigma-Clipping (Outlier Rejection)
  • Maximum
  • etc.

“Mittelwert” und “Summe” führen zu identischen Ergebnissen, wenn die Helligkeitswerte genügend genau gerechnet werden (z.B. mit 32 Bit).

Was ist der Vorteil dieses “Stackings” bzw. welche Probleme, die bei langen Belichtungszeiten auftreten können, vermeidet man mit Stacking?

Software zum “Stacking” ist in aller Regel verbunden mit der sog. Kalibration (Calibration); d.h. bevor man “stackt” werden noch elektronische Korrekturen an den Bildern vorgenommen, wie z.B. Subtraktion bzw. Division mit Dark Frames, Flat Frames, Offset-Frames (s.u.).

Welche Probleme hat der Astrofotograf?

Bei der Astrofotografie gibt es eine Reihe von Problemen, die man durch verschiedene Techniken beheben bzw. reduzieren möchte.

  1. Stör-Objekte (z.B. Flugzeuge) im Bild
  2. Hot Pixel  -> Dithern, Dark-Abzug
  3. Vignettierung, Donuts, Amp Glow -> Flats
  4. Himmelshintergrund zu hell  (Lichtverschmutzung)
  5. Schlechte Nachführung
  6. Beobachtungsobjekt zu dunkel auf dem Foto
  7. Rauschen, Farbrauschen (schlechtes SNR) -> Kühlung, lange Gesamtbelichtungszeit (dann Stacken)
  8. Geringer Kontrast -> Stretchen
  9. Geringe Dynamik -> Histogramm analysieren, gute Belichtungszeit wählen dann Einzelbilder aufnehmen und Stacken
  10. Helle Bildteile “ausgebrannt”
  11. Luftunruhe (“Seeing”)

(1) Problem: Stör-Objekte z.B. Flugzeuge, Erdsatelliten etc.

Wenn wir irgendwelche “Störungen” im Bild haben z.B. Flugzeuge, Erdsatelliten, Verwacklung, Fremdlicht etc., ist das ganze (langbelichtete) Bild unbrauchbar.

Lösung: Viele Einzelbilder mit kürzerer Belichtungszeit, schlechte Einzelbilder aussortieren, gute Einzelbilder Stacken

(2) Problem: Hot Pixel

Fehlerhafte Pixel im Sensor unserer Kamera verfälschen unser Astrofoto.

Lösung A: Dunkelbild (“Dark”) machen und dieses vom Astrofoto subtrahieren
Lösung B: Dithering und Sigma Clipping (outlier rejection)

Dies alleine hat mit “Stacking” eigentlich nichts zu tun. Aber…

(3) Problem: Vignettierung

Über die gesamte Fläche unseres Fotos fällt die Helligkeit zu den Rändern etwas ab, möglicherweise sind auch noch Staubteilchen auf dem Sensor, die dunkle Flecken (sog. Dognuts) im Bild erzeugen.

Lösung: Flat Frame machen und das Astrofoto durch dieses dividieren

Dies alleine hat mit “Stacking” eigentlich nichts zu tun. Aber…

(4) Problem: Donuts

Möglicherweise sind dunkle runde Flecken (sog. Donuts) im Bild durch Staubteilchen auf dem Sensor…

Lösung A: Flat Frame machen und das Astrofoto durch dieses dividieren
Lösung B: Staubputzen…

Dies alleine hat mit “Stacking” eigentlich nichts zu tun. Aber…

(5) Problem: Amp Glow

Am Bildrand strahlenförmige Aufhellungen. Die Ursache sind interne Kamerateile in der Nähe des Sensors, die zu warm werden…

Lösung : Dark Frames machen und das Master Dark von den Light Frames abziehen

(6) Problem: Himmelshintergrund zu hell

Je nach Beobachtungsort haben wir am Himmel mehr oder weniger Himmelshelligkeit, z.B. durch “Lichtverschmutzung“. Je länger ich belichte, desto heller wird der Himmelhintergrund auf meinem Bild.

Lösung: Mehrere Einzelbilder mit kürzerer Belichtungszeit, Einzelbilder Stacken zu einem Summenbild.

Wir können also ausprobieren wie lange wir maximal belichten können, ohne dass die Himmelhelligkeit das Bild überstrahlt – dazu ist ein Blick auf das Histogramm hilfreich. So ermitteln wir die Begrenzung der Belichtungszeit durch die Helligkeit des Himmelshintergrunds. Wir machen dann soviele Einzelbilder, bis das Summenbild die gewünschte “effektive” Belichtungszeit hat.

(7) Problem: Schlechte Nachführung

Ohne irgend eine Nachführung kann man ja nur sehr kurz belichten, bevor die Sterne zu Strichen werden, was man meistens ja nicht will.

Wenn man auf irgendeine Art und Weise nachführt (“tracking”, “guiding”), ist die Frage nach der Qualität dieser Nachführung; schlussendlich stellt sich die Frage: “Wie lange kann ich maximal belichten und die Sterne bleiben noch punktförmig?”

Lösung: Mehrere Einzelbilder mit kürzerer Belichtungszeit, Einzelbilder Stacken zu einem Summenbild.

Die Qualität der Nachführung begrenzt also die Belichtungszeit nach oben.
Beispielsweise kann ich mit meiner Astro-Gerätschaft max. 5 Minuten belichten. Wenn ich eine Gesamtbelichtungszeit von 240 Minuten machen möchte, mache ich also 48 Fotos mit je 5 Minuten Belichtungszeit.

(8) Problem: Beobachtungsobjekte zu dunkel (kaum sichtbar) auf dem Foto

Auf dem Foto ist unser Beobachtungsobjekt nicht zu sehen oder nur sehr schwach.

Photonen aus unserem Gesichtsfeld fallen auf die Pixel unseres Sensors und werden dort in Elektronen gewandelt. Diese elektrische Ladung wird dann aus den Pixeln ausgelesen evtl. verstärkt (ISO, Gain) und durch den ADC (Analog Digital Converter) in ein digitales Signal umgesetzt. Diese digitalen Helligkeitswerte pro Pixel machen dann unser Foto aus.

Bei einer längeren Belichtungszeit fallen mehr Photonen auf ein Pixel, es werden mehr Elektronen gesammelt und es gibt damit höhere digitale Helligkeitswerte im Foto.

Lösung: längere Belichtungszeit, ggf mit Stacking

(9) Problem: Rauschen (schlechtes SNR)

Wir haben auf unserem Foto ein “Hintergrundrauschen” in dem feine Einzelheiten unseres Beobachtungsobjekts (“das Nutz-Signal”) untergehen.
Das Rauschen kommt aus mehreren Quellen:

  • Photonen-Rauschen (Schrotrauschen)
  • Sensor-Rauschen (Dunkelstrom)
  • Ausleserauschen

Photonen-Rauschen: Auch Schrotrauschen oder Schottky-Rauschen genannt. Unser Nutzsignal vom Himmelsobjekt ist mit einem Rauschen verbunden. Die Photonen vom Himmelsobjekt kommen nicht gleichmäßig auf dem Pixel an (Anzahl Photonen pro Zeiteinheit), so ähnlich wie Regentropfen pro Quadratmeter und Sekunde. Diese Photonen-Rate ist “poisson-verteilt“, denn die mittlere Rate der Ereignisse (Photonen Ankünfte) ist konstant..

Poisson-Verteilung (Copyright Wikipedia)

Die Standardabweichung einer Poisson-Verteilung mit einem Mittelwert von μ beträgt:

\(\sigma = \sqrt{\mu} \)

Das Nutzsignal ist die mittlere Ankunftsrate der Photonen μ – es ist ist proportional zur Belichtungszeit.
Das Störsignal ist proportional zu σ, also zu Wurzel aus μ; d.h. proportional zu Wurzel aus Belichtungszeit.

In Formeln ist das Signal-Rausch-Verhältnis (SNR = Signal Noise Ratio) also:

\(SNR =  \Large\frac{\mu}{\sigma} \large = \sqrt{\mu} \)

Das Signal-Rausch-Verhältnis ist also proportional zur Wurzel aus der Belichtungszeit. Beispielsweise verdoppelt sich das SNR bei einer Vervierfachung der Belichtungszeit.

In Dezibel gemessen ist das:

\(SNR = 10 \lg{\sqrt{\mu}} =5 \lg{\mu}\)   [Dezibel]

Also Lösung: Lange belichten und ggf. Stacken

Sensor-Rauschen: Elektronen in den Pixeln des Sensors werden nicht nur von den Photonen unseres “Nutzsignals” erzeugt, sondern auch durch Wärme im Sensor und bilden so ein “Störsignal”. Faustregel: Eine Kühlung um 7° halbiert dieses “thermische” Rauschen.

Dieses thermische Sensor-Rauschen verteilt sich aber zufällig auf die einzelnen Pixel des Sensors.
Dieses thermische Sensor-Rauschen ist tatsächlich zufällig und mittelt sich mit längeren Belichtungszeiten aus.
Also Lösung: Kühlen und länger belichten ggf. Stacken

Ausleserauschen: Der Ausleseverstärker soll aus der elektischen Ladung (Elektronen) eines jeden Pixels eine proportionale Spannung erzeugen, die dem ADC zugeführt wird. dabei entsteht auch ein gewisses Rauschen.

Dieses Ausleserauschen ist bei modernen digitalen Kameras zwar sehr gering, aber addiert sich mit jedem Einzelfoto, das ich mache.

Also Lösung: So belichten, dass das Ausleserauschen relativ zum sonstigen Rauschen vernachlässigt werden kann. Üblich ist etwa Ausleserauschen = 10% vom Himmelshintergrund. Man nennt das “hintergrundlimitiert”.

(10) Geringer Kontrast

Lösung: RAW-Format, Stretchen, S-Kurve

(11) Geringe Dynamik

Lösung: RAW-Format, geringeres ISO/Gain

(12) Helle Bildteile “ausgebrannt”

Lösung: HDR und/oder Postprocessing

(13) Luftunruhe “Seeing”

Lösung: Lucky Imaging

(14) …

 

Astrofotografie: Bildbearbeitung: Stacking – Calibration

Gehört zu: Astrofotografie
Siehe auch: Bildbearbeitung , Belichtungszeit, DSS, Probleme Lösen mit Stacking, Mein Aufnahmeverfahren, Astro Pixel Processor

Warum Stacking?

Als Einsteiger in die Astrofotografie möchte ich mit einfachem Equipment Astrofotos machen, auf denen auch lichtschwache Objekte zu sehen sind, um eigene “Pretty Pictures” von eindrucksvollen Objekten zu erzielen, die man mit bloßem Auge gar nicht sehen kann.

Anstelle von langen Belichtungszeiten mit dem Problem der Nachführung, macht man in der modernen Astrofotografie einfach mehrere Fotos vom gleichen Objekt mit kürzerer Belichtungszeit und “addiert” diese. Man nennt das “Stacking”. Wobei es bei der Belichtungszeit immer auf vdie Gesamtzeit (auch Integrationszeit genannt) ankommt. Wenn man z.B. die einzele Aufnahme nur kurz belichtet – sagen wir 30 sec – dann muss man eben 240 solcher Aufnahmen machen, um auf eine Gesamtbelichtungszeit von 2 Stunden zu kommen. Der generelle Tipp ist inder Tat mindestens 2 Stunden zubelichten.

Die Vorteile des Stackings sind:

  • Vermeidung von Nachführungsfehlern (Sterne werden Striche)
  • Unerwünschte Lichtspuren können aussortiert werden (z.B. Flugzeug, Satellit,…)
  • Begrenzung des Effekts der Lichtverschmutzung
  • sonst noch was?  — Signal-Rausch-Verhältnis (SNR) —

Die beliebteste Software zum Stacken ist der Deep Sky Stacker “DSS” und der Astro Pixel Processor “APP”.

Mehr zu den Problemen, die ich mit Stacking lösen kann, in diesem separaten Blog-Artikel.

Beim Stacking sieht man das Ergebnisbild normalerweise erst am nächsten Tag, weil man ja sorgfältig bearbeiten will.

Die Technik des sog. “Live Stacking” liefert die Stacking-Ergebnisse quasi sofort. Das kann sinnvoll sein, wenn man “Besucher” hat, die schnell etwas sehen wollen…

Z.B. die Software SharpCap beherrscht ein solches Live Stacking.

Links

http://lightwatching.de/astrofotografie-mit-der-dslr-teil-2-richtig-stacken/

Welche Software kann Stacking?

Zum Stacking kann man verschiedene Software verwenden:

  • Deep Sky Stacker
  • Sequator   (Windows only)
  • Fitswork   (eingestellt – Windows only)
  • PixInsight
  • MaxIm DL
  • Regim (Dank Java auch für Linux)
  • Siril   (Linux, Windows, MacOS)
  • Theli (Linux, Windows per Virtual Box) (Open Source, https://www.astro.uni-bonn.de/theli/ )
  • u.a.

Welche Kalibrierungs-Frames brauche ich?

Das Wichtigste sind die Flat Frames.

Wenn ich eine Kamera mit Amp Glow habe, sind Dark Frames erforderlich.

Welche Aufnahmen (“Frames”) muss ich machen?

Light Frames

So heissen die “normalen” eigentlichen Aufnahmen (Aufnahmeserie) des Beobachtungsobjekts.

Durch Addition (sog. Stacken) dieser Light Frames möchte man das Signal-Rausch-Verhältnis (SNR) verbessern. Es kommt auf die Gesamt-Belichtungszeit an, je länger diese ist, desto geringer wird das Rauschen im Bild. Da das Bildrauschen stochastisch ist, geht es mit der Quadratwurzel aus der Belichtungszeit zurück.

Dark Frames

Unmittelbar nach der eigentlichen Aufnahmeserie soll man mehrere “Darks” machen.
Man schließt das Objektiv per Deckel oder mit einem dicken schwarzen Tuch und macht bei der gleichen Temperatur wie bei den “Lights” und mit den gleichen Einstellungen für Belichtungszeit und ISO eine Reihe von Dunkelbildern. Dadurch werden Hot Pixel und den Dunkelstrom des Sensors bei der Temperatur aufgenommen. Diese werden später von den Nutzbildern (Lights) subtrahiert.

Mit einer DSLR ist es immer ein Problem, die genau richtige Temperetur der Darks hinzubekommen; mit einer geregelt gekühlten Astro-Kamera, wie z.B. meiner ASI294MC Pro ist das aber kein Problem, denn man kann die Temperatur ja einstellen.

So ein Dunkelbild “Dark Frame” enthält ein Signal (den Dunkelstrom) welches seinerseits wiederum verrauscht ist.
Das Dunkel-Signal könnten wir gleich von unseren Light Frames abziehen, das Dunkelrauschen aber nicht.

Das Rauschen in den Dark Frames minimieren wir, indem wir mehrere (viele) einzele Darks aufnehmen und aus diesen dann ein “Master Dark” mitteln. Das Rauschen im Dunkelbild ist stochastisch und geht mit Quadratwurzel aus der Gesamtbelichtungszeit des Master-Darks zurück.

Flat Frames

Was ist ein “Flat Frame”?

Ein Flat Frame ist eine kurzbelichtete Aufnahme einer völlig gleichmäßig hellen Fläche.

Wofür benötigt man Flat Frames?

Mit Flat Frames werden Vignettierung und Verunreinigungen bzw. Schatten im Strahlengang korrigiert.

Wie fertigt man ein Flat Frame an?

Flat Frames werden von einer gleichmäßig hellen Fläche gemacht. Das Flat Frame sollte dann gleichmäßig weiß sein. Ggf. vorhandene Sensorflecken und ggf. eine Vignettierung (Randabdunkung) machen sich durch dunklere Stellen im Flat bemerkbar. Dieses eigentliche Flat-Signal ist leider wieder mit einem Rauschen behaftet. Um dieses Flat-Rauschen zu minimieren macht man wiederum viele Flat-Frames, die dann zu einem Master-Flat gemittelt werden.

Die Flats enthalten leider wieder ein Bias/Offset-Signal (s.u.). Also muss man vom Master-Flat wiederum ein Master-Bias abziehen.

Jedes Nutzbild (Light Frame) wird dann durch das so erhaltene Flat dividiert; dabei bleibt das Bild unverändert da wo das Flat wirklich weiß ist (Division durch 1) und wird etwas aufgehellt da wo das Flat nicht ganz weiß ist (z.B. Division durch 0,9).

Die Flat Frames soll man natürlich mit der gleichen Kamera und dem gleichen Objektiv machen, mit denen man vorher die Nutzbilder (Light Frames) gemacht hat. Es sollen ja unverändert Sensor-Verschmutzung bzw. Randverdunkelung aufgenommen werden (also auch gleiche Adapterringe, gleiche Taukappe etc.). Auch soll die Kamera nicht zwischendurch geöffnet werden damit die Schmutzteilchen auf dem Sensor sich nicht verschieben.

Die Belichtungszeit für Flats ist zu niedrig, wenn sich Stuktur auf der eigentlich weißen Fläche zeigt. Die Belichtungszeit für Flats ist zu hoch, wenn die vorhandenen Abdunklungen überstrahlt werden und nicht mehr richtig sichtbar sind.

Wie macht man Flat Frames mit APT?

Bias Frames (auch Offset Frames genannt)

Was ist ein “Bias Frame”?
Ein Bias/Offset ist ein Darkframe mit Belichtungszeit Null, wobei bei vielen Kameras die minimalst mögliche Belichtungszeit verwendet werden muß. Registriert wird dann nur das Bias/Offset-Signal von Chip und Kameraelektronik. Dieses Bias/Offset-Signal ist seinerseits wiederum verrauscht.

Wofür benötigen wir Bias Frames?

Es wird häufig gesagt, mit den Bias Frames würde man das Ausleserauschen abziehen. Das ist aber Unsinn, denn ein Rauschen kann man nicht “abziehen”, weil es stochastisch ist. Das Ausleserauschen bekommt man z.B. dadurch in den Griff, dass man es klein (ein Drittel oder weniger) im Verhältnis zum Hintergrundrauschen hält. D.H. man muss “hintergrundbegrenzt” belichten.

Etwas genauer gesagt, haben wir auch hier ein Bias-Signal und eine Rauschen dieses Bias-Signals. Mit einem solchen “Bias Frame” wird der “Offset” korrigiert.

Wenn wir Darks gemacht haben, ist das Bias-Signal auch schon dort mitenthalten. Wir brauchen also kein extra Bias Frame. Wenn wir keine Darks gemacht haben sollten, müssen wir wohl aber ein separates Bias Frame machen.

Wie fertigt man Bias Frames an?
Sie wählen an Ihrer Kamera die kürzest mögliche Belichtungszeit (ob z.B. 1/4000s oder 1/8000s hängt natürlich von Ihrer Kamera ab) und nehmen eine Reihe Aufnahmen mit verschlossenem Objektiv (wie bei den Darkframes) in der Dunkelheit auf.
Wichtig bei den Bias/Offsetframes ist, dass Sie bei gleicher ISO Einstellung wie die Lightframes aufgenommen werden. Die Aussentemperatur ist dabei nicht wichtig.

Der Rat von Frank zum Thema Stacking:

Wichtig! Das Masterdark wird nicht vom Bias befreit!! Das Bias ist im Dark enthalten und wird durch den Dark-Abzug gleich mit abgezogen.
Das Bias vorher abzuziehen macht nur Sinn wenn man das Dark skalieren will.
Auch musst du nicht noch ein Bias vom Light abziehen, alles viel zu umständlich und unnütz.
Einfach das Dark vom Light abziehen und fertig. Das Bias ist nur fürs Flat wichtig!

So sieht Franks Zusammenfassung aus:  https://www.youtube.com/watch?v=rgZ5MTSHClU

Wie werden die Aufnahmen (Frames) richtig “gestackt”?

Wie das mit der Software Deep Sky Stacker (DSS) geht beschreibe ich im separaten Artikel über DSS.