Astrofotografie: Die Kleine Magellansche Wolke (SMC) mit 47 Tuc

Gehört zu: Beobachtungsobjekte
Siehe auch: Galaxien, Namibia, Große Magellansche Wolke
Benutzt: Fotos aus Google Drive, Grafik aus Wikipedia

Stand: 21.12.2022

Eine Reise in den Süden…

Anlässlich meiner touristischen Reisen nach Südafrika, wollte ich ein paar Besonderheiten des südlichen Sternhimmels fotografisch festhalten.

Fotos von der Kleinen Magellanschen Wolke

Am 14.9.2017 auf Kiripotib in Namibia

Da ich nun regelmäßig in Namibia bin, war auch dieses Paradeobjekt des südlichen Sternhimmels auf meiner Liste:

Abbildung 1: Kleine Magellansche Wolke (Google Drive: 20170914_0269-0277_Autosave001_5.jpg)

Was ist die Kleine Magellansche Wolke?

Die Magellanschen Wolken sind zwei irreguläre Zwerggalaxien in nächster Nachbarschaft zur Milchstraße. Die Große Magellansche Wolke (GMW) in rund 163.000 Lichtjahren Entfernung enthält ungefähr 15 Milliarden Sterne, die Kleine Magellansche Wolke (KMW) in rund 209.000 Lichtjahren Entfernung 5 Milliarden Sterne.

Unsere Heimatgalaxie, die Milchstraße, ist eine große Spiral-Galaxie mit einem Durchmesser von ca. 100.000 Lichtjahren und 100 bis 200 Milliarden Sternen.

Die GMW ist relativ hell (0.9 mag) und kann sehr gut mit dem bloßen Auge beobachtet werden (KMW 2.7 mag, Andromedanebel 3.5 mag).

Für einen irdischen Beobachter erstreckt sich die GMW über eine Durchmesser von etwa 6º ; das ist 12 mal der Durchmesser des Vollmonds.

Den Bewohnern der Südhalbkugel waren die beiden Magellanschen Wolken wohl schon seit prähistorischer Zeit durch Beobachtungen mit dem bloßen Auge bekannt, erstmalige schriftliche Erwähnung fanden sie jedoch durch den persischen Astronomen Al Sufi in seinem Buch der Fixsterne im Jahr 964. Der erste Europäer, der die beiden Wolken beschrieb, war Ferdinand Magellan bei seiner Weltumsegelung 1519. Im Fernrohr zeigt sich ihr Charakter als Galaxie, die aus Sernen, Nebeln, Sternhaufen und anderen Objekten zusammengesetzt ist.

Neben den Magellanschen Wolken sind die Canis-Major-Zwerggalaxie (25.000 Lichtjahre entfernt) und Sagitarirus-Zwerggalaxie (70.000 Lichtjahre entfernt) die nächsten Nachbarn der Michstraße. Diese gehören mit insgesamt ca. 27 kleineren Galaxien zur sog. Milchstraßen-Untergruppe der Lokalen Gruppe.
Der etwas entferntere Andromedanebel (2.5 Mio Lichtjahre entfernt) gehört zusammen mit unserer Milchstraße zu den größten Galaxien der Lokalen Gruppe.

Lage der Magellanschen Wolken relativ zur Milchstraße

Abblidung 2: Lage der Magellanschen Wolken relativ zur Milchstraße (Wikipedia: LageDerMagellanschenWolken.jpg)

Copyright: Wikipedia 1921

Abkürzungserklärungen:

GMW – Große Magellansche Wolke
KMW – Kleine Magellansche Wolke
GSP – Galaktischer Südpol
MSI – Erste Wasserstoffverdichtung im Magellanschen Strom
3 30 Doradus
W – Flügel (Wing) der KMW

Der grüne Pfeil deutet die Umlaufrichtung der Magellanschen Wolken um das Milchstraßenzentrum an.

Quelle: Wikipedia

Astronomie: IC 2944 Running Chicken

Gehört zu: Beobachtungsobjekte
Siehe auch: HII-Regionen, Filter, Nebel, Namibia, Meine Astrofotos
Benutzt: Fotos aus Google Drive

Stand: 21.12.2022

IC 2944 der Running-Chicken-Nebel ist ein klassisches Nebel-Objekt für Namibia.

Ein klassisches H-Alpha-Objekt für kleinere Teleskope.

  • Scheinbare Helligkeit von 4,5 mag
  • Scheinbare Ausdehnung von 40′ x 20′
  • IC 2944 ist ein Emissionsnebel und strahlt vorwiegend in H alpha.
  • Entfernung 6500 Lichtjahre.

Bei meinem Aufenthalt in Namibia im August 2019 habe ich endlich ein Foto vom Running Chicken Nebel erstellen können.

Abbildung 1: Running Chicken Nebula (Google Drive: 20190830_2949-2978_RunningChicken_5_beschriftet.jpg)

Diese Fotografie habe ich von Kiripotib, Namibia geschossen. Dabei hat ein Tri-Narrowband-Filter geholfen.

Astronomie: M8 und M20 Lagoon- und Trifid-Nebel

Gehört zu: Beobachtungsobjekte
Siehe auch: HII-Regionen, Filter, Nebel, Namibia, Meine Astrofotos
Benutzt: Fotos aus Google Drive

Stand: 21.12.2022

M8 und M20 (Lagoon-Nebel und Trifid-Nebel) sind zwei nahe beieinander liegende Emissionsnebel im Schützen (Sgr).

Ein klassisches H-Alpha-Objekt für kleinere Teleskope mit einem entsprechenden Gesichtsfeld.

  • Scheinbare Helligkeit von 6,0 und 6,3 mag
  • Scheinbare Ausdehnung von 60′ x 40′ und 28′ x 28′
  • M8 ist ein Emissionsnebel und strahlt vorwiegend in H alpha.
  • Entfernung 9500 Lichtjahre.

Bei meinem ersten Aufenthalt in Namibia im September 2017 habe ich erste Fotos von M8 und M20 erstellen können. Zwei Jahre später 2019 habe ich es dann noch schöner mit einem Tri-Narrowband-Filter gemacht:

Abbildung 1: Lagoon- und Trifid-Nebel mit Tri-Narrowband-Filter (Google Drive: 20190829_2983-3020_M8-M20_3_beschriftet.jpg)

Diese Fotografie habe ich von Kiripotib, Namibia geschossen. Dabei hat ein Tri-Narrowband-Filter geholfen.

Astronomie: NGC 6334 Katzenpfoten-Nebel

Gehört zu: Beobachtungsobjekte
Siehe auch: HII-Regionen, Eta-Carinae-Nebel, Filter, Nebel, Namibia, Meine Astrofotos
Benutzt: Fotos aus Google Drive

Stand: 22.12.2022

NGC 6334 den sog. Katzenpfoten-Nebel ist ein Emissionsnebel im Skorpion.

Er ein klassisches H-Alpha-Objekt für kleinere Teleskope.

  • Scheinbare Helligkeit von ??? mag
  • Scheinbare Ausdehnung von 35′ x 20′
  • NGC 6334 ist ein Emissionsnebel und strahlt vorwiegend in H alpha.
  • Entfernung 5500 Lichtjahre.

Bei meinem ersten Aufenthalt in Namibia im September 2017 habe ich ein erstes Foto von NGC 6334 erstellen können. Zwei Jahre später 2019 habe ich es dann noch schöner mit einem Tri-Narrowband-Filter gemacht:

Abbildung 1: NGC6334 Katzenpfoten-Nebel (Google Drive: 20190829_2867-2926_Katzenpfoten_5_beschriftet.jpg)

Diese Fotografie habe ich von Kiripotib, Namibia geschossen. Dabei hat ein Tri-Narrowband-Filter geholfen.

Astrofotografie: Emissionsnebel

Gehört zu: Welche Objekte
Siehe auch: Galaxien, Sternhaufen, Liste meiner schönsten Astro-Fotos, Scheinbare Helligkeit

Stand: 4.2.2022 (Flächenhelligkeit)

Nebel: Emissionsnebel

Nebel sind ein lohnendes Beobachtungsobjekt in lichtverschmutzen Orten. Als Astro-Anfänger in Hamburg-Eimsbüttel möchte ich mit meiner Ausrüstung Astrofotos von Objekten machen, die trotzdem Eindruck schinden (zumindest bei mir selbst). Als ich mich fragte, welche Objekte ich aus der lichtverschmutzten Großstadt Hamburg heraus mit meinen bescheidenen Mitteln fotografieren könnte, blieb eines als gut möglich übrig: Sterne (also keine Nebel, keine Galaxien).

Als für mich lohnenswerte Beobachtungsobjekte kommen also schöne Sternhaufen und Doppelsterne infrage. Sternhaufen kann ich mit der Digitalkamera (kürzere Brennweiten) gut fotografieren; Doppelsterne werden meist erst im Teleskop mit längerer Brennweite gut getrennt.

Einige “Experten” empfahlen auch den Einsatz von Filtern gegen die Lichtverschmutzung, was sich bei Emissionsnebeln (z.B. Pacman-Nebel s.u.) tatsächlich als hilfreich erwies.

Welche Nebel?

Liste von für meine Ausrüstung interessanten Emissionsnebel

Meine Kriterien: Größer als 10′ und heller als 8,0 mag

Emissionsnebel können sehr groß sein, so ist z.B. der Nordamerikanebel (NGC7000).

Die Helligkeit, die als sog. “Visuelle Helligkeit” angegeben wird, ist immer die Gesamthelligkeit. Bei flächigen Objekten verteilt sich diese Helligkeit auf die Fläche des Objekts. Die Flächenhelligkeit wird in der Astronomie üblicherweise in mag/arcmin² gemessen.

Bei einer Gesamthelligkeit von m (in Magnituden) und einer Fläche von F (in arcmin2) ergibt sich als Flächenhelligkeit:

\( B_{mag} = m  + 2,5 \log{F} \\ \)

Einzelheiten dazu: Scheinbare Helligkeit, Flächenhelligkeit

Siehe auch:  https://de.wikipedia.org/wiki/Fl%C3%A4chenhelligkeit und https://de.wikipedia.org/wiki/Liste_diffuser_Nebel

Tabelle 1: Meine Emissionsnebel

Typ Katalog Name Ausdehnung
Fläche
Visuelle Helligkeit Flächen- Helligkeit [mag/arcmin2] Sternbild Bemerkungen Status
Gas-Nebel M8 Lagunen-Nebel 60′ x 40′ 6,0 mag 14,48 Sgr Namibia. Lagunen-Nebel Foto
Gas-Nebel M17 Omega-Nebel 40′ x 30′ 6,0 mag 13,73 Sgr NGC 6618, Omega-Nebel, Emissionsnebel – sehr hell – Sternbild Schütze
Gas-Nebel M20 Trifid-Nebel 20′ x 20′ 6,3 mag 12,83 Sgr Namibia. NGC 6514, Emissions- und Reflexionsnebel im Sternbild Schütze. Foto
Planetarischer Nebel M27 Hantel-Nebel 8,0′ x 5,7′ 7,5 mag Vul
Emissions-Nebel M42 Orion-Nebel 85′ x 60′ 4,0 mag Ori Orionnebel, der Klassiker. Emission & Reflexion
Planetarischer Nebel M57 Ringnebel Leier 1,4′ x 1′ 8,8 mag Lyr Ringnebel in der Leier, klassischer planetarischer Nebel, aber sehr klein
Gas-Nebel NGC 281 Pacman-Nebel 35′ x 30′ 7,4 mag Cas Emissionsnebel Foto
Gas-Nebel NGC 2237 Rosetten-Nebel 80′ x 60′ 6,0 mag Mon Diffuser Emissionsnebel mit eingebettetem offenen Sternhaufen
Gas-Nebel NGC 3372 Eta-Carinae 120′ x 120′ 3.0 mag Car Namibia.
Gas-Nebel NGC 6334 Katzenpfoten 35′ x 20′ 8.7 mag Sco Namibia. Emissionsnebel Foto
Supernova-Rest NGC 6992 ff. Cirrus 180′ 7,0 mag Cyg Cirrus-Nebel, Schleier-Nebel
Gas-Nebel NGC 7000 Nordamerika 120′ x 100′ 3,4 mag Cyg Nordamerika-Nebel – Klassiker – groß Foto
Planetarischer Nebel NGC 7293 Helix-Nebel 16′ x 28′ 7,6 mag Aqr Dekl=-21°, Beobachtung: Okt/Nov Foto
Gas-Nebel IC 1318 Schmetterlings-Nebel 50′ x 30′ Cyg Emissionsnebel und H-II-Gebiet
Gas-Nebel IC 2944 Running Chicken 40′ x 20′ 4,5 mag Cen Namibia. Der Nebel resultiert aus einer H-II-Region der Milchstraße Foto
Gas-Nebel NGC7380 Wizzard-Nebel 20′ 7,2 mag Cep Hamburg, auch genannt: Harry Potters Goldener Schnatz Foto
Gas-Nebel IC 1805 & IC1848 Heart and Soul 60′ & 40′ 6,5 mag Cas Hamburg, Klassiker, sehr großer Doppelnebel Foto
Gas-Nebel NGC1499 California Nebula 160′ x 40′ 5,0 mag Per Hamburg, sehr großer HII Nebel Foto

Astrofotografie: NGC 253 Silver Dollar Galaxie

Gehört zu: Welche Objekte?
Siehe auch: Galaxien, Deep Sky Objekte, Namibia, Meine Astrofotos
Benutzt: Fotos aus Google Drive

Stand: 22.12.2022

Die Silver Dollar Galaxis

NGC 253, genannt “Silver Dollar Galaxy”, im Sternbild Sculptor ist das klassische klassische “Anfängerobjekt” auf der Südhalbkugel.

Generelle Vorbereitungen für das Fotografieren von NGC 253

Der Standort für die Beobachtung ist Kiripotib in Namibia. Ich war dort vom 12. bis 18.9.2017.

Wann ist der günstigste Zeitpunkt; d.h. wann steht NGC 253 in Namibia schön hoch am Himmel?

  • In 2017 in Kiripotib: ab 12. September, 20:43 Uhr (h>30°)

Welche Ausrüstung soll eingesetzt werden?

  • Kamera: Canon EOS 600Da
  • Optik: APM APO 107/525 (mit Flattener/Reducer 0.85) also ein Öffnungsverhältnis von f/4.9
  • Montierung:  Fornax 51
  • Polar Alignment: vorhanden
  • Windows 10 Notebook-Computer
  • Aufnahme-Software: APT

Mit welchen Einstellungen sollen die Fotos geschossen werden?

  • Geplante Belichtungszeit: 30 x 240 Sekunden bei ISO 800
  • Probefotos ergaben, dass bei dieser Belichtung das Histogramm der Einzelfotos “gut” aussah; d.h. deutlich vom linken Rand abgesetzt und von rechten Rand noch sehr weit entfernt
  • Aufnahmeformat: Raw d.h. CR2
  • Auto Guiding mit PHD2 Guiding

Das Foto am 17.09.2017

Im Jahre 2017 war ich mit meinen astrofotografischen Übungen dann so weit und konnte in Kiripotib folgende Aufnahme gewinnen:

Abbildung 1: NGC 253 Silverdollar Galaxy im Sculptor (Google Drive: 20170917_Autosave_NGC253_SculptorGalaxy_6_beschriftet.jpg)

Astronomie: Omega Centauri

Gehört zu: Beobachtungsobjekte
Siehe auch: Sternhaufen, Namibia, Meine Astrofotos
Benutzt: Fotos aus Google Drive

Stand: 22.12.2022

Omega Centauri (auch NGC 5139) ist der größte Kugelsternhaufen in unserer Milchstraße.

Mit einer scheinbaren Hellikeit von 5,3 mag und einer scheinbaren Ausdehnung von 55′ ist er ein klassisches Objekt für kleinere Teleskope im Süden.

Omega Centauri ist ein sehr großer und sehr alter Kugelsternhaufen.

Entfernung: 17000 Lichtjahre.

Im August 2019 habe ich ein Foto des Kugelsternhaufens Omega Centauri mit meiner Canon DSLR schießen können:

Abbildung 1: Omega Centauri (Google Drive: 20190823_2193-2220_Omega_Cen_3_beschriftet.jpg)

Diese Fotografie habe ich bei richtig dunklem Himmel in Kiripotib, Namibia gemacht.

Astronomie in Namibia: Kugelsternhaufen 47 Tuc

Gehört zu: Beobachtungsobjekte
Siehe auch: Sternhaufen, Namibia, Meine Astrofotos
Benutzt: Fotos aus Google Drive

Stand: 22.12.2022

Kugelsternhaufen 47 Tuc (NGC105)

47 Tuc (auch NGC 105) ist der zweitgrößte Kugelsternhaufen in unserer Milchstraße.

Mit einer scheinbaren Hellikeit von 4,9 mag und einer scheinbaren Ausdehnung von 31′ ist er ein klassisches Objekt für kleinere Teleskope im Süden.

47 Tucanae ist ein sehr großer und sehr alter Kugelsternhaufen.

Die Entfernung zu diesem Kugelsternhaufen beträgt 15000 Lichtjahre.

Im September 2017 habe ich ein Foto des Kugelsternhaufens 47 Tuc mit meiner Canon DSLR schießen können:

Abbildung 1: NGC105 47 Tuc (Google Drive: 20170922_Autosave_5_NGC104_beschriftet.jpg)

Diese Fotografie des Kugelsternhaufens 47 Tucanae habe ich bei richtig dunklem Himmel in Kiripotib, Namibia gemacht.

Für die SEO-Analyse müssen hier viel mehr Worte steht. Weil die Astro-Fotografie in Namibia so hervorragend möglich ist, muss man dass schon mal gesehen und erlebt haben. Es ist ja ganz fantastisch dort zu sein und den wunderbaren Sternenhimmel zu betrachten. Man kann schon mit einfachen Mitteln (z.B. einer DSLR) aufregende Astro-Fotos schiessen.

Für die SEO-Analyse müssen hier viel mehr Worte steht. Weil die Astro-Fotografie in Namibia so hervorragend möglich ist, muss man dass schon mal gesehen und erlebt haben. Es ist ja ganz fantastisch dort zu sein und den wunderbaren Sternenhimmel zu betrachten. Man kann schon mit einfachen Mitteln (z.B. einer DSLR) aufregende Astro-Fotos schiessen.

Für die SEO-Analyse müssen hier viel mehr Worte steht. Weil die Astro-Fotografie in Namibia so hervorragend möglich ist, muss man dass schon mal gesehen und erlebt haben. Es ist ja ganz fantastisch dort zu sein und den wunderbaren Sternenhimmel zu betrachten. Man kann schon mit einfachen Mitteln (z.B. einer DSLR) aufregende Astro-Fotos schiessen.

Kugelsternhaufen 47 Tuc

Physik: Arbeit, Energie und Wirkung

Gehört zu: Physik
Siehe auch: Linienelement, Lagrange, Newton

Stand: 25.02.2023

Die physikalische Größen Arbeit, Energie und Wirkung

Diese physikalischen Größen kennen wir in der Mechanik. Später in der Thermodynamik (Wärmelehre) und in der Quantenmechanik werden wir einiges davon gebrauchen.

Die physikalische Größe “Arbeit”

Arbeit, so haben wir in der Schule gelernt, ist Kraft mal Weg.

Das übliche Formelzeichen für Arbeit ist W (work) und die SI-Einheit das Joule: 1 J = 1 Nm = 1 kg  m2/s2.

\( W = F \cdot s \\ \)

Gemeint ist immer die Kraftkomponente in Richtung des Weges. Genau genommen also das Skalarprodukt der Vektoren:

\( W = \vec{F} \cdot \vec{s} = || F || \cdot ||s|| \cdot \cos(\angle \left( \vec{F}, \vec{s} \right))    \\ \)

Wenn der Weg nicht geradeaus ist, sondern entlang einer Kurve von s1 nach s2, müssen wir entlang dieser Kurve integrieren.

\( \Large W = \int_{s_1}^{s_2} \vec{F}(\vec{s}) \cdot d\vec{s} \\ \)

Das ist analog zur bereits besprochenen Länge so einer Kurve im Raum. Das hatten wir ja schon (siehe: Linienelement) erklärt:
Im allgemeinen Fall nehmen wir eine parametrisierte Kurve α: [a,b] -> Rn  und definieren als Länge L der Kurve α:

\( L_\alpha(a,b) = \int_a^b ||\alpha^\prime(t)|| dt \\\ \)

Historische gesehen, war diese Definition der physikalischen Größe “Arbeit” ursprünglich umstritten: Decartes wollte Arbeit als Kraft mal Zeit definieren, aber die Definition als Kraft mal Weg von Leibniz hat sich durchgesetzt.

Arbeit kann in verschiedener Weise eingesetzt werden z.B. als Arbeit zur Bescheunigung eines Körpers oder als Arbeit zur Ortsveränderung in einem Kraftfeld oder …

Die physikalische Größe “Energie”

Die Energie in einem mechanischen System kann in Arbeit umgesetzt werden, bedeutet also eine Art “Arbeitsfähigkeit”…

Kinetische Energie

Die Kinetische Energie nennt man auch “Bewegungsenergie”, weil sie mit der Geschwindigkeit eines Massepunkts zusammenhängt.
Wenn ich einen Massepunkt von einer Anfangsgeschwindigkeit v=v0 (in einem Inertialsystem gemessen) durch Einwirkung einer konstanten Kraft (Größe und Richtung konstant) auf eine Endgeschwindigkeit v=v1 bringe, habe ich eine Arbeit geleistet, die nun in dem Massepunkt als sog. Kinetische Energie steckt.

Die Kraft war:  \(  F = m \cdot a \)

Der Weg war: \(  s = \frac{1}{2} a t^2 \)

Damit ist die geleistete Arbeit:

\( W = m \cdot a \cdot \frac{1}{2} \cdot a \cdot t^2 = \frac{1}{2} \cdot m \cdot a^2 t^2 \\ \)

Wenn man nun einsetzt: v = a t erhält man:

\( W = \frac{1}{2} \cdot m \cdot v^2 \\ \)

Diese Arbeit steckt nun am Ende der Krafteinwirkung als “Kinetische Energie” in dem schneller bewegten Massepunkt. Beispiel: Eine geworfene Bowlingkugel enthält Kinetische Energie, die wir benutzen, um die Pins am Ende der Bahn umzustoßen.

Potentielle Energie

Die Potentielle Energie nennt man auch “Energie der Lage”. Damit ein Massepunkt seine Lage verändert, brauchen wir Kräfte, die auf den Massepunkt einwirken; denn ohne solche Kräfte verharrt der Massepunkt in Ruhe. Wenn an jedem Ort im Raum (Ortsvektor r) eine Kraft wirkt, sprechen wir von einem Kraftfeld F(r).

Die Frage ist nun, welche Arbeit (gegen dieses Kraftfeld) geleistet werden muss, um einen Massepunkt m von einem Punkt r1 zu einem Punkt r2 zu verschieben.
Wir nehmen dazu eine (glatte) Kurve α, die von r1 nach r2 führt; beispielsweise parametrisiert als α: [0,1] -> Rn  mit α(0) = r1 und α(1) = r2.

Die geleistete Arbeit ist dann ja Kraft mal Weg, aufsummiert über diese Kurve – als Integral:

\( \Large W_\alpha = \int_0^1 \vec{F}(\vec{r})  \cdot d\vec{r}  \\\ \)

Diese Arbeit steckt nun am Ende der Ortsveränderung als “Potentielle Energie” in der neuen Lage des Massepunkts im Kraftfeld. Beispiel: Ein Stausee enthält viel Potentielle Energie, die man benutzen kann, um Strom (elektrische Energie) zu erzeugen.

Wenn diese Arbeit für alle Wege, die von r1 nach r2 führen, die gleiche ist, sprechen wir von einem konservativen Kraftfeld und können die physikalische Größe Potenzial definieren. Ein Beispiel für so ein konservatives Kraftfeld ist die Gravitation.

Die physikalische Größe “Wirkung”

Die physikalische Größe “Wirkung” (englisch: action) ist definiert als Arbeit, die entlang eines Weges in einer Zeitspanne geleistet wird.

Als Wirkung haben wir:

\(  \Large S = \int_a^b (E_{kin} – E_{pot}) dt  \)

 

Computer: Software – MailStore Home

Gehört zu: Datensicherung und Archivierung
Siehe auch: E-Mail

Stand: 22.09.2022

Welche E-Mails habe ich eigentlich?

Alle meine E-Mails sind primär gespeichert beim Internet-Provider Strato  in sog. IMAP-Konten.

Auf diese E-Mails kann ich bequem von meinen diversen Geräten (Windows-Computer, SmartPhone,…) mit einem E-Mail-Client (z.B. Thunderbird auf meinen Windows-Computern) zugreifen.

Die E-Mails summieren sich ja über die Zeit immer weiter auf, sodass ich für E-Mails ein Archivierungskonzept benötige.

Beim Provider Strato habe ich einen Packet “STRATO PowerWeb Plus”, bei dem es für jedes E-Mail-Konto einen begrenzten Speicherplatz von 5 GB gibt. Ich kann aber beliebig viele E-Mail-Konten anlegen. Deshalb habe ich eine Reihe von E-Mail-Konten bei Strato:

  • dietrich@kr8.de       (meine primäre E-Mail bei Strato)
  • archiv-01@kr8.de    (E-Mail-Archiv bei Strato: 2014-2015-2016)
  • archiv-02@kr8.de    (E-Mail-Archiv bei Strato: 2017-2018-2019)
  • archiv.bluehost@dkracht.com     (E-Mail-Archiv bei Strato: E-Mails vom früheren Provider Bluehost)
  • gartner.kunden@dkracht.com     (E-Mail-Archiv bei Strato: E-Mails bei meinem letzten Arbeitgeber)
  • h-wuthe@t-online.de                  (aktuelle E-Mail meiner Schwiegermutter bei der Telekom)

Solange ich die  Speicherung auch der älteren E-Mails so beim Provider machen kann, kann ich auch bequem mit dem E-Mail-Client Thunderbird auf beliebige – auch alte – E-Mails zugreifen und habe auch eine gewisse Suchfunktion.

Was kann die Software MailStore Home

Ich habe auf meinem Windows-Computer “Asusbaer” die Software “MailStore Home portable” installiert.

“Portable” bedeutet, dass ich das EXE-File in irgendeinem Ordner auf dem Windows-Computer habe und dass dann auch der MailStore-Speicher in diesem Ordner sein wird / sein muss.

Mit MailStore Home kann ich im Prinzip folgendes machen:

E-Mail Import

E-Mails werden von irgendwelchen Quellen in den proprietären MailStore-Speicher geholt.

Als Quellen für einen solchen Import unterstützt MailStore Home:

  • E-Mail-Clients
  • E-Mail-Server
    • Ein IMAP-Postfach
    • Ein Exchange-Postfach
    • Eine E-mail-Adresse via SMTP
  • E-Mail-Dateien auf einem lokalen Computer
    • EML-Dateien auf dem lokalen Computer
    • MSG-Dateien auf dem lokalen Computer

E-Mail Export

E-Mails können aus dem proprietären MailStore-Speicher herausgeholt werden und im Dateisystem als EML-Dateien abgelegt werden.