Mathematik: Komplexe Zahlen

Gehört zu: Mathematik
Siehe auch: Quantenmechanik, Von Pytharoras bis Einstein, Schrödinger-Gleichung
Benutzt: WordPress-Plugin Latex

Stand: 29.7.2022

Die komplexen Zahlen

Ausgangspunkt ist die berühmte imaginäre Einheit: i2 = -1

Eine komplexe Zahl schreibt man gerne als Realteil und Imaginärteil:

z = x + i*y      x = Re(z)   und   y = Im(z)

Wobei x und y reelle Zahlen sind.

Mit den Komplexen Zahlen kann man auch die vier Grundrechnungsarten, so wie wir sie von den “normalen” d.h. reellen Zahlen her kennen, ausführen – Die komplexen Zahlen bilden, mathematisch gesagt, einen “Körper”.

Zu jeder Komplexen Zahl gibt es die “komplex konjugierte“, die mit gern mit einem Sternchen als Superskript schreibt:

zur komplexen Zahl: z = x + i*y
ist die konjugierte:   z* = x – i*y

Manchmal schreibt man die komplex konjugierte auch mit einem Strich über der Zahl. Also:

\( \overline{x + y \cdot i} = x – y \cdot i \)

 

Jede Komplexe Zahl hat auch einen “Betrag” (kann man sich als Länge vorstellen):

|z|2 = x2 + y2

Interessanterweise ist der Betrag (Länge) einer Komplexen Zahl auch:

|z|2 = z z*

Darstellung der komplexen Zahlen mit kartesischen Koordinaten

Die Reellen Zahlen konnte ich mir ja durch die sog. Zahlengerade gut veranschaulichen. Die Komplexen Zahlen würde ich mir dann durch die Punkte in einer Ebene veranschaulichen.

Polar-Darstellung der komplexen Zahlen

Wenn komplex Zahlen einfach als Punkte in der Ebene verstanden werden können, kann ich sie anstelle von kartesischen Koordinaten, alternativ auch in durch sog. Polarkoordinaten darstellen; d.h. durch die Entfernung vom Nullpunkt r und den Winkel mit der reellen Achse φ.

Für eine Komplexe Zahl z = x + i*y  gilt:

r² = x² + y²

tan φ = x/y

\(\displaystyle \tan{ \phi} = \frac{x}{y} \)

Exponential-Darstellung der komplexen Zahlen

Die Eulerschen Formel ist:

\(\Large  e^{i  \cdot \phi} = \cos \phi+i \cdot \sin \phi \\\)

Damit können wir jede komplexe Zahl auch in sog. Exponential-Darstellung schreiben:

\(\Large z ={r} \cdot e^{i  \cdot \phi} \\ \)

Das funktioniert so gut, weil die Multiplikation von Potenzen der Addition der Exponenten entspricht und das mit den Summenformeln der Trigonometrie übereinstimmt.

Den Winkel φ nennt man auch “die Phase”.

Wenn die Komplexen Zahlen den Betrag 1 haben, also auf dem Einheitskreis liegen, hat man:

\( e^{i \phi} = cos{\phi} + i sin{\phi} \)

und man spricht von einer “reinen Phase”.

In der Quantenmechanik wird diese Exponentialdarstellung gerne benutzt, u.a. weil man damit die Multiplikation komplexer Zahlen sehr anschaulich darstellen kann:

\(\Large z_1 \cdot z_2 = {r_1 \cdot r_2} \cdot e^{i  \cdot (\phi_1 + \phi_2)} \\ \)

Sie auch Youtube-Video:

Die Eulersche Zahl

Definition der Eulerschen Zahl

Die Zahl e wurde von Leonhard Euler (1707-1783) als Grenzwert der folgenden unendlichen Reihe definiert:

\(\displaystyle e = 1 + \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} +  \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + …   \)

Oder:

\(\displaystyle e = \sum_{n=0}^{\infty} \frac{1}{n!} \)

Die Exponentialfunktion

Potenzen zur Basis e bilden die Exponentialfunktion, auch e-Funktion genannt:

f(x) = ex

Die Ableitung (Differentialquotient) der e-Funktion ist wiederum die e-Funktion:

f'(x) = ex

Damit ergibt sich als Taylorsche Reihenentwicklung um den Entwicklungspunkt x0 = 0

\(\displaystyle f(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!}  + …  + \frac{x^n}{n!} + …   \)

Allgemein wäre die Taylor-Reihe ja:

\( \displaystyle T_\infty(x;x_0) = \sum_{k=0}^{\infty} \frac{f^(k)(x_0)}{k!} (x-x_0)^k \)

Da der Funktionswert und alle Ableitungen der e-Funktion an der Stelle x0 = 0 sämtlich 1 sind, vereinfacht sich die Darstellung wie oben gezeigt.

Mathematik: Von Pythagoras bis Einstein

Gehört zu:  Mathematik und Physik
Siehe auch: Kosmologie , Quantenmechanik, Mathematik, Komplexe Zahlen
Benötigt: WordPress Plugin LaTeX

Ein bisschen Mathematik

Angeregt von einem Youtube-Video “Top 10 equations that changed to world” wollte ich hier die wichtigsten Errungenschaften der Mathematik und Physik sind darstellen:

  • Der Lehrsatz des Pythagoras  10
  • Der Logarithmen (Napier)   9
  • Differentialrechnung (“Calculus”) und Grenzwerte  (Newton, Leibnitz)  8
  • Das Gravitationsgesetz (Newton)  7
  • Die komplexen Zahlen (Euler,…)  6
  • Wellengleichung   (d’Alembert) 5
  • Fourier Transformation   4
  • Navier Stokes Gleichung   – Aerodynamik  –   3
  • Faraday und Maxwell Gleichungen   2
  • Die Black-Schole-Gleichung   – Finanzmathematik    2
  • Einstein Relativitätstheorie und Schrödinger Quantenmechanik  1

Der Lehrsatz des Pythagoras

Im rechtwinkligen Dreieck mit den Katheten a und b und der Hypotenuse c gilt:

a² + b² = c²

Dies ist die Basis für die Messung von Entfernungen. Hierdurch wird die Geometrie mit der Algebra verbunden.

Auf dieser Basis kann man Entfernungen im Raum (sog. Metriken) mit mathematischen Formeln berechnen; z.B. im drei-dimensionalen Euklidischen Raum:

ds2 = dx2 + dy2 + dz2

In der Kosmologie verwendet man weitergehende Metriken, z.B. die Robertson-Walker-Metrik…

Logarithmen

Vereinfachen der Multiplikation zur Addition z.B. bei komplexen astronomischen Berechnungen….

log(a · b) = log(a) + log(b)

Logarithmische Skalen z.B. bei den Helligkeiten von Himmelsobjekten…

Differentialrechnung

Die Differentialrechnung geht auf Newton (1643-1727) und Leibniz (1646-1716) zurück …

\(  \frac{dx}{dy} = \lim \limits_{h \to 0} \frac{f(x+h)-f(x)}{h} \)
Der Begriff des Grenzwerts (des Limes) wurde erst später von Bernhard Bolzano (1781-1848) und Karl Weierstrass (1815-1897) formal eingeführt.
Newton war es, der die Differentialrechnung in die Physik einführte z.B.

\(Kraft = Masse \cdot Beschleunigung = \frac{\partial}{\partial t} Impuls  \)

Das Gravitationsgesetz (Newton)

Die Anziehungskraft zwischen zwei Massen m1 und m2, die eine Entfernung r voneinander entfernt sind, ist:

\( F = G \cdot \frac{m_1 \cdot m_2}{r^2} \)

Wobei G die sog. Gravitationskonstante ist.

Die komplexen Zahlen

Hierzu habe ich einen separaten Blog-Artikel geschrieben: Komplexe Zahlen

Die Wellengleichung (d’Alembert)

Die Wellengleichung, auch D’Alembert-Gleichung nach Jean-Baptiste le Rond d’Alembert (1717-1783), bestimmt die Ausbreitung von Wellen wie etwa Schall oder Licht.

 

Fourier Transformation

Joseph Fourier (1768-1830)

\(\Large f(\epsilon) = \int_{-\infty}^{+\infty} f(x) e^{-2 \pi x \epsilon} dx \)

Wobei ε die Frequenz ist…

“Jede” Funktion wir dargestellt als eine Überlagerung von Sinuswellen mit unterscheidlicher Frequenz….

Navier Stokes Gleichung   – Aerodynamik

Claude Navier (1785-1836) und George Stokes (1819-1903)

Das ist nicht so einfach…

Faraday und Maxwell Gleichungen

Michael Faraday  (1791-1867) und  James Clerk Maxwell (1831-1879)

Für das elektrische Feld E gilt:
\(
\nabla \cdot \vec{E} = 0
,
\nabla \times \vec{E} = \Large -\frac{1}{c} \frac{\partial H}{\partial t}
\)
und für das Magnetfeld H gilt:
\(
\nabla \cdot \vec{H} = 0
,
\nabla \times \vec{H} = \Large \frac{1}{c} \frac{\partial E}{\partial t}
\)

Black Schole Gleichung   – Finanzmathematik

Fischer Black (1938-1995) und Myron Scholes (1941-)

Einstein Relativitätstheorie und Schrödinger Quantenmechanik

Albert Einstein  (1879-1955)  und Erwin Schödinger (1887-1961)

Eine der Voraussetzungen zum Verständnis sind sog. Vektorräume.

Vektorräume verfügen über eine Operation, die Addition genannt wird und eine kommutative Gruppe bildet. Weiterhin muss jeder Vektorraum einen Körper von sog. Skalaren haben, mit denen die Vektoren mutipliziert werden können.

Es gibt den Begriff der “Dimension” eines Vektorraumes…..

Besonders interessant ist das sog. “innere Produkt” (engl. Dot Product) zweier Vektoren…

Bei der Allgemeinen Relativitätstheorie von Einstein benötigt man die Tensoralgebra.

Den Zustand von Quantenmechanischen Teilchen (Systemen) beschreibt die Wellenfunktion, die man mithilfe der Schrödinger-Gleichung finden kann.