Physik: Einstein ART Allgemeine Relativitätstheorie

Gehört zu: Physik
Siehe auch: Relativitätstheorie, Kosmologie, Expansion des Universums, Metrik-Tensor, Singularität
Benutzt: Latex-Plugin

Stand: 20.10.2024

Einsteins Allgemeine Relativitätstheorie (ART)

In Einsteins Allgemeiner Relativitätstheorie (ART) geht es um die Gravitation, die ja schon von Newton beschrieben wurde. Die Gravitation bewirkt, dass es keine Inertialsysteme gibt – und damit die SRT nur als vereinfachende Idealisierung verstanden werden kann.

Ein Ausgangspunkt für die ART ist das sog. Äquivalenzprinzip. Es besagt, dass ein gleichmäßig beschleunigtes Bezugssystem nicht von einem Bezugssystem mit einem homogenen Gravitatiosfeld unterschieden werden kann. Formelmäßig ist dann die sog. “träge Masse” identisch mit der “schweren Masse”….

Quelle: Youtube Video https://youtu.be/hU0Mcd2-XH4

Bekannt sind seine berühmten sog. Feldgleichungen:

\( \Large R_{\mu \nu} – \frac{1}{2} R g_{\mu \nu} + \Lambda g_{\mu \nu} = \frac{8 \pi G}{c^4} T_{\mu \nu} \\\)

Die obige Gleichung kann so kompakt hingeschrieben werden, weil sog. Tensoren verwendet werden. Solche Tensoren sind unabhängig vom verwendeten Koordinatensystem (invariant gegen Koordinatentransformationen).

Bei gegebenem Energie-Impuls-Tensor (auf der rechten Seite) beschreibt die linke Seite der Gleichung die dadurch verursachte Geometrie der Raumzeit (d.h. die Krümmung der Raumzeit).

Der Metrik-Tensor ist \( g_{\mu \nu} \). Gemäß Konvention laufen die Indices μ und ν = 0,1, 2, 3 wobei 0 die Zeit-Koordinate bedeutet.

Den Metrik-Tensor habe ich wohl verstanden und im Einzelnen in einem separaten Blog-Post beschrieben.

\( T_{\mu \nu} \\\) ist der sog. Energie-Impuls-Tensor, den man im Vakuum einfach auf Null setzt (sog. Vakuumlösungen).

Energie und Impuls werden gemäß der speziellen Relativitätstheorie mit sog. Vierervektoren beschrieben.  Wenn man noch Druck und Stress hinzunimmt, bekommt man den Energie-Impuls-Tensor.

Der Vierervektor der Raumzeit ist:

\(\vec{R} = \left( \begin{array}{c} c t \\ x \\ y \\ z\\ \end{array} \right) \\ \)

Der Vierervektor von Energie und Impuls ist:

\(\vec{P} = \left( \begin{array}{c} E \\ p_x c\\ p_y c\\ p_z c\\ \end{array} \right) \\ \)

Diese Vierervektoren sind aber noch abhängig vom benutzen Koordinatensystem. Um unabhägig vom Koordinatensystem zu werden, müssen wir Tensoren bemühen. Dazu bilden wir die kovariante Ableitung nach der Eigenzeit.

Der Engergie-Impuls-Tensor soll Massendichte, Energiedichte, Druck, Impuls, und Stress beschreiben. Dieser Tensor ist für die Entwicklung des Universums wichtig; siehe: Expansion des Universums.

Der Energie-Impuls-Tensor schreibt sich also:

\( T_{\mu \nu} =  \left( \begin{array}{rrrr} T_{00} & T_{01} & T_{02} & T_{03} \\ T_{10} & T_{11} & T_{12} & T_{13} \\T_{20} & T_{21} & T_{22}  & T_{23}\\T_{30} & T_{31} & T_{32} & T_{33}\\    \end{array} \right) \)

Λ (großes Lambda) ist die sog. kosmologische Konstante, die ursprünglich (1915) nicht in der Gleichung stand, sondern später von Einstein eingeführt wurde, um dem gravitativen Kollaps des Universums entgegen zu wirken.

\( R_{\mu \nu} \) ist der sog. Ricci-Tensor – keine Ahnung, was das sein soll.

Manchmal sieht mit die Einsteinschen Feldgleichungen auch in einer etwas anderen Form:

\( \Large G_{\mu \nu}  = \frac{8 \pi G}{c^4} T_{\mu \nu} \\\)

Mit dem sog. Einstein-Tensor:

\( \Large G_ {\mu \nu}  = R_{\mu \nu} – \frac{1}{2} R g_{\mu \nu} + \Lambda g_{\mu \nu}  \\\)

Was man immer wieder hört, ist dass nach Einstein große Massen die Raumzeit krümmen. Wobei die Krümmung der vierdimensionalen Raumzeit nicht in eine weitere Dimension (die fünfte) geht, sondern die Raumzeit “in sich” gekrümmt wird, soll wohl heissen, dass nicht mehr die Euklidische Metrik gilt, sondern eine andere Metrik, eine “Nichteuklidische Metrik“.

Lösungen

Unter bestimmten zusätzlichen Annahmen bekommt man Lösungen der obigen Formeln; z.B. bekommt man unter den Annahmen von Homogenität und Isotropie als Lösung die sog. Friedmann Gleichungen.

Eine Lösung der Einsteinschen Feldgleichungen nennt man eine Raumzeit.

Siehe hierzu: Krümmung der Raumzeit

 

Physik: Quantenmechanik – Materiewellen

Gehört zu: Physik
Siehe auch:   Quantenphysik , Quantenfeldtheorie, Potential
Benutzt: Videos von Youtube

Stand: 25.09.2024 (photoelektrischer Effekt, Compton-Streuung, Kopenhagener Deutung)

Quantenmechanik: Materiewellen

Die Idee eines Welle-Teilchen-Dualismus entstand Anfang des 20. Jahrhunderts weil einige Experimente mit elektromagnetischer Strahlung (z.B. Licht) sich nicht allein aus der bis dahin geltenden Wellennatur des Lichts (siehe das berühmte Doppelspalt-Experiment von Young 1802) erklären liessen.

Experimente, die nur durch den Teilchencharakter von Licht gut erklärt werden konnten waren (u.a.):

  • Der photoelektrische Effekt
  • Die Compton-Streuung

Louis de Broglie (1892-1987) postulierte im Jahre 1924 den Welle-Teilchen-Dualismus. Das war die kühne Idee, dass jedes Materieteilchen gleichzeitig auch einen Wellencharakter haben muss;  z.B. auch Elektronen.

Aus der Planck-Formel:

\( E = h \nu \)

und der Einsteinschen Energie-Masse-Äquivalenz:

\( E = m c^2 \)

ergibt sich rein rechnerisch die berühmte De-Broglie-Wellenlänge eines Teilchens der Masse m bzw. einem Impuls von p bei einer Geschwindigkeit von c.:

\( \lambda = \Large\frac{h}{p} \)

Einstein: Energie-Masse-Äquivalenz

Genaugenommen ist die aus der speziellen Relativitätstheorie bekannte Formel:

\( E = m c^2 \)

nur eine Näherung. Richtg müsste es heissen:

\( E^2 = m^2 c^4 + c^2 p^2 \)

So erfordert es die Einstein’sche Spezielle Relativitätstheorie.

Die Lösungen sind periodische ebene Wellen.

In der Quantenfeldtheorie (QFT). muss dann jedes Elementarteilchen diese Gleichung erfüllen; denn in der QFT berückrichtigen wir ja erstmals die Spezielle Reletivitätstheorie (was wir in der Quantenmechanik ja nicht taten).

De Broglie Wellenlänge

Gemäß des Welle-Teilchen-Dualismus kann ein Teilchen mit dem Impuls p auch als Welle (Materiewelle) der De-Broglie-Wellenlänge

\( \lambda = \frac{h}{p} \)

aufgefasst werden.

Der Quantenmechaniker verwendet statt der Wellenlänge gern die sog. Wellenzahl:

\( k = \frac{2 \pi}{\lambda} \)

und statt des originären Planck’schen Wirkungsquantums h, gerne das sog. reduzierte Wirkungsquantum:

\( \hbar = \frac{h}{2 \pi} \)

Damit können wir den Impuls also schreiben als: \( p = \hbar k \)

bzw. die Wellenzahl als: \( k = \frac{p}{\hbar} \)

und kommen damit zur einer ebene Welle:

\( \Psi(x) = e^{i k x} \)

Die Wellenfunktion

Materieteilchen haben demnach auch einen Wellencharakter. Diese Wellen nennt man “Materiewellen“, die durch Wellenlänge (s.o.) und insgesamt durch eine Wellenfunktion beschrieben werden. Man kann sich dann fragen, was da eigentlich als Welle schwingt. Eine Interpretation der Materiewellen ist, das es Wahscheinlichkeitswellen sind (s. Kopenhagener Deutung).

Wenn demnach Materieteilchen auch Wellencharakter haben können, fragt man sich natürlich nach einer “klassischen” Wellenfunktion als Lösung einer Wellengleichung. Ernst Schroedinger fand später dazu seine berühmte Schroedinger-Gleichung.