Gehört zu: Himmelsmechanik
Siehe auch: Newtonsche Mechanik, Sonnensystem, Raumsonden
Benutzt: SVG-Zeichnung aus Github, WordPress-Plugin MathJax-Latex, Google Docs, Bilder aus Wikipedia
Das Drei-Körper-Problem
Wenn man die Bewegung der Körper im Sonnensystem untersucht, sagt einem ja die Himmelsmechanik, dass das allgemeine Dreikörperproblem nicht geschlossen analytisch lösbar ist. Aber beim sog. eingeschränkten Dreikörperproblem hat man gute Lösungen, die berühmten Lagrange-Punkte L1, L2 etc. wo ja gerne Raumsonden, wie SOHO, hingeschickt werden.
Das eingeschränkte Drei-Körper-Problem
Beim sog. “eingeschränkten Drei-Körper-Problem” geht man vereinfachend davon aus, dass eines der drei Objekte viel weniger Masse hat als die anderen beiden, so dass man seine gravitative Wirkung vernachlässigen kann. Man hat dann zwei Himmelskörper, die sowohl einander als auch den kleinen dritten Körper beeinflussen, der selbst aber keine gravitative Wirkung auf die anderen beiden ausübt. Ein gutes Beispiel dafür ist die Bewegung eines Asteroiden in der Nähe eines großen Planeten.
Lösungen des eingeschränkten Drei-Körper-Problems
Google Slides: Himmelsmechanik: Die Lagrange-Punkte
Die bekannten Lösungen sind die Lagrange-Punkte L1, L2, L3, L4 und L5
Abbildung 1: Die Lagrange Punkte (GitHub: Lagrange_very_massive.svg)
Langrange-Punkte
Quelle: https://commons.wikimedia.org/wiki/File:Lagrange_very_massive.svg
Im System Sonne-Erde befindet sich der L1 bekanntlich 1,5 Millionen Kilometer entfernt von der Erde in Richtung Sonne, der L2 ist ebenfalls 1,5 Mio Kilometer entfernt von der Erde, nur in Gegenrichtung. Da sich die Erde um die Sonne bewegt, bewegen sich die Lagrangepunkte ebenfalls und folgen ihr, also mit gleicher Winkelgeschwindigkeit.
Die Punkte L1 und L2 sind mit Satelliten besetzt. In L1 befinden sich Sonnenbeobachtungssatelliten wie z.B. SOHO. An diesem Punkt haben sie immer freie Sicht auf die Sonne. L2 ist gut für Weltraumteleskope geeignet. Hinter der Erde sind sie vor der starken Sonneneinstrahlung geschützt und können ungestört ihrer Arbeit nachgehen. Der WMAP-Satellit (gestartet 30.6.2001) untersuchte von hier aus die kosmische Hintergrundstrahlung und die Satelliten Herschel und Planck (gestartet 14.5.2009) sowie Gaia (gestartet 19.12.2013) sind hier plaziert. Auch das kürzlich (25.12.2021) gestartete James-Web-Teleskop ist auf dem L2 plaziert.
Berechnung des Lagrange-Punkts L1
Fragen wir uns mal, wo genau der Lagrange-Punkt L1 liegt. Der erste Gedanke ist, na ja, da wo die Anziehungskräfte von Sonne und Erde sich aufheben.
Das können wir ja mal ganz einfach durchrechnen mit dem Newtonschen Gravitationsgesetz:
\( \Large F = G \frac{m \cdot M}{r^2} \\ \)
Wir nehmen folgende Ausgangsgrößen an:
Tabelle 1: Ausgangsgrößen zur Berechnung des Lagrange-Punkts L1
Größe |
Wert |
Einheit |
Abstand Sonne-Erde |
149.597.870.700 |
m |
Gravitationskonstante |
6,67259 10-11 |
N m2 / kg2 |
Masse der Sonne |
1,98892 1030 |
kg |
Masse der Erde |
5,9722 1024 |
kg |
Dann können wir die Anziehungskräfte wie folgt berechnen:
Tabelle 1: Anziehungskräfte im Sonnensystem (Google Drive: Lagrange-Punkte.xls)
Tabelle 2: Anziehungskräfte und Sonne und Erde
Entfernung von der Sonne |
Entfernung von der Erde |
Gravitation der Sonne |
Gravitation der Erde |
Gravitation Summe |
1,49300000 1011 |
2,978707 108 |
-5,954 10-3 |
+4,491 10-3 |
-1,462 10-3 |
1,49339090 1011 |
2,587807 108 |
-5,951 10-3 |
+5,951 10-3 |
-3,602 10-9 |
1,49400000 1011 |
1,978707 108 |
-5,946 10-3 |
+1,018 10-2 |
+4,232 10-3 |
In einer Entfernung von 258 781 km von der Erde in Richtung Sonne, heben sich die Gravitationskräfte von Sonne und Erde also auf. Dort ist aber nicht der Lagrange-Punkt.
Unser “erster Gedanke” zur Berechnung der Lage des Lagrange-Punkts L1 war zu einfach. Nur im “mitrotierenden Bezugssystem” hat der Lagrange-Punkt eine feste Lage. So ein “mitrotierendes Bezugssystem” ist kein Intertialsystem und es treten zusätzlich sog. Scheinkräfte (Trägkeitskräfte) auf. In jedem Falle tritt die Fliehkraft auf und bei einem sich bewegenden Objekt käme auch noch die Corioliskraft hinzu.
Begrifflich spricht man von einem “effektiven” Gravitationsfeld, wenn man zusätzlich zur eigentlichen Gravitationskraft die Fliehkraft hinzunimmt. Für dieses “effektive” Gravitationsfeld gibt es dann ein “effektives” Potential (als skalares Feld).
Der Lagrange-Punkt L1 mit Fliehkraft
In einem rotierenden Bezugssystem haben wir eine Fliehkraft von:
\( F(r) = m \frac{v^2}{r} = m \frac{4 \pi^2}{T^2} r \\ \)
Wobei v die Bahngeschwindigkeit bzw. T die Umlaufszeit wäre.
Zur Berechnung der Fliehkraft benötigen wir also die siderische Umlaufszeit der Bahn der Erde um die Sonne:
Größe |
Wert |
Einheit |
Umlaufszeit Sonne-Erde |
31.558.149,54 |
s |
Damit können wir berechnen, wo die Summe aus den Anziehungskräften (Beschleunigungen) und der Fliehkraft (Beschleunigung) sich aufheben:
Tabelle 3: Anziehungskräfte und Fliehkraft im System Sonne-Erde
Entfernung von der Sonne |
Entfernung von der Erde |
Gravitation der Sonne |
Gravitation der Erde |
Fliehkraft |
Summe |
1,481000 1011 |
1,4978707 109 |
-6,051 10-3 |
+1,776 10-4 |
+5,871 10-3 |
-2,304 10-6 |
1,481064 1011 |
1,4914707 109 |
-6,050 10-3 |
+1,791 10-4 |
+5,871 10-3 |
–1,385 10-10 |
1,482000 1011 |
1,3938707 109 |
-6,042 10-3 |
+2,039 10-4 |
+5,875 10-3 |
+3,614 10-5 |
In einer Entfernung von 1 491 470,7 km von der Erde in Richtung Sonne, heben sich die Gravitationskräfte von Sonne und Erde zusammen mit der Fliehkraft des rotierenden Systems also auf. Dort ist der Lagrange-Punkt L1.
Eigentlich ist ja klar, dass die Fliehkraft hier eine wesentliche Rolle spielen muss. Denn wenn die Gravitation der Erde Null wäre, würde es nur noch darum gehen, wann sich die Anziehungskraft der Sonne und die Fliehkraft der Rotation aufheben würden. Das ist logischerweise in diesem Fall genau auf der Erdbahn der Fall.
Der in etwa kugelförmige Bereich um die Erde mit dem Radius 1,491 Mio km wird auch die Hill-Sphäre genannt. Dort überwiegt also die (effektive) Anziehungskraft der Erde.
Bahnen um den Lagrangepunkt L2 des Systems Erde-Sonne
Die Lagrangepunkte L2 und L1 werden gerne benutzt, um dort bzw. in der Nähe Raumsonden (Erdsatelliten) zu plazieren, da diese der Erde folgen, aber mit Abstand. Die Raumsonden werden dabei nicht genau auf dem Lagrangepunkt plaziert, sondern in einer gewissen Bahn um den Lagrangepunkt.
Gern benutzte Bahnen um einen Lagrangepunkt sind:
- Lissajous-Bahnen
- Halo-Bahnen
Solche Bahnen sind aber Himmelsmechanisch nicht stabil. Es bedaf also eines Treibstoffvorrats, um ab und zu kleine Bahnkorrekturen vorzunehmen.
Grafiken zu den Lagrange-Punkten
Effektives Potential im System Sonne-Erde
In der Wikipedia finden wir folgendes Bild zu den Lagrange-Punkten:
Abbildung 2: Effektives Potential (Wikipedia: Lagrange_points2.svg)
Lagrange_points2.svg (Copyright: Wikimedia Commons
Quelle: https://en.wikipedia.org/wiki/File:Lagrange_points2.svg
Rote Pfeile: abwärts zum Lagrange-Punkt; Blaue Pfeile: abwärts weg vom Lagrange-Punkt.
Effektives Potential in einem engen Doppelsternsystem
Die Suche nach “Langrange” und “Roche” in der Wikipedia liefert uns auch für ein enges Doppelsternsystem (binary system) eine Grafik mit den Lagrange-Punkten, dem Center of Mass “CM” einigen Äquipotentialflächen und den Mittelpunkten der beiden Sterne.
Abbildung 3: Roche-Volumen (Wikipedia: Roche_potential_contours_q%3D3.svg)
Copyright: WikiMedia Commons
Link: https://upload.wikimedia.org/wikipedia/commons/d/d9/Roche_potential_contours_q%3D3.svg
Dort, wo Äquipotentialflächen des linken Sterns die Äquipotentialflächen des rechten Stern berühren (L1), wäre ein möglicher Übergangspunkt, wo Materie von einem Stern zum anderen überfließen könnte. Die tropfenförmigen inneren Bereiche um die beiden Sterne nennt man auch die Roche-Volumen (Roche Lobe) der beiden Sterne.
Wenn ein Stern größer als sein Roche-Volumen wird, fließt in der Tat Materie zum anderen Stern. Die überfließende Materie hat in der Regel auch einen Drehimpuls, der erhalten bleibt. Es bildet sich deshalb eine Akkretionsscheibe um den aufnehmenden Stern.