Physik: Mexican Hat

Gehört zu: Quantenmechanik
Siehe auch: Symmetrie, Potential, Phasenübergang, Quantenfluktuation

Stand: 14.11.2024

Potential als Mexican Hat

Youtube-Video: https://youtu.be/hrJViSH6Klo?si=4faayg0xGdABbYe8

Wenn ein Potiential in einem Feld die Form einer Parabel z = a x2 + b hat, so haben wir eine klassische Bewegungsgleichung und die Lösung ist ein harmonischer Oszillator.  Dieser Zustand ist rotationssymmetrisch um die z-Achse (was man U(1) nennt) und hat seine niedrigste Enegie bei x=0.

Wenn sich das Potentialgebirge dann verändert in Richtung eines sog. “Mexican Hat” (die Amerikaner kennen keinen Sombrero), dann sieht man zwei Gleichgewichtszustände wo sich ein Teilchen aufhalten könnte: Einmal der ursprüngliche Ort bei x=0, der aber nun nicht mehr der niedrigste ist, sondern die tiefer liegende Rinne in der Krempe des “Mexican Hat”. Das Teilchen wird also auf das niedrigere Niveau streben, aber der Zustand wäre dann nicht mehr rotationssymmetrisch (nicht mehr U(1)). Deshalb spricht man von einem Symmetriebruch.

Abbildung 1: Mexican Hat (Github: MexicaHat.svg)

Physik: Quantencomputing

Gehört zu: Quantenphysik
Siehe auch: Wellenfunktion, Superposition, Verschränkung, von Neumann

Stand: 08.11.2024

Eine Umfrage zum persönlichen astronomischen Hintergrund: Umfrage.

Was ist ein Quantencomputer?

Ein Quantencomputer hat als Speicher keine “normalen” Bits, die also genau zwei Zustände (Null oder Eins) annehmen können, sondern sog. “Qubits”.

So ein Qubit ist ein quantenmechanisches Element, das durch eine Wellenfunktion Ψ beschrieben wird; wobei ein Qubit eine Superposition zweier Zustände |0> und |1> ist und alle Überlagerungen vorkommen können:

\( |\Psi \rangle = \alpha \cdot |0 \rangle + \beta \cdot |1 \rangle  \\ \)

Wobei \(  \alpha^2 + \beta^2 = 1 \) sein muss.

Das Qubit ist ein quantenmechanisches Element, wobei eine Observable ausgelesen werden kann, die genau zwei unterschiedliche Werte anzeigen wird.

Superposition und Verschränkung sind erforderliche Mechanismen; d.h. die Wellenfunktion darf nicht kollabieren.

Der Quantencomputer muss dann Operationen haben, die das Schreiben und Lesen von Qubits erlauben sowie eine Art “Berechnung”, die aus zwei Eingangs-Qubits ein oder mehrere Ergebnis-Qubits erzeugt (Rechenwerk). Dies macht man mit sog. Gattern.

Für das Funktionieren eines Quantencomputers ist wichtig, wie lange der Zustand der Qubits “kohärrent” bleibt. Durch jede Wechselwirkung mit anderen Teilchen kollabieren die Wellenfunktionen; d.h. der Zustand wird “inkohärent”. Diese sog. Kohärenzzeit muss lange genug dauern, um die erwünschte Rechenoperation und das Auslesen der Ergebnisse zu ermöglichen.

Technische Realisierung von Qubits

Ursprünglich hat man solche Qubits realisiert durch supraleitende Schaltkreise. Heutzutage spricht man über folgende prinzipielle Realisierungsmöglichkeiten:

  • Supraleitende Schaltkreise
  • Ionenfalle
  • Kalte Neutralatome
  • Halbleiter Spin
  • Stickstoff-Fehlstellen in Diamanten
  • Photonen

xxx

Physik: QED Quantenelektrodynamik

Gehört zu: Physik
Siehe auch: Elementarteilchenphysik, Quantenfeldtheorie

Stand: 30.9.2024

Die Quantenelektrodynamik ist eine Quantenfeldtheorie und soll die Grundkraft “Elektromagnetismus” erklären.

Betroffene Teilchen sind: Proton, Neutron und Elektron

Austauschteilchen: Photon

Gruppentheorie: U(1)

Begonnen hat die Entwicklung der QED mit Paul Dirac. Später brachten Richard Feynman u.a. sie zur Vollendung. Nobelpreis 1965.

Physik: Die Schrödinger-Gleichung

Gehört zu: Quantenmechanik
Siehe auch: Wellenfunktionen

Stand: 20.09.2024 (Quanten-Verschränkung)

Die Schrödinger-Gleichung

Die Gleichung wurde 1926 von Erwin Schrödinger (1887-1961) für die Ausbreitung von Materiewellen (Wellenmechanik) aufgestellt und bei ihrer ersten Anwendung erfolgreich zur Erklärung des Spektrums des Wasserstoffatoms genutzt.

Der Zustand eines Quantensystemens soll durch eine Wellenfunktion beschrieben werden (also Aufenthaltswahrscheinlichkeiten etc.). Die Wellenfunktion erhält man als Lösung der Schrödinger-Gleichung (nicht-relativistisch oder auch relativistisch).

Analog zur Newtonschen Mechanik suchte man nun nach einer Diffentialgleichung, deren Lösungen dann Wellenfunktionen sind.
Generell sind Differentialgleichungen, das was der Physiker braucht: Beschreibung von Veränderung bei gegebenen Anfangsbedingungen.

Da man wusste, das Wellenfuktionen überlagert werden sollen; d.h. eine Linearkombination von Wellenfunktionen sollte wieder eine Wellenfunktion sein (also eine Lösung der Differentialgleichung), sollte diese Differentialgleichung linear sein.

Man spricht von “freien” Teilchen, wenn kein Kraftfeld einwirkt. Wenn ein Kraftfeld einwirkt, will man dieses durch ein Potential (Potenzial) beschreiben, was bei sog. konservativen Kraftfeldern immer geht.

Die Lösungen der Schrödinger-Gleichung mit einer gewissen Potentialfunktion (aka Kraftfeld) sind die gesuchten Wellenfunktionen.

Abbildung 1: Youtube-Video von Josef Gassner (https://www.youtube.com/watch?v=hY2AdjYcTro&t=905s)

Von Erwin Schroedinger stammt die grundlegende Gleichung der Quantenmechanik. Sie beschreibt in Form einer partiellen Differentialgleichung die zeitliche und räumliche Veränderung des quantenmechanischen Zustands eines nichtrelativistischen Systems unter Einfluss eines Potentials. Wobei man sich so ein Potential als Einfluss eines Kraftfeldes vorstellen kann: \( F(r,t) = \frac{\partial \Psi(r,t)}{\partial t}\).

Die Lösungen dieser Wellengleichung heissen Wellenfunktionen.
Gegeben ist dabei eine Potentialfunktion V(r,t) und gesucht wird als Lösung die dazu passende Wellenfunktionen \(\Psi(r,t)\):

\( \Large i \cdot \hbar \cdot \frac{\partial}{\partial t}\Psi(r,t) = – \frac{\hbar}{2m} \Delta \Psi(r,t)+ V(r,t) \Psi(r,t)= (- \frac{\hbar}{2m} \Delta + V(r,t)) \Psi(r,t) \\\)

Mit dem Laplace-Operator: \( \Delta f = div(grad f)) \) der so etwas wie die “zweite Ableitung” darstellt.
Benannt nach Pierre-Simon Laplace (1749-1827).

Gegeben ist dabei ein Potential V(r,t) und eine Masse m, gesucht wird eine Wellenfunktion \(\Psi(r,t) \).

Wenn es sich um ein “freies” Teilchen handelt, ist das Potential Null, d.h. es fällt in der Gleichung weg.
Wenn die Wellenfunktion nicht von der Zeit abhängt, sprechen wir von einer “stationären” Lösung. Die Wellenfunktion ist dann nicht mehr komplexwertig, sondern nimmt nur noch Werte aus den reelen Zahlen an.

Kompakt kann man die allgemeine Schrödiner-Gleichung schreiben als:

\( \Large i \cdot \hbar \cdot \dot{\Psi}(r,t) = \hat{H} \Psi(r,t) \\ \)

Mit dem geheimnisvollen Hamilton-Operator:

\(\hat{H} \Psi(t)= i \cdot \hbar \cdot \frac{\partial}{\partial t} \Psi(t) \).

Der nach William Rown Hamilton (1805-1865) benannte Hamilton-Operator.

Hintergrund dieser Schödinger-Gleichung ist der Satz von der Erhaltung der Energie.

Superposition

Eine Wellenfunktion ist also die Lösung der oben stehenden Schrödinger-Gleichung (mit einer bestimmten Potentialfunktion V). Da die Schrödinger-Gleichung linear ist, sind auch beliebige Linearkombinationen von Lösungen wiederum Lösungen. So eine Linearkombination würde man Superposition nennen. Wenn beispielsweise die Wellenfunktionen ψ1 und ψ2 Lösungen einer Schrödinger-Gleichung sind, ist auch \( \Psi = a \cdot \Psi_1 + b \cdot \Psi_2 \\\) Lösung dieser Schrödinger-Gleichung.
Das heisst, dass alle Wellenfunktionen \( \Psi: \mathbb{R}^4 \to \mathbb{C} \), die Lösung einer Schrödinger-Gleichung sind, einen Vektorraum bilden. Wenn wir noch ein Skalarprodukt (inneres Produkt) von zwei Wellenfunktionen definieren, wir dieser Vertorraum zum Prä-Hilbertraum und möglicherweise zu einem echten Hilbertraum:

\( \Large \langle \Psi_1 | \Psi_2 \rangle = \int\limits_{-\infty}^{+\infty} \Psi_1^\ast(x) \Psi_2(x) dx \\ \)

Quantenphysiker verwenden auch gerne eine Bra-Ket-Notation (s.u. Diriac) und schreiben:

\( |\Psi\rangle = a \cdot |\Psi_1\rangle + b \cdot |\Psi_2\rangle \\ \)

Zunächst ist das eine formale mathematische Notation.

Eine für Physiker interessante Eigenschaft von Wellenfunktionen ist, dass ein Zustand aus mehreren einfachen Zuständen zusammensetzen werden kann. Sind die Zustände mit “exklusiv oder” verbunden (z.B. alternative Wege), werden die Wellenfunktionen addiert (sog. Überlagerung, auch Superposition genannt), Sind die Zustände mit “und” verbunden (z.B. eine Sequenz), werden die Wellenfunktionen multipliziert.

Ein ganz einfaches Beispiel für Wellenfunktionen und Superposition ist die Teil-Reflektion. Die beiden Wellenfunktionen werden addiert, normiert und danach wird das Quadrat des Betrags genommen.

Abbildung 2: Eine schöne Einführung gibt das Youtube-Video von Alexander FufaeV (Youtube: https://youtu.be/SqQbsBOsaA8)

Vereinfachung: Eindimensionale Schrödinger-Gleichung

Wenn wir bestimmte Vereinfachungen vornehmen, wird die Schrödinger-Gleichung auch einfacher:

  • Die Wellenfunktionen möge in einfachen Fällen nicht von der Zeit, sondern nur vom Ort abhängen ==> zeitunabhängige Schrödinger-Gleichung
  • Der Ort wird in einfachen Fällen nicht durch drei Raumkoordinaten (Ortsvektor r), sondern nur durch eine Dimension (x-Achse) beschrieben. ==> Eindimensionale Schrödinger-Gleichung

Als (vereinfachte) eindimensionale, zeitunabhängige Schödinger-Gleichung haben wir:

\( W \Psi = -\frac{\hbar^2}{2 m} \frac{d^2 \Psi}{dx^2} + W_{pot} \Psi\)

Die dreidimensionale Schrödinger-Gleichung

Mit dreidimesionalen Ortskoordinaten ergibt sich:

\( W \Psi = -\frac{\hbar^2}{2 m} \left( \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} \right) + W_{pot} \Psi\)

Zur kompakteren Schreibweise wird der Nabla-Operator (\( \nabla^2 \) wird auch Laplace-Operator genannt) eingeführt:

\( W \Psi = -\frac{\hbar^2}{2 m} \nabla^2 \Psi + W_{pot} \Psi\)

Noch kompakter kann man es mit dem sog. Hamilton-Operator schreiben:

\( W \Psi = -\frac{\hbar^2}{2 m} \left( \nabla^2 + W_{pot} \right) \Psi = \hat{H} \Psi \)

mit dem Hamilton-Operator:

\( \hat{H} = \nabla^2 + W_{pot} \)

Quanten-Verschränkung – Entanglement

Hierzu habe ich einen separaten Blog-Artikel geschrieben: Verschränkung.

Die Dirac-Notation und Hilbertraum

In der Quantenphysik arbeiten wir mit Vektorräumen V über den komplexen Zahlen \(\mathbb{C}\) die unendliche Dimension haben. So einen Vektor

\( \vec{v} \in V \)

scheibt man in der Quantenphysik gern als sog. Ket-Vektor:

\( |v\rangle \)

Dies ist Betandteil der sog. Bra-Ket-Notation von  Jean Paul Dirac (1902-1984), bei der man sogenannte Bra-Vektoren und Ket-Vektoren hat; zusammen gibt das das Wort “Braket”.

Um ein Skalarprodukt (inneres Produkt) zu definieren brauchen wir noch zu jedem Ket-Vektor einen sog. Bra-Vektor.

\( \langle v | := \left[ | v \rangle \right]^\dagger = {\left[ | v \rangle \right]^\ast}^T \)

Wobei v* der komplex konjugierte und vT der transponierte Vektor ist. Man nennt das Ganze “hermitisch konjugiert” und schreibt das mit dem hochgestellten Dagger-Symbol.

Bei einem reelen Vektorraum wäre der Bra-Vektor einfach nur der Zeilen-Vektor und der Ket-Vektor der normale Spalten-Vektor.

Damit können wir das Skalarprodukt der Vektoren v und w schreiben als
\( \langle v | w \rangle \)

Aber wie wird dieses Skalarprodukt berechnet (definiert)?

Dazu wählen wir eine Basis des Vektorraums: \( \{ |b_1\rangle, |b_2\rangle, |b_3\rangle,…\} \). Das geht immer, da jeder Vektorraum eine Basis hat und definieren das Skalarprodukt zunächt für diese Basisvektoren (damit wir eine orthonormale Basis bekommen):

\( \langle b_i | b_j \rangle := \delta_{ij} \)

Mit diesem Skalarprodukt ist die Basis per Konstruktion “orthonormal”.

Wenn wir nun unsere Vektoren v und w als Linearkombination dieser Basisvektoren schreiben:

\( | v \rangle  = \sum{v_i |  b_i \rangle} \)
und
\( | w\rangle = \sum{w_i | b_i \rangle} \)

definieren wir als Skalarprodukt der Vektoren v und w einfach:
\( \langle v | w \rangle := \sum{{v_i}^\ast \cdot w_i}  \)

Nun müssen wir der guten Ordnung halber noch zeigen, dass dieses allgemeine Skalarprodukt tatsächlich eine Erweiterung des für unsere Basisvektoren definierten Skalarprodukts ist. Wir bilden nehmen also zwei Basisvektoren |bi> und |bj> und bilden das Skalarprodukt nach der erweiterten Regel:

Die Komponenten von |bi> sind δij und die Komponenten von |bj> sind δji .
Und damit ist das Skalarprodukt nach erweiterter Definition:

\( \langle b_i |  b_j \rangle = \sum{{\delta_{ij}}^\ast  \delta_{ji} } = \delta_{ij} \)

Was übereinstimmt mit der ursprünglichen Definition des Skalarprodunkts zweier Basisvektoren.

Hilbertraum

Ein Hilbertraum ist ein Vektorraum von unendlicher Dimension, der ein Skalarprodukt hat (Prä-Hilbertraum) und vollständig ist.

In der Quantenphysik verwendet man ja immer Hilberträume über den komplexen Zahlen. Die Elemente eines solchen Hilbertraums sind also Vektoren, die wir als Zustände des betrachteten quantenphysikalischen System verstehen. Statt der Wellenfunktion, die den Zustand beschreibt haben wir jetzt einfach einen Vektor \(\vec{v}\), der den Zustand beschreibt.

Um mit dieser Wellenfunktion etwas “netter” umzugehen, hat Jean Paul Dirac (1902-1984) die nach ihm benannte Dirac-Notation erfunden, bei der man sogenannte Bra-Vektoren und Ket-Vektoren hat; zusammen gibt das das Wort “Braket”.

Zunächst schreibt man also ganz normale Vektoren als Ket-Vektoren. Also statt: \( \vec{w} \) schreibt man: \( |w\rangle \). Generell sind Ket-Vektoren “normale” Vektoren aus einem Vektorraum V über \(\mathbb{C}\). Man kann sie sich als “normale” Spaltenvektoren vorstellen.

Ein Bra-Vektor geschrieben \( \langle v|\) ist eine lineare Form \( v: V \to \mathbb{C}\). Bra-Vektoren kann man sich als Zeilenvektoren vorstellen.

So ein Bra \( \langle v|\) kann dann auf einen Ket \( | w \rangle\) angewendet werden, was man schreibt als: \( \langle v|w \rangle \in \mathbb{C} \).

Wenn man so eine lineare Form \( v: V \to \mathbb{C}\) als Zeilenvektor auffasst, dann ist <v | w> das Skalarprodukt (innere Produkt) der beiden Vektoren.

In einer Bra-Ket-Notation verwendet man innerhalb der Notation häufig Kurz-Symbole für den Vektor oder die Linearform. Beispielsweise statt:

\( a  |\Psi_1\rangle + b  |\Psi_2\rangle \\ \)

schreibt man einfach:

\( a  |1\rangle + b  |2\rangle \\ \)

Physik: Plancksches Strahlungsgesetz

Gehört zu: Physik
Siehe auch: Teilchenphysik, Von Pythagoras bis Einstein, Lineare Algebra, Quantenmechanik
Benötigt: WordPress Latex-Plugin, Fotos von Wikipedia

Stand: 14.08.2024

Anfänge der Quantenmechanik

Im Jahr 1900 formulierte Max Planck (1858-1947) sein Strahlungsgesetz und seine Quantenhypothese. Erst um 1925 entwickelte sich daraus eine Quantentheorie/Quantenmechanik, die die physikalische Systeme im Allerkleinsten (z.B. Elementarteilchen, Atome,…). gut beschreibt.

Abbildung 1: Flammarion Holzschnitt (Wikipedia: FlammarionWoodcut.jpg)

Flammarion Holzschnitt (Wikipedia)

Strahlungsgesetze vor Max Planck

Man kannte früher schon die abgestrahlte Gesamt-Energie (Stefan-Boltzmann-Gesetz) und auch die Wellenlänge bei der das Maximum an Energie abgestrahlt wird (Wiensches Verschiebungsgesetz).

Dieses nach Wilhelm Wien (1864-1928) benannte Wiensche Verschiebungsgesetz besagt, dass  ein Schwarzer Körper der absoluten Temperatur T die intensivste Strahlung bei einer Wellenlänge λmax abgibt, die umgekehrt proportional zu seiner Temperatur ist; als Formel:

\( \lambda_{max} = 2897,8 \mu m \cdot \frac{1}{T}\)   (T in Kelvin)

Aus der Farbe eines thermischen Strahlers kann so auf seine Temperatur zurückgeschlossen werden. Zum Beispiel teilt man die Sterne gemäß ihrer Farbe in Spektralklassen ein, denen eine Temperaturskala entspricht.

Wilhelm Wien fand auch schon 1893 eine Formel für die spektrale Verteilung der Energie, die recht gut zu den experimentellen Messungen passte:

\( \rho(\lambda) = \Large \frac{c_1}{\lambda^5} \cdot \frac{1}{e^\frac{c_2}{\lambda T}} \)

Raleigh (John William Strutt, 3. Baron Rayleigh) veröffentlichte im Jahre 1900 sein Gesetz für die Energieverteilung mit einem noch falschen Vorfaktor, das wurde 1905 von James Jeans wie folgt korrigiert:

\( \rho(\lambda) = \Large \frac{2c\pi}{\lambda^4} \normalsize \cdot k_B T \)

Diese früheren Formeln zur Verteilung der Energie über die Wellenlängen waren beide unbefriedigend.

Das Wiensche Strahlungsgesetz von 1893 passte zwar für kleine Wellenlängen ganz gut, aber für größere Wellenlängen wich es durchaus ab von den gemessenen Werten.
Das Strahlungsgesetz von Rayleigh und Jeans von 1905 war gut für größere Wellenlängen, führte aber bei kurzen Wellenlängen zur sog. “Ultraviolettkatastrophe”.

Das Plancksche Strahlungsgesetz

Max Planck (1858-1947) beschäftigte sich mit die Strahlung eines sog. “Schwarzen Strahlers”. Speziell ging es ihm darum, wie sich in Abhängigkeit von der Temperatur die abgestrahlte Energie über die Wellenlängen hin verteilt.

Planck konnte im Jahre 1900 ein Strahlungsgesetz entwickeln, das zeigt welche Strahlungsenergie ein “Schwarzer Strahler” einer bestimmten Temperatur (T) in Anhängigkeit von der Wellenlänge (\(\rho(\lambda)\)) oder der  Frequenz  (\(\rho(\nu)\)) aussendet. Plancks Strahlungsgesetz ist eigentlich nur eine Formel wie viele andere in der Physik auch, die endlich die Verteilung der Strahlungsenergie in Abhängigkeit von der Frequenz bzw. der Wellenlänge der Strahlung “richtig” darstellt.

\(  \rho(\nu) = \Large \frac{8 \cdot \pi  \cdot h \cdot \nu^3}{c^3} \cdot \frac{1}{e^\frac{h \nu}{k T} – 1}\\\)

oder in Abhängigkeit der Wellenlänge:

\(  \rho(\lambda) = \Large \frac{8 \cdot \pi  \cdot h \cdot c}{\lambda^5} \cdot \frac{1}{e^\frac{h \nu}{k T} – 1}\\\)

Wobei die Formel im ersten Fall die Strahlungsleitsung pro infinitesimalem Frequenzintervall  \( d\nu \) und im zweiten Fall pro infinitesimalem Wellenlängenintervall \( d\lambda \) ergibt.

Abbildung 2: Verteilung der Stahlungsenergie

Planksches Strahlungsspektrum (Wikipedia)

Wir sehen, dass je nach Temperatur, das Maxium der Strahlung bei einer anderen Wellenlänge (einer anderen Farbe) liegt.

Im Grenzfall \( h\nu \gg kT\) ergibt sich das Wiensche Strahlungsgesetz; im Grenzfall \( h\nu \ll  kT \) das Rayleigh-Jeanssche Strahlungsgesetz.

In Plancks Formel kommt eine vom ihm so genannte “Hilfskonstante” h vor, die später als das legendäre Plancksche Wirkungsquantum interpretiert wurde. Die physikalische Größe “Wirkung” bezeichnet eine Energie (Joule), die in einer bestimmten Zeit  (Sekunden) etwas “bewirkt”. Die Planck’sch Hilfskonstante ist:

h = 6,626069 ⋅ 10-34 J ⋅ s

h = 6,626 069 10 34 J s

Herleitung des Planckschen Strahlungsgesetzes

Dieses Youtube-Video von Rene Matzdorf  an der Uni Kassel versucht, die Herleitung der Planck’schen Formel (Strahlungsgesetz) über die Strahlung den schwarzen Körpern, sog. Hohlraumstrahlung und darin existierenden stehenden Wellen (Hohlraum-Resonator) herzuleiten:

Der Zusammenhang ist für mich nicht so leicht nachvollziehbar. Aber man muss das Placksche Schrahlungsgesetz ja überhaupt nicht “herleiten” – hat Newton bei seiner Gravitationstheorie ja auch nicht gemacht.

Planck selbst hat die Herleitung seines Strahlungsgesetzes am 14.12.1900 in Berlin vor der Deitschen Physikalischen Gesellschaft gezeigt.

In physikalischen Formeln wird auch häufig ein sog. “Reduziertes Plancksches Wirkungsquantum” mit dem Symbol “h quer” verwendet. Es ist definiert als: \( \hbar = \Large\frac{h}{2\pi} \)

Quelle: http://www.quantenwelt.de/quantenmechanik/historisch/schwarze_korper.html

Plancks Quantenhypothese

Häufig hört man, dass aus Plancks Formel angeblich die Aussendung der Energie in sog. Quanten (ganzzahlige Vielfache  von h mal ν) folgt. Das kann man aber aus der Formel selbst überhaupt nicht ableiten. Vielmehr ist es so, dass Planck (angeblich) auf diese Formel kam indem er elektromagnetische Strahlung (das Licht) als Teilchen modellierte, die sich wie ein Gas verhalten sollten. Die unterschiedlichen Geschwindigkeiten solcher Teilchen modelliert Planck als unterschiedliche Wellenlängen der Strahlung…

Ein solches Teilchen sollte eine von der Frequenz seiner Strahlung abhängige Energie haben. Das ist die zentrale Formel (Quantenhypothese) von Planck:   \(E = h \cdot \nu \)

Die Formeln für das Strahlungsgesetz hat Planck zunächst durch Probieren herausgefunden und dann später eine Herleitung auf Basis seiner Quantenhypothese gefunden. Planck glaubte jedoch damals noch nicht an eine allgemeine Quantelung, diese war nur eine Annahme, um die Theorie in Einklang mit den Messungen bringen zu können.

Später versuchte Planck sein Strahlungsgesetz nicht durch eine “Hohlraumstrahlung” sonden durch Atome als Oszillator zu interpretieen.

Das Plancksche Wirkungsquantum

Das Plancksche Wirkungsquantum als Naturkonstante wird heute zur Definition der SI-Einheit Kilogramm benutzt.

Im Zusammenhang mit dem Wirkungsquantum spricht man auch von einer einer “Planck-Länge”, einer “Planck-Zeit” etc., denn Planck hatte herausgefunden, dass man aus den Naturkonstanten G, c, h eine ganze Schaar von Einheiten ableiten kann (durch Probieren und Beachten der Dimensionen):

Planck-Länge:

\(  \Large l_p = \sqrt{\frac{\hbar \cdot G}{c^3}} = 6.616 10^{-35}m\\ \)

Was diese Planck-Länge bedeutet, ist zunächst völlig offen. Es ist “nur” eine ausprobierte Formel, die als Dimension eine Länge hat.

Im Zusammenhang mit der Heisenbergschen Unschärferelation versucht man, diesen Planck-Größen eine physikalische Bedeutung beizumessen.

 

 

Physik: Quantenmechanik nach Susskind

Gehört zu: Physik
Siehe auch: Quantenmechanik, Die Bra-Ket-Notation, Wellenfunktion, Komplexe Zahlen

Stand: 17.03.2024

Quantenmechanik nach Susskind

Bei Youtube bin ich auf die Vorlesungen von Prof. Susskind an der Stanfort University gestossen (“continued education”).

Professor Susskind beschreibt die für die Quantenmechanik erforderliche Mathematik einfach und anschaulich, was nicht immer ganz genau der reinen Mathematik entspricht. Deswegen kann ich es gut verstehen.

Zunächst betrachten wir klassische Physikalische Systeme, danach gehen wir Zug um Zug in die Welt der Quantenphysik. Der Trick dabei ist, schon die klassische Physik “gepixelt” zu sehen, was approximativ möglich sein sollte.

In der Quantenphysik werden wir es immer wieder mit Komplexen Zahlen zu tun haben. Auch der Begriff der komplex konjugierten wird hier eine große praktische Rolle spielen.

Ket-Vektor

Ein physikalisches System kann verschiedene diskrete Zustände annehmen (ggf. approximiert).

Z.B. Das Werfen  einer Münze: Kopf oder Zahl

Z.B. Ein Würfel: Eins, Zwei, Drei, Vier, Fünf oder Sechs

Z.B. Spin eines Elektrons: Up oder Down

So einen Zustand schreiben wir auf als sog. “Label” in sog. Ket-Schreibweise…

z.B.    |Kopf>   oder |Zahl>

z.B.   |Eins> oder |Zwei> oder…

z.B. |Up> oder |Down>

Wir können jeden Zustand (State) durch einen Spalten-Vektor repräsentieren.

\(  |Kopf> \space  —>   \left( \begin{array}{c} 1 \\\ 0   \end{array}\right)   \)

und

\(  |Zahl>  \space —>   \left( \begin{array}{c} 0\\\ 1   \end{array}\right)  \\  \)

Oder beim Würfel:

\(  |Eins> \space  —>   \left( \begin{array}{c} 1 \\\ 0  \\\ 0 \\\ 0 \\\ 0 \\\ 0  \end{array}\right)   \) und     \(  |Zwei> \space  —>   \left( \begin{array}{c} 0 \\\ 1  \\\ 0 \\\ 0 \\\ 0 \\\ 0  \end{array}\right)   \) und …

Man sagt auch |a> sei ein Vektor, obwohl der zugehörige Spaltenvektor “nur” eine Repräsentation von |a> ist. Manchmal identifizieren wir beides (aus Bequemlichkeit).

Die Menge der möglichen Zustände nennt man auch “Zustandsraum“. Beispielsweise:

\( S = \left\{ \left( \begin{array}{c} 1 \\\ 0   \end{array}\right) , \left( \begin{array}{c} 0\\\ 1   \end{array}\right)  \right\} \\ \)

Der Zustand eines physikalischen Systems könnte sich mit der Zeit ändern. Den Zustand zu einem bestimmten Zeitpunkt nennt man auch “Konfiguration“.

Später werden wir sehen, wie dieser Zustandsraum einen zu einem Vektorraum erweitert werden kann (der Vektorraum wird aufspannt).

Bra-Vektor

Zu jedem Ket-Vektor |a>  bilden wir einen sog. Bra-Vektor <a| auf folgende Weise:

Der Ket-Vektor sei:

\(  |a> \space  —>   \left( \begin{array}{c} a_1 \\\ a_2  \\\ a_3 \end{array}\right)  \\ \)

dann bilden wir den zugehörigen Bra-Vektor als Zeilenvektor folgendermaßen:

\(  <a| \space  —>   \left( \begin{array}{r} {a_1}^* &  {a_2}^*  &  {a_3}^* \end{array}\right)  \\ \)

Wir sagen, der Bra-Vektor sei das komplex konjugierte zum Ket-Vektor

Inneres Produkt

Das sog. “Innere Produkt” zweier Vektoren definieren wir nun einfach als:

\( <a|b> = \left( \begin{array}{r} {a_1}^* &  {a_2}^*  &  {a_3}^* \end{array}\right)  \cdot \left( \begin{array}{c} b_1 \\\ b_2  \\\ b_3 \end{array}\right) = {a_1}^*  b_1 + {a_2}^* b_2 + {a_3}^* b_3 \\ \)

Das Innere Produkt eines Vektors mit sich selbst ist dann immer eine reelle Zahl. Wir definieren als “Länge” oder auch “Norm” eines Vektors die positive Wurzel aus diesem Inneren Produkt.

Wenn das Innere Produkt zweier Vektoren Null ist, sagen wir sie seien “orthogonal”.

Observable

Observable nennt man Dinge, die man messen kann.

In einem bestimmten physikalischen Experiment wollen wir eine bestimme Größe messen und bekommen so zu jedem Zustand des Systems einen Messwert.

Eine bestimmte Observable M ordnet also jedem Zustand aus dem Zustandsraum S einen Messwert (reelle Zahl) zu. Mathematisch geschrieben:

\( M: S \to \mathbb{R} \)

Abstrakter Vektorraum

Die Ket-Vektoren |a> bilden einen (abstrakten) Vektorraum; d.h. es gelten bestimmte Regeln:

Regel 1: Jeder Vektor aus dem Vektorraum kann mit einem Skalar (komplexe Zahl) mutipliziert werden, wobei das Ergebnis wieder ein Vektor aus dem Vektorraum ist.

\( \lambda \space | a> = | a^\prime> \)

Regel 2: Zwei Vektoren aus dem Vektorraum kann ich addieren, wobei das Ergebnis wieder ein Vektor aus dem Vektorraum ist.

\(  | a >  +  | b >  =  | c > \)

Beispiele von Vektorräumen

Die Menge der Ket-Vektoren bilden einen Vektorraum, wobei wir als Einträge ganz allgemein Komplexe Zahlen zulassen und die Dimension des Vektorraums gleich der Anzahl verschiedener Zustände ist.

Die oben aufgeführten Regeln für Vektorräume gelten offenbar:

\( \lambda \left( \begin{array}{c} a_1 \\\ a_2  \\\ a_3 \end{array}\right) = \left( \begin{array}{c}\lambda  a_1 \\\ \lambda  a_2  \\\ \lambda a_3 \end{array}\right) \\\) \(   \left( \begin{array}{c} a_1 \\\ a_2  \\\ a_3 \end{array}\right) + \left( \begin{array}{c} b_1 \\\ b_2  \\\ b_3 \end{array}\right) = \left( \begin{array}{c} a_1 + b_1 \\\ a_2 + b_2 \\\ a_3 + b_3\end{array}\right)   \)

Linearkombinationen

Wir können jeden Ket-Vektor | a > als Linearkombination der Zustandsvektoren darstellen:

\( | a > = \left( \begin{array}{c} a_1 \\\ a_2  \\\ a_3 \end{array}\right) = a_1 \left( \begin{array}{c} 1 \\\ 0  \\\ 0 \end{array}\right) +  a_2 \left( \begin{array}{c} 0 \\\ 1  \\\ 0 \end{array}\right)  + a_3 \left( \begin{array}{c} 0 \\\ 0  \\\ 1 \end{array}\right)  \\\)

Damit spannen die Zustandsvektoren einen (abstrakten) Vektorraum auf, aber nicht jeder Vektor aus diesem Vektorraum beschreibt einen physikalischen Zustand – …

Quantenmechanisches Beispiel

Wenn ich den Spin eines quantenmechanischen Elektrons messe, bekomme ich bei jeder Messung einen von zwei Zuständen, die wir | up > und | down > nennen können.

Diese beiden Zustände repräsentieren wir durch zwei Spaltenvektoren im Vektorraum:

\(  | up > \space  —>   \left( \begin{array}{c} 1 \\\ 0   \end{array}\right)  \\ \) und

\(  | down >  \space —>   \left( \begin{array}{c} 0\\\ 1   \end{array}\right)  \\ \)

In der klassischen Physik würde niemand auf die Idee kommen, Linearkombinationen solcher zwei Zustände zu betrachten. In der Quantenpysik machen wir das aber.

Linearkombination dieser beiden Zustände wären also:

\( a_{up} \space | up > + a_{down} \space | down > \\\)

Die Koeffizienten können wir als Spaltenvektor schreiben:

\( a = \left( \begin{array}{c} a_{up} \\\ a_{down}  \end{array}\right) \\\)

Wobei die Beträge der Komponenten (Koeffizienten der Linearkombination)  interpretiert werden als die Wahrscheinlichkeiten der Zustände; also:

\( P_{up} = a_{up} {a_{up}}^* \\\) und

\( P_{down} = a_{down} {a_{down}}^* \\\)

Wobei natürlich die Summe der Wahrscheinlichkeiten 1 ergeben muss: \( P_{up} + P_{down} = 1 \)

Alle Linearkombinationen der Ket-Vektoren  | up > und | down >, die diese Bedingung (Summe der Wahrscheinlichkeiten = 1) erfüllen, werden in der Quantenmechanik als physikalisch mögliche Zustände angesehen. Wir können diese Bedingung auch schreiben als:

\( P_{up} + P_{down} = a_{up} {a_{up}}^* + a_{down} {a_{down}}^* = \left( \begin{array}{r} {a_{up}}^* &  {a_{down}}^*   \end{array}\right)  \cdot \left( \begin{array}{c} a_{up} \\\ a_{down}   \end{array}\right) = <a|a> = 1 \)

Die Bedingung ist also: “Länge = 1”; d.h. die quantenmechanisch möglichen Zustände des Elektronen-Spins liegen auf dem Einheitskreis.

Das Besondere in diesem Fall also, dass der Elektronenspin zwar gequantelt ist, also nur diskrete Werte (+1 und -1) annehmen kann, aber die Wahrscheinlichkeiten beim Messvorgang durchaus gebrochene Zahlen sein können.

Matrizen

Wir werden Matrizen brauchen. Wofür, sehen wir später.
Eine Matrix ist einfach eine quadratische Anordnung von Zahlen, beispielsweise:

\( M = \left( \begin{matrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \\ \end{matrix} \right) \\ \)

So eine Matrix M können wir anwenden auf einen Spaltenvektor v indem wir im Prinzip die inneren Produkte von Matrix-Zeilen mit dem Spaltenvektor bilden:

\( M v =  \left( \begin{matrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \\ \end{matrix} \right)  \left( \begin{array}{c} v_1 \\\ v_2  \\\ v_3 \end{array}\right) = \left( \begin{array}{c} m_{11} v_1  + m_{12} v_2  + m_{13} v_3 \\\ m_{21} v_1 + m_{22} v_2 + m_{23} v_3  \\\ m_{31} v_1 + m_{32} v_2 + m_{33} v_3\end{array}\right) \\ \)

Das Ergebnis ist wieder ein Spaltenvektor.

Wenn wir nun einen Zeilenvektor w und eine Matrix M nehmen, sieht das ganz analog aus:

\( w M  =  \left( \begin{array}{c} w_1 & w_2  & w_3 \end{array}\right) \left( \begin{matrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \\ \end{matrix} \right)  = \left( \begin{array}{c} w_1 m_{11}  + w_2 m_{21} + w_3 m_{31}  & w_1 m_{12}  + w_2 m_{22} + w_3 m_{32}  & w_1 m_{13} + w_2 m_{23} + w_3 m_{33} \end{array}\right) \\ \)

Das Ergebnis ist wieder ein Zeilenvektor.

Matrizen als Operatoren auf einem Vektorraum

Matrizen kann man auch “Operatoren” nennen. Sie können die Vekoren eines Vektorraums transformieren. Das allgemeine KOnzept heißt “Linearer Operator” oder auch “Lineare Transformation”. Wir identifizieren diese zur Vereinfachung.

Wir schauen uns mal ein paar Beispiele aus dem 2-dimensonalen reellen Vektorraum an.

Beispiel 1: Stretchen um einen Faktor 2

\( M v = \left( \begin{matrix} 2 & 0 \\ 0 & 2  \end{matrix} \right)  \left( \begin{array}{c} v_x \\\ v_y  \end{array}\right)  =   \left( \begin{array}{c} 2 v_x \\\  2 v_y  \end{array}\right)  \\ \)

Beispiel 2: Stretchen in Richtung der y-Achse

\( M v = \left( \begin{matrix} 1 & 0 \\ 0 & 2  \end{matrix} \right)  \left( \begin{array}{c} v_x \\\ v_y  \end{array}\right)  =   \left( \begin{array}{c} v_x \\\  2 v_y  \end{array}\right)  \\ \)

Beispiel 3: Rotieren um 90 Grad im Uhrzeigersinn

\( M v = \left( \begin{matrix} 0 & 1 \\ -1 & 0  \end{matrix} \right)  \left( \begin{array}{c} v_x \\\ v_y  \end{array}\right)  =   \left( \begin{array}{c} v_y \\\  -v_x  \end{array}\right)  \\ \)

Wir sehen also: Matrizen transformieren einen Vektorraum; aber nicht alle Transformationen sind Matrizen.

Hermitische Matrizen

Observable in der Quantenphysik werden durch hermitische Operatoren dargestellt. Wir schauen hier deswegen auf hermitische Matrizen.

Eine hermitische Matrix ist definiert durch: \( m_{ij} = {m_{ji}}^*   \)

Eine hermitische Matrix ist vom Konzept her so etwas wie eine reelle Transformation, aber nicht ganz genau: nur die Diagonalelemente der Matrix sind reell, die anderen Elemente werden beim Spiegeln an der Diagonale komplex konjugiert.

Die Namensgebung geht zurück auf den französischen Mathematiker Charles Hermite (1822-1901).

Hintergrund:

Zu einer Matrix \(M = (m_{ij}) \) definieren wir eine “Hermitsch konjugierte” Matrix und schreiben die mit einem “Dagger”;

\( \Large M^\dagger = (m_{ij}^*) \)

Wir nennen eine Matrix M “hermitisch”, wenn sie gleich ihrer hermitisch konjugierten ist, also wenn:

\( \Large M = M^\dagger \\ \)

Diese Eigenschaft ist so ähnlich wie \( z = z^* \) bedeutet, dass z eine reelle Zahl ist.

In der Quantenphysik werden wir es fast ausschließlich mit Hermitischen Matrizen (Hermitischen linearen Operatoren) zu tun haben.

Zusammenfassung Nr. 1 zur Quantenphysik

In der Quantenphysik geht es darum, Wahrscheinlichkeiten zu berechnen. Wahrscheinlichkeiten, dass eine Observable bei einem bestimmten Zustand des Systems einen bestimmten Wert (Messwert) annimmt.

Vektoren repräsentieren die Zustände.
Solche Zustandsvektoren bekommen eine irgendwie geartete Bezeichnung (“Label”); z.B. \( |hinz\rangle  \text{ und } |kunz\rangle \).
Auch die Linearkombinationen solcher Zustandsvektoren werden als Zustände bezeichnet.
Alle solchen Linearkombinationen, im Beispiel:  \( a |hinz\rangle + \enspace b |kunz\rangle \enspace mit\enspace  a, b \in C \), bilden einen Vektorraum, den sog, Zustandsraum

Hermitische Matrizen repräsentieren die Observablen.
Wie ich zu einer Observablen (also einer Messgröße) die Matrix finde, ist noch ein Geheimnis.
Später werden wir sehen, dass die Eigenwerte der Matrix die Werte sind, die die Observable annehmen kann; d.h. die wir messen können.

Erwartungswert einer Observablen

Nun entspricht also eine Hermitische Matrix M einer Observablen.

In einem bestimmten Zustand  | a > ist der Erwartungswert der Observablen M:

\( < a | M | a> = \text{Erwartungswert von M} \\ \)

Vergleiche dazu auch: Schroedinger

Eigenwert und Eigenvektor in der Quantenphysik

Wofür diese Konzepte gut sind, sehen wir hier in der Quantenphysik: Die Eigenwerte einer Hermitischen Matrix werden die möglichen Messwerte der Observablen sein.

Wir betrachten eine hermitische Matix M und fragen uns, ob es dazu einen Vektor |a>  gibt, der durch die Matrix M nicht in der Richtung, sondern nur in der Länge verändert wird. Die Längenveränderung  wäre dann ein Faktor, der vom Vektor |a> abhängt, weswegen wir in λa nennen.

\(  M|a> = \lambda_a | a > \\ \)

Wenn es so etwas zu der Matrix M gibt, nennen wir so ein  λa einen Eigenwert, und den Vektor |a> einen Eigenvektor der Matrix.

Der Witz in der Quantenmechanik ist, dass die Eigenwerte einer hermitische Matrix M die möglichen Messwerte der Observablen sind und der zugehörige Eigenvektor ist der Zusrand in dem die Wahrscheinlichkeit, diesen Wert zu messen 1 ist.

Wie man auf diese Matrizen kommt, die ja Observable repräsentieren sollen, ist noch völlig offen.

Wir schauen uns als Beispiele mal diagonale Matrizen an. Man sieht leicht, dass die Diagonalelemente die Eigenwerte sind und die Eigenvektoren die möglichen Einheitsvektoren aus lauter Nullen und einer Eins.

Beispiel Elektronenspin

Die Observable ist also der Spin eines Elektrons, der +1 oder -1 sein kann.

Als Matrix für diese Observable nehmen wir mal:

\( \sigma_3 = \left( \begin{matrix} 1 & 0  \\ 0 & -1  \\ \end{matrix} \right) \\ \)

Diese Matrix wird auch “Spinoperator” genannt und mit σ3 bezeichnet. Diese Matrix als Repräsentation der Observablen “Spin” fällt hier ersteinmal so vom Himmel. Wir können aber einfach nachweisen, dass es stimmt, den die Eigenwerte sind:
+1 zum Eigenvektor \( \left( \begin{array}{c} 1 \\\ 0   \end{array}\right)  = |up> \) und -1 zum Eigenvetor \( \left( \begin{array}{c} 0 \\\ 1   \end{array}\right)  =|down> \)

Genaugenommen steht σ3 für die Messung des Eletronenspins in z-Richtung (wieso das so ist kommt später).

In y-Richtung gemessen bekommen wir als Observable:

\(  \sigma_2 = \left( \begin{matrix} 0 & -i  \\ i & 0  \\ \end{matrix} \right) \\\)

In x-Richtung gemessen bekommen wir als Observable:

\( \sigma_1 = \left( \begin{matrix} 0 & 1  \\ 1 & 0  \\ \end{matrix} \right) \\ \)

Wir haben also 3 Spinoperatoren…

Wichtiger Satz über Eigenwerte (Lecture 3, t=59m)

Wenn es zu einer Observablen (hermitischen Matrix) M mehrere Eigenvektoren gibt:

\(  M | a > = \lambda_a  | a > \\ \)

und

\(  M | b > = \lambda_b  | b > \\ \)

und die Eigenwerte verschieden sind, dann sind die Eigenvektoren orthogonal; also <a|b> = 0.

Ein Eigenvektor |a> beschreibt ja einen Zustand, in dem die Wahrscheinlichket 1 ist, den Wert λa zu messen.

Wenn ich also zu einer Observablen zwei unterschiedliche Messwerte λa bzw. λb bekomme, gibt es dazu zwei orthogonale Zustandsvektoren |a> und |b>, in denen die Wahrscheinlichkeit 1 ist, die Messwerte λa bzw. λb zubekommen.

Ein Satz zu Wahrscheinlichkeiten (Lecture 3, t= 1h 14:30m)

Wir mögen ein System haben, das im Zustand |b> präpariert ist – z.B. ein Elektron haben mit dem Elektronenspin |b>

Nun betrachten wir eine Observable M mit einem Eigenwert λa zum Eigenvektor |a> .

Wenn wir in dem gegebenen Zustand |b> eine Messung mit M durchführen, können wir uns fragen, mit welcher Wahrscheinlichkeit P unser Messergebnis λa sein wird.
Prof. Susskind sagt:
\( P = \langle a|b \rangle {\langle a|b \rangle}^* \)

Quantenmechanik mit einem Elektronenspin (Lecture 4)

Wir stellen uns vor, wir hätten ein Elektron so präpariert, dass der Elektronenspin in Richtung des (räumlichen) Vektors n = (n1, n2, n3) zeigt.

Nun wollen wir den Elektronenspin dieses Elektrons entlang der Richtung m = (m1, m2, m3) messen. Das Ergebnis ist (natürlich) entweder +1 oder -1 (so merkwürdimg ist die Quantenwelt).

Dieses ganze Experiment (präparieren und dann messen) wiederholen wir sehr oft, um die Wahrscheinlichkeit P+ für das Messergebnis +1 bzw. die Wahrscheinlichkeit P für das Messergebnis -1  zu bestimmen.

Das können wir jetzt ja ganz einfach ausrechnen. Als Ergebnis (ohne Beweis)  erhalten wir, dass die Wahrscheinlichkeit nur vom (räumlichen) Winkel θ zwischen den beiden Vektoren abhängt. Der Cosinus dieses Winkels ist bekanntlich das Innere Produkt der beiden Richtungs-Vektoren:

\( \Large \cos{\theta} = \langle n, m \rangle \\ \)

Und die Wahrscheinlichkeit wird (ohne Beweis):

\( \Large P_+ = \frac{1 + \cos{\theta}}{2} \\ \)

Wichtger Zusatz: Kommutator (Lecture 4, t= 1h 54m)

Wenn wir eine Messung einer Observablen durchführen, verändern wir den Zustand des Quantensystems. (Detail: Es ändert sich der “Eigenzustand” auf einen Eigenvektor, der zu dem gemessenen Eigenwert gehört.)

Wir können also nicht zwei Messungen eines Anfangszustands machen, denn der Anfangzustand hat sich ja durch die erste Messung verändert. Das würde nur gehen, wenn die beiden Matrizen (=Observablen) die gleichen Eigenvektoren hätten.

Prof. Susskind sagt (ohne Beweis), dass zwei Matrizen A und B genau dann die gleichen Eigenvektoren haben (evtl. aber andere Eigenwerte) , wenn sie kommutieren; d.h. wenn AB = BA.
Man nennt AB – BA den Kommutator von A und B und schreibt auch:

\(  [A,B] = AB – BA \\\)

Ein System mit zwei Elektronen: Entanglement (Lecture 4, t= 1h 55m)

Zunächst machen wir mal eine kleine Tabelle, wie das mit einem Elektron war:

\( \begin{array}{l} \sigma_1 | up \rangle = | down \rangle \\ \sigma_1 | down \rangle = | up \rangle \\ \sigma_2 | up \rangle = i | down \rangle \\ \sigma_2 | down \rangle = -i | up \rangle \\ \sigma_3 | up \rangle =  | up \rangle \\ \sigma_3 | down \rangle = – | down \rangle \end{array} \\\)

Wenn wir nun zwei Elektronen betrachten, haben wir die vier möglichen  Zustände der beiden Elektronenspins, die wir als Ket-Vektoren aufschreiben:

| u u >

| u d >

| d u >

| d d >

Diese vier spannen mit ihrern Linearkombinationen einen vierdimensionalen komplexen Vektorraum auf:

\( a | u u > + b | u d > + c | d u > + d | d d > \\ \)

Physik: Tunneleffekt

Gehört zu: Physik
Siehe auch: Kernfusion, Quantenmechanik
Benutzt: Fotos vom Spiegel

Stand: 02.07.2013

Was ist der Tunneleffekt?

Tunneleffekt ist eine anschauliche Bezeichnung dafür, dass ein Teilchen eine Potentialschwelle auch dann überwinden kann, wenn seine Energie geringer als die „Höhe“ der Barriere (Schwelle)  ist. In der klassischen Physik ist das nicht möglich, aber in der Quantenphysik gibt es das mit einer gewissen Wahrscheinlichkeit.

Der Spiegel

Quelle: https://www.spiegel.de/fotostrecke/erwischt-elektronen-beim-tunneln-fotostrecke-20657.html

Beispiel einer Potentialschwelle

Elektrisch gleichnamig geladene Teilchen stoßen sich ab –  wie z.B. zwei Protonen durch ihr elektrisches Feld (das Coulomb-Potential). Diese abstoßende Kraft steigt an, je näher sich die Teilchen kommen (mit r-2).

Eine “Potentialschwelle” kommt hier dadurch zustande, dass die Starke Kernkraft anziehend wirkt und bei kleineren Abständen stärker ansteigt, als die abstoßende elektromagnetische Kraft. Das Überwinden einer solchen Potentialschwelle, auch wenn die Energie dafür eigentlich nicht reicht, ist ein quantenmechanischer Effekt, der mit einer gewissen Wahrscheinlichkeit auftreten kann.

Die Stärke der sog. Starken Kernkraft, die zwei Protonen bei kleinem Abstand anzieht, ist nur durch sehr aufwendige Berechnungen zu ermitteln. Denn diese Starke Kernkraft wirkt primär zwischen den Quarks im Inneren eines Protons. Man spricht dann noch von einer “restlichen” Wirkung. Dazu das Stichwort: Gamow Peak.

Berechnung des Tunneleffekts

Zuerst müssten wir das Potential des betrachteten Teilchens in Abhängigkeit vom Ort  mit einer Funktion V(x) beschreiben.

Diese Potentialfunktion können wir dann in die stationäre Schrödinger-Gleichung einsetzen.

Diese Schrödinger-Gleichung ist damit eine Differentialgleichung, deren Lösung die Wellenfunktion Φ des betrachteten Teilchens ist. Damit haben wir sich die Aufenthaltswahrscheinlichkeit |Φ|² des Teilchens in Abhängigkeit von seinem Ort, welche auch jenseits der Potientialschwelle größer als Null ist.

Beispiel des Tunneleffekts

Bei der Kernfusion in unserer Sonne findet in der Hauptsache der sog. p-p-Prozess statt. Der p-p-Prozess beginnt mit der Verschmelzung zweier Protonen und der anschließenden Umwandlung eines Protons in ein Neutron und eine Positron, sodass ein Deuterium-Kern 2H entsteht.

\( ^1H +  {^1H}  \to  {^2H} + e^+ + \nu_e + 0.42 MeV \\\)

Für diesen ersten Reaktionsschritt muss die Potentialschwelle zwischen den beiden Protonen 1H überwunden werden, was der Tunneleffekt ermöglicht. Die Wahrscheinlichkeit dafür ist aber so klein, dass die durchschnittliche Reaktionszeit  1.4 1010 Jahre (in unserer Sonne) beträgt.

Quelle: https://sternentstehung.de/von-wasserstoff-zu-helium-die-pp-kette

Physik: Die Wellenfunktion in der Quantenmechanik

Gehört zu: Quantenphysik
Siehe auch: Schrödinger-Gleichung, Materiewellen, Komplexe Zahlen, Lineare Algebra

Stand: 23.08.2024  (Observable, Zeitabhängigkeit, klassische Welle, Korrespondenzprinzip)

Die “klassische” Welle

Seit alters her beschreiben wir eine Welle durch eine Sinus- bzw. Cosinus-Funktion.

\( \Large y(t) = A \cdot \cos( 2\pi  f \cdot t + \Phi) \\ \)

Dabei ist A die Amplitude und Φ die Phasenverschiebung. Wobei wir die Frequenz f zunächst nicht weiter betrachten.

Das Paar aus Amplitude und Phasenverschiebung kann man sich als eine komplexe Zahl in Polarkoordinaten vorstellen:

\( \Large z = A \cdot e^{i \Phi} \\\)

Wenn die Welle nicht nur von der Zeit abhängt, sondern auch von der Ortskoordinate, kann man ganz allgemein eine Wellenfunktion auch so schreiben:

\( \Large y(x,t) = A \cos{(kx – \omega t)} \\\)

Wobei  \( \Large k = \frac{2 \pi}{\lambda} \) die sog. Wellenzahl ist

und   \( \Large \omega = 2 \pi f \) die  sog. Kreisfrequenz

Link: https://youtu.be/MzRCDLre1b4

Die Wellenfunktionen in der Quantenphysik

Youtube: https://youtu.be/YJjHI7Gxn-s?si=iYv8Kg0MbKDfWvr7

In der klassischen Mechanik (Newton etc.), wird ein Teilchen durch Ort x(t) und Implus p(t) beschrieben mit seinem sog. “Zustand”. Wenn man den Zustand zu einem Zeitpunkt t=0 kennt, also x(0) und p(0), dann kann man alle zuküftigen Zustände berechnen durch Newtons berühmte Gleichung:

\( F = \, – m \ddot x \)   d.h. \( F = \, –  \dot p  \)

In der Quantenphysik macht man das mit der Wellenfunktion Ψ. Sehr allgemein gesagt: Eine Wellenfunktion beschreibt den Zustand eines quantenmechanischen Teilchens.

Der Wertebereich einer Wellenfunktion sind die Komplexen Zahlen. Der Definitionsbereich sind Ort und Zeit Ψ(r,t).
Der Wert ist also eine Komplexe Zahl, veranschaulicht in Polar-Koordinaten durch einen Vektor mit einer Länge auch “Amplitude” genannt, und einem Winkel, auch Phase genannt.

Für die Darstellung Komplexer Zahlen in Polar-Koordinaten benutzt die Quantenmechanik gerne die sog. Exponential-Darstellung:

\(\Large z ={r} \cdot e^{i \cdot \phi} \\\)Damit kann man sich die Komplexe Zahl gut als Vektor einer bestimmten Länge (r auch genannt Amplitude) mit einem Drehwinkel (Φ auch genannt Phase) vorstellen.

Da der Wert der Wellenfunktion eine Komplexe Zahl ist, kann man sie nicht “direkt” beobachten; der Betrag der Wellenfunktion zum Quadrat ist aber eine nicht negative reelle Zahl und ist so der Beobachtung zugänglich.

Wir werden später sehen, dass man mit der Wellenfunktion die Wahrscheinlichkeit für den Aufenthalt eines Teilchens an einem bestimmten Ort (Aufenthaltswahrscheinlichkeit) und auch die Wahrscheinlichkeiten anderer Größen, sog. Observable berechnen (vorhersagen) kann. Daher auch der Spruch “Shut up and calculate”, angeblich auf Richard Feynman (1918-1988) zurückgehen soll…

Woher bekommen wir die Wellenfunktion eines quantenmechanischen Systems? Die Wellenfunktion bekommen wir als Lösung der Schrödinger-Gleichung.

Die Kopenhagener Deutung der Wellenfunktion

Dazu habe ich einen eigenen Blog-Artikel geschieben: Kopenhagener Deutung.

Operatoren und Observable

Was ist ein Operator?

Ein Operator bildet einfach eine Funktion auf eine andere Funktion ab. Traditionell spricht man dann nicht so allgemein von einer “Abbildung”, sondern von einem “Operator”. Folgendes Beispiel für Operatoren habe ich aus einem Youtube-Video von Prof. Patrick Nürnberger entnommen:

Um zu zeigen, was ein Operator macht, nehmen wir für ein Beispiel als Funktion einfach einmal \( \Psi(x) = e^{-x^2} \) und als Operator nehmen wir, ebenfalls als Beispiel, die zweite Ableitung der Funktion nach x und schreiben diesen Operator als \( \Large \hat A = \frac{d^2}{dx^2} \).

Dann ist dieser Operator angewendet auf unsere Funktion (nach der Kettenregel):

\( \hat A \Psi = \frac{d^2}{dx^2} \, e^{-x^2} = \frac{d}{dx}(-2x \, e^{-x^2}) \\\)

Die Produktregel ergibt dann:

\( \hat A \Psi = -2 \cdot e^{-x^2} + (-2x) \cdot (-2x \, e^{-x^2}) = (4x^2 – 2) e^{-x^2}\)

Was sind Observable?

Experimentell beobachtbare Größen eines physikalischen Systems, also Messgrößen.

Observable sind z.B.:

  • Ort
  • Impuls
  • Kinetische Engergie
  • etc.

Operatoren in der Quantenmechanik

Wahrscheinlichkeitsdichte

Den Zustand eines quantenphysikalischen Systems beschreiben wir durch die Wellenfunktion Ψ, die wir aber nicht direkt beobachten können und von der wir im Moment auch noch nicht wissen, wie sie ermitteln könnten. Um zu beobachtbaren Größen zu kommen, benutzen wir die oben eingeführten Operatoren, die auf die Wellenfunktion angewendet werden und dann beobachtbare Werte (“Observable”) liefern; aber auch nur als Wahrscheinlichtkeitsverteilung (woraus ich Erwartungswerte etc. berechnen kann).

In Analogie zur  Kopenhagener Deutung schreiben wir für eine beliebige Observable Q die Wahrscheinlichkeitsdichte als:

\(\Large \rho(Q) = \Psi^* \hat Q \Psi \\\)

Der zur Observablen \( Q \) zugeordnete  Operator \(\hat Q \) liefert dann zusammen mit der Wellenfunktion des quantenphysikalischen Systems die Wahrscheinlichkeitsverteilung dieser Observablen (in reelen Zahlen).

In Analogie zur  Kopenhagener Deutung schreiben wir für eine beliebige Observable Q den Erwartungswert als:

\(\Large \langle \hat{Q} \rangle= \int\limits_{-\infty}^{+\infty} \Psi^* \hat{Q} \Psi dx \)

Das Korrespondenzprinzip

Der Begriff “Korrespondeszprinzip” hat je nach Kontext, verschiedene Bedeutungen.  In der Quantenmechanik hat ihn z.B. Niels Bohr bei seinem Atommodell eingeführt. In der Wellenmechanik versucht das Korrespondenzprinzip eine Korrespondenz zwischen klassischen Messgrößen und Operatoren herzustellen.

Welcher Operator wird in der Quantenmechanik für welche Observable genommen? Dazu haben wir zwei Beispiele:

Beispiel 1: Die Observable “Ort” (eindimensional):

Operator:   \( \Large\hat{x} \Psi(x,t) = x \cdot \Psi(x,t) \normalsize \text{ also Multiplikation}\)

Beispiel 2: Die Observable “Impuls” (eindimensional):

Operator: \( \Large\hat{p} \Psi(x,t) = -i \hbar \frac{\partial \Psi(x,t)}{\partial x} \normalsize \text{ also Ableitung} \)

Weitere Zuordnungen von Operatoren zu Observablen konstruieren wir daraus. Das nennt man Korrespondenzprinzip.

Fragen wir beispielweise nach dem Operator für die Observable eindimensionale “kinetische Energie”, so beginnen wir mit der klassischen Formel:

\( \Large E_{kin} = \frac{p^2}{2m} \\\)

und ersetzen dann die klassiche Größe Impuls p durch den obenstehenden Impuls-Operator:

\( \Large \hat{E}_{kin} = \frac{{\hat p}^2}{2m} = \frac{-\hbar^2}{2m} \frac{d^2}{dx^2}\\\)

Allgemein besagt das Korrespondenzprinzip, dass wir aus einer klassischen Messgröße, die vom Ort und vom Impuls abhängt, also \(f(x,p)\), in der Quantenmechanik einen “korrespondierenden” Operator bekommen: \( \hat{f}(\hat x, \hat p) \)

 

Physik: Symmetrie

Gehört zu: Physik
Siehe auch: Lineare Algebra, Langrange-Formalismus, Quantenmechanik

Stand: 21.12.2023

Der Begriff der Symmetrie in der Physik

Die Wikipedia sagt:

Unter einer Symmetrie versteht man in der Physik die Eigenschaft eines Systems, nach einer bestimmten Änderung (z.B. Koordinatentransformation) in einem unveränderten Zustand (also unverändert) zu bleiben. Eine solche Transformation (die den Zustand nicht ändert) wird Symmetrietransformation oder auch vereinfacht “Symmetrie“,  genannt.

In der Geometrie bedeutet “unveränderter Zustand”, dass ein geometrischer Körper nach einer Symmerietransformation wieder genauso ausssieht wie vorher.
In der Physik bedeutet “unveränderter Zustand”, dass die Lagrangefunktion identisch ist.

Der Zustand eines mechanischen Systems mit den Koordinaten q1, q2,…,qn wird dabei beschrieben durch die Lagrangefunktion:

\( \mathcal{L}(q_1, q_2,..q_n, \dot{q_1}, \dot{q_2},…, \dot{q_n}, t) \\\)

Unterschieden werden:

  • diskrete Symmetrien (z. B. Spiegelsymmetrie), die nur eine endliche Anzahl an Symmetrieoperationen besitzen
  • kontinuierliche Symmetrien (z. B. Rotationssymmetrie), die eine unendliche Anzahl an Symmetrieoperationen besitzen.

Eine Menge bestimmter Symmetrietransformationen bildet eine Gruppe denn: wenn ich zwei Symmetrietransformationen nacheinander ausführe habe ich wieder eine Symmetrietransformation – also ist Axiom der Abgeschlossenheit erfüllt und auch die Assoziativität ist offensichtlich. Ich muss dann noch die Menge so auswählen, dass die Identität dazu gehört und zu jeder Symmetrietransformation auch die inverse…

Die mathematische Beschreibung von Symmetrien erfolgt durch die Gruppentheorie.

Physikalische Anwendung findet die Gruppentheorie in der Quantenphysik und dort speziell bei dem Standardmodell der Elementarteilchen.

 

 

Physik: Quantenfeldtheorie QFT

Gehört zu: Physik
Siehe auch: Quantenmechanik, Elementarteilchenphysik, Heisenberg, Kommutator

Stand: 23.2.2022

Links zur QFT

Youtube Gaßner (41):

Youtube Gaßner (42):

Grundlagen der Quantenfeldtheorie

Gerne verwendete Begriffe sind auch:

Was diese Begriffe mit der QFT zu tun haben ist mir nicht klar.

In der Quantenfeldtheorie soll die Spezielle Relativitätstheorie voll berücksichtigt werden (also die Lorentz-Invarianz), was ja in der Quantenmechnik (z.B. Schrödinger) noch nicht gegeben war.
Deswegen spricht man auch von der relativistischen Quantenfeldtheorie. Diese relativistische QFT ist damit die Vereinigung von Spezieller Relativitätstheorie und Quantenmechanik.

In der Quantenfeldtheorie haben wir lauter Felder. Für jedes Elementarteilchen haben wir ein im ganzen Universum omnipräsentes skalares Feld. Die Feldstärke ist dabei eine komplexe Zahl.
Beispielsweise haben wir ein Elektronenfeld:

\( \Psi_e (x,t) \\ \)

ein Photonenfeld etc. etc. pp.

Ein einzelnes Elementarteilchen ist dann eine elementare Anregung des zugeordneten Feldes. Was meint man hier mit “Anregung”?

Teilchen sind Anregungen von Feldern.

“Observables” sind beobachtbare physikalische Größen, wobei die von Parametern unterschieden werden.

Klassischerweise ist die Zeit ein Parameter: aber in der relativistischen QFT müssen auch die Raumkoordinaten zu Parametern werden, denn die Raumkoordinaten können ja auch nur indirekt “gemessen” werden. Ausserdem sollten Zeit und Raum gleichartig behandelt werden. Der Definitionsbereich solcher skalaren Felder ist also (x1,x2,x3,t) d.h. ein Vierervektor. (Mit einem Skalarprodukt hätten wir dann bald einen Hilbertraum.)

Das Messen (beobachten) einer “Observablen” geschieht durch Anwenden eines entsprechenden “Operators” auf das Skalarfeld. So ein Operator, soll immer “hermitsch” sein…

To be detailled …