Astronomie: Nano Tracker

Gehört zu: Nachführung

Nachführung mit dem NanoTracker

Reise-Nachführungen (Star Tracker)

Für die Nachführung habe ich mir 2012 einen NanoTracker angeschafft, um auch bei weiten Flugreisen (Südafrika) eine mobile Nachführungsmöglichkeit für meine Astro-Aufnahmen mit dem Fotoapparat (Sony NEX-5R) bzw. meiner neu erstanderen DSLR Canon EOS 600D zu haben.

Mein ganzes Anwendungs-Szenario habe ich beschieben in “Astrofotografie mit leichtem Gepäck“.

Alternativen zur Nachführung mit NanoTracker wären:

  • Vixen Polarie  (teuerer 0,64 kg, Periodic Error 35″)
  • Skywatcher Star Adventurer  (schwerer: 1,2 kg)
  • Skywatcher Star Adventurer Mini (warum nicht? neu, klein und leichter: 0,65 kg, Periodic Error 50″)
  • iOptron Skytracker (alt, schwer 1,2 kg, Periodic Error 100″)
  • Astrotrac (klobig, schwer  1kg)
DK_20170720_1814.JPG

Nano Tracker

NanoTracker Data Sheet

  • Der NanoTracker: Gewicht 384 g, Traglast 2 kg
  • Die Akku-Einheit (mit Akkus): 163 g
  • Hersteller: Sightron Japan Inc.
  • Preis: Euro 289,..
  • Anschlüsse: Stativ 1/4 Zoll, Kamera 1/4 Zoll (ggf. Reduzierstück 1/4 auf 3/8 Zoll verwenden)
  • Stromversorgung: Separates Kästchen mit 3 AA-Akkus
  • Bedienung: Schalter An/Aus, Nord/Süd, Nachführgeschwindigkeit
  • Antrieb:
    • Schrittmotor mit Schnecke
    • Schnecke treibt Zahnrad auf R.A. Achse in Kugellagern
    • Das Zahnrad hat 50 Zähne was eine Schneckenperiode von 28,72 Minuten bedeutet

Die Schneckenperiode von 28,72 Minuten ergibt sich wie folgt:

  • Länge eines Sterntages in Sekunden:   86164,091
  • Länge eines Sterntags in Minuten:       1436,06818
  • Dividiert durch 50 (Anzahl Zähne):     28,7213637 Minuten

Siehe dazu auch die Web-Seite von Lorenzo Comolli: www.astrosurf.com/comolli/strum56.htm

Besonderheiten

Den elektrischen Strom bekommt der NanoTracker über ein separates Kästchen mit 3 AA-Akkus.
Das finde ich sehr praktisch von der Handhabung und ausserdem vermindert das die Traglast auf dem Stativ.

Maximale Belichtungszeit ohne Nachführung

xxxx

 Nachführung mit Getriebspiel und Periodic Error

Das Getriebespiel (Backlash) kann man vermeiden, wenn man den NanoTracker fünf Minuten vor eine Aufnahme “vorlaufen” lässt. Dann sollte der Backlash “vorbei” sein.
Was dann bleibt, ist der Schneckenfehler (Periodic Error).

Der Periodic Error (PE) könnte mit PEMPRO V2.8  gemessen werden.

Beispiel:

  • Meine Canon EOS 600D hat eine Pixel Size von 4,3μ
  • Bei einer Brennweite von 135mm ergibt das eine Pixel Scale von 6,56 arcsec / Pixel   (Formel)
  • Bei einem PE von angenommen 100 arcsec wären das 100 arcsec / 28,7 Minuten = 3,5 arcsec / Minute
  • Man könnte also im Schnitt 2 Minuten belichten ohne dass der PE sichtbar würde

Gestiegene Anforderungen an die Genauigkeit bei der Nachführung

Bisher hatte ich mit meiner Sony NEX-5R maximal 30 Sekunden belichtet und dabei Objektive von 16mm (Zenitar – z.B. Perseiden), 24mm (Vivitar – z.B. Nordlicht) und 50mm (Olympus – z.B. Magellansche Wolke) benutzt. Da war die Nachführgenauigkeit des NanoTracker überhaupt kein Problem.

Aber die Anforderungen an die Genauigkeit sind bei mir durch zwei Entwicklungen gestiegen:

  1. Ich habe ein Objektiv mit wesentlich längerer Brennweite bekommen: Takumar 135mm f/3.5 (neu: Olympus E.Zuiko 135mm f/3.5).
  2. Ich habe auch herausgefunden, wie ich mit meiner Sony NEX-5R länger als 30sec belichten kann. 30sec maximal macht die Sony per Programm mit Smart Remote, Langzeitbelichtung geht dann mit Bulb und einem Infrarot-Fernauslöser

Wie genau ist meine Nachführung?

Für eine sehr geneue Pol-Ausrichtung sorge ich mit meinem QHY PoleMaster. Dann sollten weitere Fehler auf den NanoTracker selbst und da im Wesentlichen auf den PE (Periodic Error) oder auch Schneckenfehler zurückzuführen sein. Aber wie kann ich ganz einfach mal die Genauigkeit der Nachführung (quasi end-to-end) messen?

Meine ganz simple Idee ist, einfach eine Serie von Aufnahmen von ein und demselben Objekt mit eingeschalteter Nachführung zu machen (z.B. 15 sec Belichtung, 15 sec Pause und das 30 Minuten lang – weil die Scheckenperiode 28,72 Minuten sein soll). Diese Aufnahmeserie könnte ich z.B. Plate Solven und die Ergebnisse dann in Excel darstellen….

In CloudyNights  https://www.cloudynights.com/topic/210905-how-to-measure-periodic-error/ finde ich dazu einen ähnlichen Rat:

  • Posts: 678
  • Joined: 07 Feb 2006

Posted 16 March 2009 – 10:27 AM

Hi all,

I used my Atlas EQ-G with the Orion 102ED f/7 scope this weekend to shoot my first set of astro pictures (will post some results here at a later time). However, since I don’t have an Auto-guider setup and I heard a lot of good things about the Atlas I figured I’ll see how long the mount can track accurately and was a little surprised to only get relatively short exposures. At 60s I had to throw out almost half of the exposures due to some star trailing (in RA direction), 30s exposures consistently looked good, except for a few. I also took some 120s exposures and also had to throw out at least half. Not quite what I had in mind. Did I expect too much here?

Anyhow, I drift aligned the mount to the best of my abilities actually using the DSLR since I also don’t have a cross hair eye piece, yet. I used the technique where you expose for 5s to mark the star and then move the mount forward in RA for about 60s at twice the siderial rate and then essentially stop the tracking for another 60 seconds, all while the shutter is open. The result is a V shaped line in the image if there is any misalignment. Worked like a charm and I might actually perform the alignment this way in the future instead of using the eye piece. I adjusted the mount as needed and got no more drift in the image for up to 3 minutes.

So, to make a long story short, the only reason for the star trails that I can think of now is RA tracking errors in the mount. I’d like to actually “see” the periodic error, etc. somehow in an image but can’t quite figure out how I would go about doing that. Do you guys have any suggestions?

Thx in advance,
/ThJ

Posted 16 March 2009 – 11:14 AM

The short answer:
Take a series of short exposure images (may need a brightish star) that totals longer than the period of the worm (typ 10min).
Use a stacking program that measures and records (to a file) the x,y coordinates of the star (the program should find the star’s centroid). AIP4WIN does this.
Import the recorded coordinates into Excel (or another spreadsheet program) and plot the x and y values vs exposure number. The PE will easily be seen in the plot.
Some calculation using the scopes focal length and the pixel sizes will give you PE in Arcsec.
If you align the camera so that RA is along the pixel rows (x-coordinate) then there should be no movement in the y direction if your polar alignment is perfect. Any change in the y is polar misalignment.
I have a spreedsheet at home from my Super Polaris mount. Let me know if you need more help on this part.

Astrofotografie: Polar Aligment – Einsüden – Wie finde ich Sigma Octantis?

Gehört zu: Polar Alignment

Wie finde ich Sigma Octantis?

Bei verschiedenen Methoden zum “Polar Alignment” ist es erforderlich, die Position des Himmelsnordpols bzw. des Himmelssüdpols am Sternenhimmel (SCP = South Celestial Pole) eindeutig auszumachen.

Sowohl beim Polfernrohr als auch beim QHY PoleMaster muss man Gegend des Himmelspols (Nord bzw. Süd) eindeutig im FoV auffinden können. Was beim Südpol nicht so einfach ist, weil es keinen hellen Polarstern am Südpol gibt (Sigma Octantis ist 5,45 mag hell).

Ich habe mehrere Methoden zum Auffinden des SCP gefunden:

  • Wikipedia: Southern Cross
  • Alain Maury: Beta Hydri
  • Hannes Pieterse: Achenar
  • Skywatcher Star Adventurer

Polhöhe vorweg mit elektronischem Neigungsmesser einstellen

Wenn man Schwierigkeiten hat mit dem Verstellen zweier Achsen (Azimuth und Pohlhöhe), das Ziel-Objekt im Polfernrohr zu finden, kann man einfach die Polhöhe schon mal im Vorwege richtig einstellen und braucht dann im Dunklen nur noch ein bisschen im Azimuth zu suchen.

Von dem Astro-Kollegen Frank auf Kiripotib bekam ich den Tipp, doch einen digitalen Neigungsmesser zu verwenden, um die Polhöhe im Vorwege genau richtig einzustellen.

Im Nachgang zu meinem Aufenthalt in Namibia. beschaffte ich mit deshalb am 1.8.2018 den “Neoteck Digitaler LCD Winkelmesser Neigungsmesser Inklinometer Wasserdicht Bevel Box Winkelmessgerät” über Amazon für EUR 25,99.

DK_20190512_xxx

Skywatcher Star Adventurer Mini mit Neigungsmesser

Ich konnte den Neigungsmesser in der Vixen-Aufnahme des Star Adventurer mittels eines kleinen Bleistifts fest klemmen. Der Winkelmesser muss bei dieser Befestigung 90 Grad minus geografische Breite anzeigen…

Method #1: Wikipedia Method Southern Cross

In der Wikipedia findet man mehrere Aufsuchmethoden, die erst einmal helfen,  grob die Gegend des SCP zu finden.

Eine Methode geht vom Kreuz des Südens aus:

Pole01-eng.jpg

From the Sothern Cross to the Celestial South Pole

Method #2: Beta Cen und Achenar

Die Methode von Hannes Pieterse sagt nicht, wie man das “Trapez” im Octant findet, sondern beschreibt wie, von diesem Tranpez ausgehend, die genaue Position des SCP gefunden werden kann.
http://assabfn.blogspot.de/2010/08/find-south-celestial-pole-scp.html

Method #3:  Acux – Fliege – Octans

Im user manual des Star Adventurer wird eine Methode zum “coarse alignment” beschrieben, die von dem Stern Acrux (alpha Crucis) ausgeht, dann geht man zu Alpha Muscae und weiter zu Gamma Musca (ist der nächst-hellste Stern). Die gerade Linie von Acrus über Gamma Mus zeigt genau zum SCP. Der Abstand auf dieser geraden Linie zum SCP  ist etwa ein gespreizte Hand breit.

sky-watcher_star_adventurer_mini_manual.jpg

Wie finde ich den Celestial South Pole

Method #4: Starten mit SMC, 47 Tuc und Beta Hydri

Im Internet hat Alain Maury in seinem Blog eine sehr schöne Beschreibung für den Südhmmel abgegeben: http://www.spaceobs.com/en/Alain-Maury-s-Blog/How-to-polar-align-in-the-southern-hemisphere

Da die Gegend um den Himmelssüdpol keinerlei hellere Sterne aufweist, beginnen wir das Aufsuchen mit einigen markanten, helleren Objekten: LMC, SMC, 47 Tuc, Beta Hydri und “hoppen” von Beta Hydri aus über Gamma-1-2-3 Octantis zum Trapez aus Sigma, Tau, Chi, Ypsilon Octantis.

Wir starten mit der Kleinen Magellanschen Wolke (SMC) und sehen ganz in der Nähe 47 Tuc.

Die beiden nehmen wir als Basis für ein gleichschenkliges spitzes Dreieck in Richtung des Himmelssüdpols, wo die Spitze der Stern β Hydri sein soll.

Wenn wir die Linie dieses spitzen Dreiecks weiter gehen, kommen wir zu einer kleinen Gruppe aus drei Sternen: γ1, γ2 und γ3 Octantis. Diese drei Sterne bilden ein stumpfes gleichschenkliges Dreieck. Die stumpfe Spitze zeigt auf das Trapez, was wir suchen.

pole4.jpg

Copyright Alain Maury

Üben an echten Fotos

Zum Üben dieser Auffinde-Methode eignet sich ein schönes Weitwinkel-Foto des Südhimmels, das ich in einem Reisebericht von Stefan Westphal gefunden habe:

http://www.astrofreunde-franken.de/namibia_2014_sw.html

Am Ende des Berichts findet sich ein Link auf seine Fotosammlung, wo dann das Foto “Nächtliche Stimmungsaufnahme” sehr schön zum Auffinden von Sigma Octantis geeignet ist:

landschaft.jpg

Copyright: Stefan Westphal – Nächtliche Stimmungsaufnahme – Kiripotib

 

Astronomie: Einnorden – Polar Alignment mit dem Polfernrohr

Gehört zu: Montierung

Zur Erzielung einer guten Nachführung für die Astrofotografie muss die Montierung genau eingenordet werden.

Polar Alignment mit einem Polfernrohr  (SmartEQ Pro, SkyTracker,…)

Voraussetzungen: Wo ist der Himmelspol?

Voraussetzung: bei Nacht und freier Sicht auf den Polarstern bzw. Sigma Octantis

Das Polfernrohr muss grob auf den Himmelspol ausgerichtet sein, sodaß  Polaris (im Norden) bzw. Sigma Octantis (im Süden) im Gesichtsfeld des Polfernrohrs (FoV = 6 °) stehen.

Wie man Polaris (am nördlichen Himmel) findet, ist sehr bekannt und einfach: die hinteren beiden Sterne des “Großen Wagen” (Alpha und Beta UMa 2,0 mag und 2,3 mag) 5 mal nach oben verlängern und schon hat man Polaris (Alpha UMi 1,95 mag) gefunden. Alle diese Sterne sind recht hell, sodass man sie problemlos mit bloßem Auge finden kann.

Sigma Octantis (und das “Trapez”) am Südlichen Sternhimmel ist nicht so leicht zu finden, da es sich um relativ schwache Sterne handelt (Sigma Oct 5,45 mag). Hierzu habe ich einen separaten Artikel geschrieben.

Makierungen im Polfernrohr

Die SmartEQ Pro hat ähnlich wie ich es von dem “iOptron SkyTracker” her kenne, ein beleuchtetes Polfernrohr mit konzentrischen Kreisen, die als Zifferblatt mit 12-Stundenteilung dargestellt sind (andere Fabrikate können leicht anders aussehen):

PolarScope.jpg

Blick durchs Polfernrohr bei iOptron

Der Himmelsnordpol soll in der Mitte sein. Dafür muss Polaris im aktuellen Abstand vom Pol auf den entsprechenden Kreis gesetzt werden und die Position auf dem Kreis (12 Stunden-Zifferblatt) muss der aktuellen Position von Polaris (Stundenwinkel oder so ähnlich – s.u.) entsprechen. Man muss also die aktuelle Position von Polaris zum Zeitpunkt des Einnordens kennen (s.u.).

Wenn man nun eine halbwegs bequeme Stellung für den lockeren Blick durch das Polfernrohr gefunden hat, kann man die Polausrichtung leicht durchführen. Das Okular meines Polfernrohrs hat bei normal ausgezogenem Stativ eine Höhe von 1,07 Meter über dem Boden. Wenn ich auf meinem “normalen” Klappstuhl für astronomische Beobachtungen sitze, habe ich eine Augenhöhe von 1,16 m über Boden. Ich müsste also einen Beobachtungsstuhl haben, dessen Sitzfläche 9 cm niedriger ist; d.h. statt 45 cm müssten es 36 cm sein. Vielleicht nehme ich da einen höhenverstellbaren Klavierschemel oder eine stabile Holzkiste, die eine Kantenlänge von 36 cm hat.

Bestimmung der aktuellen Polaris-Position

Für die Einstellung im Polfernrohr benötigt man die aktuelle Position von Polaris bezogen auf den Himmelsnordpol. Diese Position kann mit unterschiedlichen Mitteln bestimmt werden.

Polaris-Position per Kochab-Methode

Als “Kochab-Methode” habe ich von Astrohardy gelernt, schaut man einfach, welche Position Kochab (Beta UMi) in Bezug auf den Himmelpol einnimt. Polaris steht genau gegenüber von Kochab, bezogen auf den Himmelspol d.h. die Verbindungslinie Kochab-Polaris geht genau durch den Himmelspol. Im umkehrenden Polfernrohr muss Polaris also auf seinen 40′-Kreis gesetzt werden und zwar genau in Richtung (Zifferblatt) von Kochab, wie man ihn mit dem blossen Auge sieht.

Kochab-03.jpg

Polar Alignment mit der Kochab-Methode

Auf diesem Bild ist die Position von Kochab  auf einem Zifferblatt in Bezug auf den Himmelspol etwa “5 Uhr”.

Polaris-Position in Stellarium

Auch das schöne Planetariumprogram Stellarium zeigt ja für jeden Ort und jede Zeit die Position von Polaris an – auch als Stundenwinkel und Deklination.

Beispiel: Ort:  53° 34′ N 9° 58′ E, Datum und Zeit:  26.02.2017 um 19:00 Uhr MEZ (UTC+1)

Wenn man jetzt Stellarium auf Polaris schwenkt und Polaris anklickt, zeigt Stellarium viele Daten von Polaris an:

Kochab-02.jpg

Polar Alignment: Stellarium zeigt die Daten von Polaris an

Die Zeile mit “Stundenwinkel/DE” ist für uns interessant.
Die Deklination von Polaris soll also 89° 19′ 35.9″ sein; d.h. sein Abstand vom Himmelsnordpol ist:  r = 40′ 24.1″
Der Stundenwinkel von Polaris ist 2h 11m 55.75s, wobei dieser normale Stundenwinkel als Nullpunkt den Südmeridian hat und nach Westen (rechts) zunimmt.

Um aus dem Stundenwinkel die Zifferblatt-Position von Polaris zu ermitteln, sind folgende Schritte erforderlich:

  • Unser Zifferblatt-Kreis ist nicht 24h, sondern 12h, also den Stundenwinkel t ersteinmal halbieren:  t/2  = 1h 05m 57.6s
  • Statt nach Süden blicken wir nach Norden. Der Nullpunkt liegt zwar oben, aber Westem liegt jetzt links; also ist die Zifferblattposition:    – t/2  (+ 12h) = 10h 54m 02.4s
  • Das Polfernrohr kehrt um: oben/unten und rechts/links; also plus 6h:  – t/2 + 12h  + 6h = 16h 54m 02.4s

Da wir die Zifferblatt-Position Modulo 12 nehmen wollen, ergibt sich als vollständige Formel:

Zifferblatt-Position = (18h – t/2) mod 12h   — was man mathematisch auch als (6h – t/2) mod 12h schreiben könnte

Also 4h 54m, was mit unserem Kochab-Wert von “ca. 5h” gut übereinstimmt.

Polaris-Position per App (Android & iOS)

Für mein iPad habe ich die kostenlose App “Polar Scope Align” von Dimitros Kechagias geholt.

Für mein Android-Tablet nehme ich das kostenlose “Polar Finder” von TechHead (jol@netavis.hu).

Beide Apps bieten die Möglichkeit sich die Ansicht der gängigsten Polsucherfernrohre einzustellen (Kreise und Skalen von iOptron, Skywatcher,…).

PolarFinder_Android.jpg

Android App: PolarFinder

IMF_0022.png

iOS App: Polar Scope Align

Polaris-Position in der Handbox

Die Handbox liefert als Komfort auch noch eine Anzeige der Polaris-Position:

Handbox: Menue -> Align -> Pole Star Position

DK_20160501-09-11-21.jpg

Go2Nova Handbox: Pole Star Position

Dann wird die Position von Polaris für eine aktuellen Ort und die aktuelle Zeit im Hand-Controller wie folgt angezeigt:

DK_20160501-09.11.35.jpg

Go2Nova Handbox: Position of Polaris

Dazu muss die Go2Nova Handbox (Hand-Controller) selbstverständlich genau auf geografische Koordinaten und Uhrzeit eingestellt sein.

Astronomie: Einnorden – Polar Alignment mit QHY PoleMaster

Gehört zu: Montierung
Gehört zu: Einnorden
Siehe auch: SharpCap, Liste meiner Geräte

Generelles zu Einnordung / Einsüdung / Polar Alignment

Eine parallaktische Montierung muss “eingenordet” sein, damit das Goto und die Nachführung richtig funktionieren.

Hat man keine fest aufgebaute Montierung, sondern eine mobile Montierung, die jedesmal wieder neu aufgestellt werden muss, so hat man die Prozedur des Einnordens immer wieder erneut durchzuführen und man fragt sich, wie man das einfach, genau und bequem gestalten kann.

Einnorden muss man also immer, wenn man parallaktisch per Motor nachführen will – wegen längerer Belichtungszeiten.

Zur “Einnordung” gibt es verschiedene Methoden, die ich im Überblick in diesem Artikel dargestellt habe. Dies sind:

  • Scheinern – Drift Alignment
  • Polfernrohr mit Fadenkreuz und Sternenmaske
  • Spezielle Funktion von computerisierten Montierungen (per Handbox)
  • Software “AlignMaster” mit ASCOM Goto Montierungen
  • QHY PoleMaster (Hardware und Software)
  • Software “SharpCap
  • xyz – Plate Solving

Ich benutze zum Einnorden meiner Montierungen SkyWatcher HEQ5 Pro und iOptron SmartEQ Pro den QHY PoleMaster. Das Einnorden/Einsüden meines NanoTrackers versuche ich ebenfalls mit QHY PoleMaster ggf. muss ich mit SharpCap Aufnahmen machen, die dann für ein Plate Solving auf dem Windows-Notebook zur Verfügung stehen. um definitiv zu wissen, welche Stern im Gesichtsfeld stehen.

Polar Alignment mit PoleMaster QHYCCD

Warum QHY PoleMaster?

Im Rentenalter wollte ich mein Astronomie-Hobby aus der Jugendzeit wieder aufnehmen, nachdem ich fast 40 Jahre garnichts astronomisches gemacht hatte.

Ich schielte von Anfang an auf die Astrofotografie und wollte mit einer kleinen mobilen parallaktischen Montierung anfangen, mit der ich aber auch die in den letzten Jahrzehnten möglich gewordenen neuen Dinge wie GoTo und Autoguiding mal praktisch ausprobieren wollte. Meine Wahl fiel vor zwei Jahren auf eine iOptron SmartEQ Plus. Mittlerweile (2017) habe ich eine gebrauchte Skywatcher HEQ5 Pro….

Mein hauptsächlicher Beobachtungsort ist die Innenterrasse meiner Erdgeschosswohnung in Hamburg-Eimsbüttel (also Lichtverschmutzung durch Stadtlicht). Ich habe dort keine fest eingerichtete Terrassensternwarte, sondern muss die Montierung für jede Beobachtungsnacht neu aufstellen und einjustieren.

Für die Füße des Dreibeinstativs habe ich auf den Terrassenfliesen Markierungen mit Nagellack gemacht.

Belichtungszeit

Ich habe gelesen, dass man für vernünftige Astrofotos sehr lange belichten soll (Poisson-Verteilung der ankommenden Photonen). Beispielsweise so etwa mindestens 30 Einzelaufnahmen (sub exposures) mit je 300 sec Belichtungszeit.

Die maximal mögliche Belichtungszeit (bei festem ISO von z.B. 800) muss man experimentell herausfinden. Je heller der HImmel ist (Lichtverschmutzung) desto kürzer wird die maximale Belichtungszeit werden (Histogramm ganz rechts, Bild ganz hell) . In Handeloh kann ich z.B. 300 Sekunden bei ISO 800 belichten.

Damit die für solche Belichtungszeiten benötigte Nachführung gut funktioniert, ist eine sehr exakte Aufstellung der Montierung erforderlich. D.h.

  • Waagerechte Aufstellung
  • Einnordung (Polar Alignment)

Die Auflageplatte der Montierung soll exakt waagerecht liegen, also muss der Polkopf abgeschraubt werden und eine Wasserwaage daher, um die Stativbeine genau auf eine waagerechte einzustellen. Dann kommt der Polkopf (Achsenkreuz) wieder drauf und die Stundenachse muss genau auf den Himmelspol ausgerichtet werden…

Danach erst kann das Goto Alignment geschehen, damit ich meine Beobachtungsobjekt leicht per Goto in die Bildmitte einstellen kann und damit die Nachführung dann gut funktioniert.

Die Nachführung durch die Montierung selbst sollte für 30-60 Sekunden gut sein. Falls das noch weiter verbessert werden soll, wäre schließlich ein Autoguiding angezeigt.

Für das sog. Einnorden gibt es ja viele Techniken. Meine schöne iOptron SmartEQ Pro Montierung (die HEQ5 Pro auch) hat dafür in der Stundenachse ein beleuchtetes Polfernrohr mit konzentrischen Ringen und einer Zifferblatt-Mimik. In der Praxis war das aber für mich viel zu unbequem (Foto: Kniefall).

DK_20170223_1.JPG

Bild 1: Der Kniefall: So bequem schaut man durch das beleuchtete Polfernrohr

Deswegen war ich begeistert, als ich von dem neuen Produkt „QHY PoleMaster“ lass und Erfahrungsberichte dazu in Google und Youtube fand.

Was ist QHY PoleMaster?

Was der QHY PoleMaster genau ist und wie er funktioniert haben andere schon sehr schön im Web erklärt.

Kurzgesagt ist es eine kleine USB-Kamera mit einem lichtstarken Objektiv (f=25mm) und einem Sensor 1280×960 (Aptina ASX340, 1/3″, 3,75µ) wie bei der QHY5L II, die auf die Montierung gesteckt wird und mit der man die Gegend um den Himmelpol fotografiert (FoV 11×8 Grad). Die kleine Kamera wird per USB mit einem Notebook-Computer verbunden auf dem eine spezielle PoleMaster-Software von QHY installiert ist.

Installation der Software für QHY PoleMaster auf dem Windows-Notebook

Am 27.2.2017 habe ich dann den QHY PoleMaster bei Teleskop-Express für EUR 355,00 erstanden.
Zunächst ist ein Treiber für die im QHY PoleMaster enthaltene Kamera erforderlich. Was mitgeliefert wird ist ein proprietärer Treiber, der eine vom Hersteller erfundene Gruppe “AstroImaging Equipment” im Windows-Gerätemanager aufmacht: PoleMasterDriverLatestEdition.zip

Nach erfolgreicher Installation des Treibers erscheint die Kamera im Windows-Gerätemanager wie folgt:

PoleMaster-02.jpg

Bild 2: QHY PoleMaster Driver

Das Herzstück der PoleMaster-Lösung ist dann die spezielle Software, die das Bild der Kamera auf dem Window-Notebook anzeigt und dann durch die Prozedur des Polar Alignments führt.

Rotationskreis der Stundenachse

PoleMaster_006.jpg

QHY PoleMaster Rotation

Himmelspol und Rotationszentrum zur Deckung bringen:

DK_20170726_Polemaster.jpg

QHY Polemaster

Wie funktioniert das Einnorden mit QHY PoleMaster?

Im ersten Schritt richtet man die Kamera auf die Polgegend, identifiziert Polaris durch Doppelklick und die Software errechnet aufgrund des Sternfeldes insgesamt, wo sich genau der Himmelspol befindet.

Im zweiten Schritt soll man die Montierung mehrfach um die Stundenachse drehen und dabei die Drehung eines  “anderen” Sterns verfolgen und Doppelklicks machen um die Position an die Software zu übergeben. Daraus ermittelt die Software den Rotationskreisbogen und damit genau wohin die Rotationsachse (Stundenachse) der Montierung zeigt.

Im dritten Schritt muss man die  Montierung so im Azimut und in der Polhöhe einstellen, das beides zur Deckung kommt – was auf dem Bildschirm durch zwei Markierungen angezeigt wird.

Das ganz soll nur 3 Minuten dauern und eine Genauigkeit von 30″ liefern.

Zusammenfassung Schritt für Schritt:

  1. USB-Stecker an Kamera soll nach rechts schauen, USB-Kabel mit Laptop-Computer verbinden
  2. Montierung auf Home-Position stellen
  3. PoleMaster-Programm auf Laptop-Computer starten.
  4. Oben links auf “Connect” klicken.
  5. Zoom einstellen
  6. Region Selection: North
  7. Belichtungszeit aufdrehen bis auch die dunkleren Sterne (dunkler als Polaris) auf dem Display sichtbar werden.
  8. Ggf. Fokussierung des PoleMasters überprüfen
  9. Doppelklick auf Polaris und softwaremäßiges Rotieren einer Maske von Umgebungssternen bis sie übereinanderliegen (damit ist der Himmelspol identifiziert)
  10. Selektieren eines anderen Sterns als Polaris mit Doppelklick (dieser Stern dient dazu, den Drehpunkt der Stundenachse zu messen, muss also bei Rotation im Bildfeld bleiben)
  11. Physisches Drehen um die Rotationsachse des Geräts zweimal um jeweils 30-40 Grad und Doppelklick auf den “anderen” Stern. Daraus berechnet die Software den Drehkreis des “anderen” Sterns und damit ist der Drehpunkt der Montierung identifiziert
  12. Montierung zurück in die Home-Position fahren. Dabei muss der “andere” Stern entlang des berechneten Kreises laufen.
  13. Die Software zeigt jetzt die errechneten Positionen des Himmelspols (grüner Kreis) und des Drehpunkts der Montierung (roter Kreis) an. Diese müssen an der Montierung durch manuelles Verstellen von Azimut und Polhöhe zur Deckung gebracht werden.

Befestigung der QHY PoleMaster auf einer Skywatcher HEQ-5 Pro

Wie wird die PoleMaster Kamera auf der Montierung befestigt? Die Kamera selbst hat unten drei M3 Schrauben kreisförmig in Winkeln von 120 Grad angeordnet. Die werden von oben auf eine Adapter-Scheibe geschraubt, die mit ihrer unteren Seite auf der Öffung des Polfernrohrs ihrer Montierung befestigt wird. Je nach Montierung gibt es verschiedne Adapter-Unterteile z.B. für:

  • EQ6/AZEQ6
  • HEQ5
  • iOptonCEM60 ZEQ25/CEM25 iEQ45  iEQ30
  • AZEQ5
  • Celestron AVX  CGEM
  • EM200/EM11

11. Juli 2017: Ich plane nun von meiner SmartEQ Pro auf eine Skywatcher HEQ-5 Pro Synscan umzusteigen.

Für diese Montierung gibt es einen passenden Adapter, den ich z.B. bei Teleskop Express gefunden habe. Um den QHY PoleMaster auf einer Montierung Skywatcher HEQ5 Pro  zu befestigen, gibt es (z.B. bei Teleskop-Express) den Adapter “PoleMaster Adapter für Skywatcher H-EQ5 Montierung” (AL70410 für EUR 39,00).

http://www.teleskop-express.de/shop/product_info.php/info/p8803_ALccd-PoleMaster-Adapter-fuer-Skywatcher-H-EQ5-Montierung.html

Der Adapter kommt auf die Öffnung des Polfernrohrs der HEQ5, dabei bleibt eine Öffnung, so dass das Polfernrohr weiter benutzt werden könnte.

PoleMaster_20190219_124331.jpg

PoleMaster Adapter for HEQ5 Pro

PoleMaster_20190219_124618.jpg

PoleMaster on HEQ5 Pro

Befestigung der QHY PoleMaster auf der Montierung SmartEQ Pro

 Ich habe ja, wie gesagt, eine Montierung, die nicht ganz so „Mainstream“ ist, nämlich einen iOpton SmartEQ Pro. Mein deutscher Lieferant konnte keinen passenden Adapter liefern. Ich spielte schon mit dem Gedanken, meine Montierung zu wechseln (etwa CEM25), dann fand ich aber im Internet bei der englischen Firma „Modern Astronomie“ den Adapter für die SmartEQ Pro. Den habe ich mal als erstes alleine bestellt, um die prüfen, ob das Ding auch das tut, was ich für den PoleMaster benötige. Gestern kam das Paket mit dem Adapter aus England hier an. Man montiert das Teil auf die vordere Öffnung des Polfernrohrs, die damit blockiert ist (anders als bei anderen Adaptern). Es passt auf meine Montierung und sieht insgesamt gut aus.
DK_20170303_1315.JPG

QHY Polemaster Adapter auf iOptron SmartEQ Pro

Da der Adapter OK war, habe ich nun auch den eigentlichen PoleMaster bestellt (ohne Adapter). Mein deutscher Lieferant hatte den auf Lager und lieferte extrem schnell.
DK_20170303_1316.JPG

QHY Polemaster on SmartEQ Pro

Befestigung der QHY PoleMaster auf dem NanoTracker

5. April 2017: Um den QHY PoleMaster auf einem ganz normalen 3/8-Zoll Fotogewinde zu befestigen, gibt es von der Firma Cyclops Optics einen speziellen Adapter namens “Universal Portable Mount Adapter PM-ST”.

https://www.cyclopsoptics.com/adapter/cyclops-optics-universal-portable-mount-adapter-t6061-cnc-for-polemaster/

Die eine Scheibe befestigt man mit drei kleinen Schrauben hinten am PoleMaster; diese Scheibe hat nach unten ein 3/8-Zoll Innengewinde. Mit einem 3/8-Zoll auf 1/4-Zoll Zwischengewinde kann ich das dann auf den NanoTracker schrauben. Die zweite Scheibe dient dann als (große) Kontermutter, um die Verbindung nach unten in der gewünschten Richtung (hier: USB nach rechts) zu fixieren

DK_20170628_1742.JPG

QHY Polemaster mit Spezialadapter auf NanoTracker

Am 8. Juli 2017 konnte ich damit ein Polar Alignment meines NanoTrackers auf dem Fotostativ “Sirui ET-1204” mit einem Stativkopf “Rollei MH-4“erfolgreich durchführen.

Den Stativkopf Rollei MH-4 habe ich am 16. Mai 2017 bei Amazon für Euro 24,99 gekauft (Belastbarkeit 2,5 kg).

Das Fotostativ Sirui ET-1204 habe ich am xxx gekauft (für die Flugreise: Carbon, 4 Segmente,…)

Für das Polar Alignment mit der PoleMaster-Software waren erforderlich:

  • Stabile Aufstellung des Fotostativs: Das ging durch beschweren der Mittelsäule mit einer Plastiktüte mit schwerem Inhalt
  • Nivellieren in die Waagerechte: Das ging mit einer kleinen Wasserwage
  • Drehen der Kamera um die Rotationsachse des Motors: Das ging, wenn man die Kontermutter etwas lockerte
  • Kleine Bewegungen der “Montierung” im Azimut und Polhöhe: Das ging mit Hilfe des Neigekopfs MH-4

Den Rollei Stativkopf (Neigekopf) MH-4 habe ich eigens zur einfacheren Einnordung angeschafft:

DK_20170711_1789.JPG

Neigekopf MH-4

 

Astrofotografie: Einnordnen – Polar Alignment

Gehört zu: Astrofotografie
Gehört zu: Montierung einjustieren

Polar Alignment – Aufgabenstellung

Eine parallaktische Montierung muss als erstes “eingenordet” (resp. “eingesüdet”) werden; d.h. die Stundenachse der Montierung muss genau parallel zur Erdachse ausgerichtet werden damit die Nachführung richtig funktioniert. Das ist dann besonders wichtig, wenn man seine Astrofotos länger belichten will (siehe: Langzeitbelichtung).

Vorher muss man aber die Stativbeine so einstellen, dass sich die Auflagefläche des Polblocks schön in der Waagerechten befindet.

Wenn man seine Montierung nicht dauerhaft an einem Standort aufgestellt hat, sondern für jede Beobachtung das Aufstellen und die Einnordung erneut vornehmen muss,  kommt es sehr darauf an wie schnell, bequem und genau man die Einnordung vornehmen kann.

Wenn man das Teleskop immer am gleichen Ort z.B. auf seiner Terrasse (markiert mit Nagellack) aufstellt, ist die Polhöhe automatisch richtig und das Azimut stimmt auch fast – nur kleine Korrekturen am Azimut sind zu erwarten. In dieser Situation ist nicht einmal eine freie Sicht auf den Polarstern erforderlich….

Polar Alignment – Welche Genauigkeit ist erforderlich?

Je nachdem, was man eigentlich mit Montierung und Telskop machen will, ist die erfprderliche Genauigkeit beom Polar Alignment ganz unterschiedlich.

Man kann unterscheiden:

  • Visuelle Beobachtungen: da mögen 30 arcmin reichen
  • Unguided Imaging: da muss die Genauigkeit sehr hoch sein
  • Guided Imaging: da kann die Genauigkeit kleiner sein (weil das Guiding viel kompensiert)
Montierung Nachführung Folge Beobachtung Genauigkeit
Äquatorial R.A. Tracking Dec. Shift Visuell 30′
Äquatorial R.A. Tracking Dec. Shift Imaging hohe Genauigkeit
Äquatorial Guiding Field Rotation Imaging kleinere Genauigkeit

Quelle 1: https://stargazerslounge.com/topic/217079-how-accurate-do-you-polar-align/

When guiding, as Mark says, in some areas of the sky (close to polaris), I find that polar alignment is much less critical. There is an equation which might be interesting for you. It indicates the accuracy required, depending on where you are looking in the sky:

E = (45000 x S x cosD) / (T x F x A)

Where :

  • E is the maximum allowable polar misalignment in arcseconds
  • S is the worst case length of star trails (in microns)
  • D is the declination of the target in degrees
  • T is the exposure time in minutes
  • F is the focal length in mm
  • A is the angle between the guide star and the target in degrees

Quelle 2:  Frank Barret

…the equation comes from a paper by Frank Barret: http://celestialwonders.com/articles/polaralignment/PolarAlignmentAccuracy.pdf.

 

Polar Alignment – Lösungsmöglichkeiten

Für das Einnorden (Einsüden) gibt es verschiedene Methoden. Dazu gehören:

Polar Alignment mit dem QHY PoleMaster

Der QHY PoleMaster ist 2016 neu auf den Markt gekommen und ermöglicht sehr einfaches und sehr schnelles Einnorden, kostet allerdings so um die 325,– Euro.

Zum QHY PoleMaster habe ich einen eigenen Artikel geschrieben.

Polar Alignment mit dem Polfernrohr auf SmartEQ Pro

xxxx

Polar Alignment mit dem Polfernrohr auf SkyTracker

xxx

Polar Alignment mit DLSR Logger

Mit der Software DLSR Logger kann ohne freie Sicht auf den Himmelspol (Polaris) einfach anhand von mehreren Fotos auf eine sichtbare Himmelsgegend ein Polar Alignment vornehmen.

Ich habe dazu einen eigenen Artikel geschrieben.

Polar Alignment mit SharpCap

xxxx

Polar Alignment mit der Handbox der SmartEQ Pro

Die Handbox der SmartEQ Pro bietet eine Methode zur Einnordung, die ohne Sicht auf den Polarstern funktioniert (ähnlich der Software AlignMaster).

Mit der Handbox-Funktion “Polar Align” kann man ein Alignment machen, auch wenn der Polarstern nicht zu sehen ist…..

Polar Alignment mit der Software “AlignMaster” mit ASCOM Goto Montierungen

Autor: Matthias Gazarolli

Download: http://www.alignmaster.de

YouTube AstronomyShed: https://youtu.be/dNRFm3LtCrE

Polar Alignment mit “Scheinern” engl. “Drift Align”

Eine von Julius Scheiner beschriebene Methode, die in der Praxis ziemlich zeitintensiv ist.

Es gibt zahlreiche Software, die auf Basis der Scheiner-Formeln das Alignment schneller ermöglicht….

Z.B. EQalign:  http://eqalign.net/e_eqalign.html