Gehört zu: Mathematik
Siehe auch: Körper, Vektorräume – Lineare Algebra, Matrizen und Vektoren, Bra-Ket-Notation
Stand: 23.12.2023
Was ist ein Vektorraum?
Eine der Voraussetzungen zum Verständnis vieler Dinge (z.B. in der Allgemeinen Relativitätstheorie und der Quantenmechanik) sind sog. Vektorräume und Tensoren.
Es gibt dazu eine Menge Videos auf Youtube; z.B. von 3Blue1Brown: https://youtu.be/fNk_zzaMoSs – Playlist:
Ein Vektorraum kann axiomatisch wie folgt definiert werden:
Axiom 1: Vektorräume verfügen über eine Operation, die Vektor-Addition (Vektor plus Vektor ergibt einen Vektor) genannt wird und eine kommutative (abelsche) Gruppe bildet.
Axiom 2: Jeder Vektorraum muss einen Körper haben, dessen Elemente Skalare genannt werden. Mit solchen Skalaren können wir die Vektoren mutiplizieren (“skalieren“); d.h. Skalar mal Vektor ergibt Vektor.
Man spricht dann von einem Vektorraum “über” einem Körper K seiner Skalaren oder kurz von einem K-Vektorraum.
Solche Axiome ergeben eine abstrakte Definition von Eigenschaften; die Frage ist allerdings, ob es tatsächlich “Gebilde” gibt, die diese Axiome erfüllen. Tatsächlich gibt es viele “Gebilde”, die die Vektorraum-Axiome erfüllen: d.h. die tatsächlich Vektorräume sind. Beispiele für Vektorräume sind u.a.:
- Ein \(\mathbb{R}^n \) wird mit den naheliegenden Operationen Vektorraum über \(\mathbb{R}\)
- Ein \(\mathbb{C}^n \) wird mit den naheliegenden Operationen Vektorraum über \(\mathbb{C}\)
- Die Menge der Funktionen auf \(\mathbb{R}\) kann auch als Vektorraum ausgestattet werden…
Ein abstrakter Vektorraum kann auch veranschaulicht werden:
- Physik: Der Physiker stellt sich Vektoren gern als “Pfeile” vor, die also eine Richtung und eine Länge haben, also eher “geometrisch“.
- Computer: Der Computer-Mensch stellt sich Vektoren eher als Liste von Komponenten vor (Vektor = Liste) – wozu man aber ersteinmal ein System von Basis-Vektoren (nicht: Koordinatensystem) haben muss.
- Mathematik: Der abstrakte Mathematiker sagt, Vektoren sind einfach “etwas”, was man addieren kann (Gruppe) und was man mit “Skalaren” skalieren kann – fertig, einfach ein paar Axiome und das war’s.
Linearkombinationen
Mit einem Satz von Vektoren kann man eine sog. Linearkombination bilden, beispielsweise:
Zu einem Satz Vektoren \( \vec{g_1}, \vec{g_2}, …, \vec{g_n} \) wäre eine Linearkombination etwa:
\( a_1 \vec{g_1} + a_2 \vec{g_2} + … + a_n \vec{g_n}\)Wobei wir jeden Vektor \( \vec{g_i} \)mit einem Skalar \( a_i \) multiplizieren und die Summe bilden.
Vektorbasis und Dimension
Wenn ich mit einem Satz von Vektoren jeden Vektor des Vektorraums durch eine Linearkombination darstellen kann, sagt man “der Satz von Vektoren spannt den Vektorraum auf”. Ist so ein Satz von Vektoren minimal und die Darstellung eines Vektors durch eine Linearkombination damit eindeutig, so nennt man den Satz von Vektoren eine Vektorbasis.
Soweit ist dies eine axiomatische Definition von Eigenschaften, welche eine Vektorbasis erfüllen muss. Die Frage ist allerdings, für einen bestimmten Vektorraum, ob dort auch tatsächlich eine solche Vektorbasis exsitiert.
Die Antwort lautet: Jeder Vektorraum hat (mindestens) eine Vektorbasis.
Falls ein Vektorraum mehrere Vektorbasen hat sind alle diese Vektorbasen gleich mächtig. Die Kardinalzahl (Mächtigkeit) heist Dimension des Vektorraums, geschrieben dim(V).
Eine Einheitsbasis (normal basis) ist eine Basis, bei der alle Basisvektoren die Länge 1 haben (“auf die Länge 1 normiert sind”).
Was die Länge eines Vektors sein könnte, kommt weiter unten.
Beispiel:
Der euklidische Vektorraum: \(\mathbb{R}^n\)
Dort haben wir z.B. eine Vektorbasis: \( \vec{e}_i = (\delta_{i}^j) \)
Wobei das Kronecker-Delta bekanntlich definiert ist als:
\( \delta_{i}^j = \left\{\begin{array}{11} 0 & \text{falls } i \ne j \\ 1 & \text{falls } i = j \\ \end{array} \right. \)Vektor-Komponenten bezüglich einer Vektorbasis
Damit ich mit einem Vektor so schön herumrechnen kann, ist es enorm praktisch, den Vektor durch “seine” Komponenten darzustellen. Solche “Komponenten” beziehen sich immer auf eine sog. Vektorbasis.
Den Satz von Skalaren mit dem ein Vektor bezüglich einer Vektorbasis als Linearkobination eindeutig dargestellt werden kann nennt man auch die Komponenten des Vektors. Man schreibt also:
\( \vec{a} = \sum\limits_{i=1}^{n}{a_i \vec{g_i}} \)Dabei sind also die ai die Komponenten des Vektors a bezüglich des gewählten Basisvektorsystems. Der Begriff von Koordinaten in einem Koordinatensystem unterscheidet sich von diesem Begriff der Komponenten bezüglich eines Basisvektorsystems.
Der Physiker möchte die Formeln noch kompakter aufschreiben und führt eine impliziete Summenkonvention ein (nach Einstein). Danach verwenden wir Indizes teilweise unten (klassisch) und auch teilweise oben (neu). Wenn ein gleicher Index oben und unten auftaucht, soll darüber summiert werden (ohne dass man es expliziet schreiben muss). Also in unserem Fall:
\( \vec{a} = a^i \vec{g_i} \)Man nennt Größen mit einem Index unten “kovariant” und mit einem Index oben “kontravariant” – was man damit eigentlich sagen will werden wir später erfahren.
Komponentenschreibweise
Unsere Rechenregeln für Vektoren kann man nun auch einfach in Komponentenschreibweise ausdrücken:
Vektoraddition: \( \vec{a} + \vec{b} = (a^i + b^i) \vec{g_i} \)
Skalar-Multiplikation: \( \lambda \vec{a} = (\lambda a^i) \vec{g_i} \)
Schreibweise von Vektoren
Geschrieben werden Vektoren meist als eine Liste ihrer Komponenten, aber nicht waagerecht, sondern senkrecht angeordnet (bei waagerechter Anordnung denkt man eher an einen Punkt im Raum).
\( \Large \vec{v} = \left( \begin{array}{c} x \\\ y \\\ z \end{array}\right) \)oder auch in eckigen Klammern:
\( \Large \vec{v} = \left[ \begin{array}{c} x \\\ y \\\ z \end{array} \right] \)Wenn ich Vektoren als Liste von Komponenten schreiben will, muss ich ersteinmal ein Basisvektorsystem haben.
Vektoren, und das ist wichtig, exisitieren auch ohne Basisvektorsysteme, also einfach geometrisch im Raum. Unabhängig von einem Basisvektorsystem hat jeder Vektor eine Länge und eine Richtung. Dies sind also sog. “Invarianten”; d.h. bei Änderung des Basisvektorsystems ändern sich diese Eigenschaften nicht.
Also: Vektoren ansich sind invariant gegenüber einem Wechsel des Basisvektorsystems. Aber die Vektorkomponenten verändern sich beim Wechsel des Basisvektorsystems, sind wie man sagt “variant“. Wie Vektorkomponenten bei Wechsel des Basisvektorsystems hin- und hergerechnet werden können, behandeln wir weiter unten. So ein Vektor ist damit der Sonderfall eines Tensors, nämlich ein Tensor vom Rang 1.
Lineare Abbildung (Lineare Transformation)
Wir betrachten zwei Vektorräume V und W über dem gleichen Körper K habe. Eine Abbildung \( f: V \to W \) nennt man auch Transformation. Wenn V=W ist spricht man auch von einer Operation auf V und nennt f einen Operator.
Lineare Transformationen sind Transformationen, bei denen Geraden Geraden bleiben und der Null-Punkt (Origin) unverändert bleibt.
Anschaulich gesagt, bleiben Parallelen parallel und die Koordinatengitter gleichmäßig unterteilt (was immer auch Parallelen und Koordinatengitter genau sein mögen). Man kann das auch abstrakt durch Formeln ausdrücken:
Eine solche Abbildung f von einem Vektorraum V in einen Vektorraum W (beide über dem gleichen Körper K)
\( f: V \to W \\ \)wird “linear” genannt, wenn sie additiv und homogen ist; d.h. wenn für alle \( \vec{v} \in V \text{ und alle } \vec{w} \in V \) gilt:
additiv: \( f(\vec{v} + \vec{w}) = f(\vec{v}) + f(\vec{w}) \)
und für alle \( a \in K \) gilt:
homogen: \( f(a \vec{v}) = a f(\vec{v}) \) (hierfür brauchen wir den gleichen Körper K)
allgemein also: \(f(a \vec{x} + b \vec{y}) = a f(\vec{x}) + b f(\vec{y}) \)
General Linear Group
Zu einem Vektorraum V über K können wir die Menge der linearen invertierbaren Abbildungen \( f: V \to V \) betrachten. Diese nennen wir: General Linear Group und schreiben GL(V). Wenn man die allgemeine Verknüpfung von Abbildungen als Guppenverknüpfung nimmt, ist GL(V) tatsächlich eine Gruppe.
Die GL(V) ist ein schönes Beispiel für eine nicht abelsche (nicht kommutative) Gruppe.
Siehe hierzu auch das schöne Youtube-Video von Josef Gassner:
In der Quantenmechanik (Quantenphysik) sind die Untergruppen von GL(V) sehr interessant.
Dualer Raum
Zu einem Vektorraum V über dem Körper K definieren wir eine “Dualen Vektorraum” V* wie folgt:
Als Menge V* nehmen wir alle linearen Abbildungen \( f: V \to K \)
Als Vektor-Addition in V* definieren wir: \( (f+g)(v) = f(v) + g(v) \)
Und als Skalar-Multiplikation in V* nehmen wir: \( (\lambda \cdot f)(v) = \lambda \cdot f(v) \)
Bilinerarform
Hier geht es um zwei Variable (zwei = bi); also eine Abbildung:
\( f: V \times V \to K \\\) (mit V Vektorraum über dem Körper K)
So eine Abbildung heisst “bilinear“, wenn sie “in beiden Variablen” linear ist, was heisst:
\( f(a_1 \vec{x_1} + a_2 \vec{x_2}, \vec{y}) = a_1 f(\vec{x_1},\vec{ y}) + a_2 f(\vec{x_2}, \vec{y}) \\\)und
\( f(\vec{x}, b_1 \vec{y_1} + b_2 \vec{y_2}) = b_1 f(\vec{x}, \vec{y_1}) + b_2 f(\vec{x}, \vec{y_2}) \\\)Skalarprodukt (Inneres Produkt)
Ein Vektorraum verfügt nicht notwendig über ein Skalarprodukt. Auf einem Vektorraum kann ein Skalarprodukt definiert sein (Vektor mal Vektor ergibt einen Skalar) – Dies ist inspiriert aus der Physik durch Arbeit = Kraft mal Weg.
Wir werden sehen, dass so ein Skalarprodukt dann eine “Norm” induziert und damit eine Metrik, wodurch z.B. Grenzwertprozesse möglich werden.
Einen \(\mathbb{R}\)-Vektorraum mit Skalarprodukt nennt man auch einen Euklidischen Raum, einen \(\mathbb{C}\)-Vektorraum mit Skalarprodukt nennt man auch Hilbertraum – genauer Prähilbertraum.
Für die Anwendungen z.B. in der Physik spielt es eine große Rolle, welches der Körper zum Vektorraum ist. In der Quantenphysik benötigt man dazu den Körper der Komplexen Zahlen: \(\mathbb{C}\)
Definition des Skalarprodukts
Das Skalarprodukt zweier Vektoren wird axiomatisch wie folgt definiert.
Axiomatische Definition
Generell ist das Skalarprodukt f in einem Vektorraum über dem Körper K eine Abbildung:
\( f: V \times V \to K \)Man schreibt auch gerne das Skalarprodukt als:
- \( \Large f(x,y) = \langle x,y \rangle \)
- \( \Large f(x,y) = \vec{x} \cdot \vec{y} \)
Für den Fall eines Vektorraums über dem Körper der reelen Zahlen, müssen für x, y, z ∈ V und λ ∈ \(\mathbb{R} \) folgende Axiome gelten:
- Linearität in beiden Argumenten
- <x+y,z> = <x,z> + <y,z>
- <x,y+z> = <x,y> + <x,z>
- <λx,y> = λ <x,y>
- <x,λy> = λ <x,y>
- Symmetrie: <x,y> = <y,x>
- Positiv definit:
- <x,x> ≥ 0
- <x,x> = 0 genau dann, wenn x=0 ist
Das reelle Skalarprodukt ist also eine positiv definite, symmetrische Bilinearform.
Für den Fall eines Vektorraums über dem Körper der komplexen Zahlen, ist die Sache etwas schwieriger.
Da wir aber in der Quantenphysik Vektorräume über den komlexen Zahlen benötigen, müssen wir auch diesen etwas komplizierteren Fall näher betrachten.
Es müssen für x, y, z ∈ V und λ ∈ \(\mathbb{C} \) folgende Axiome gelten:
Semilinear im ersten Argument:
\( <\lambda x, y> = \bar{\lambda} <x,y> \)
Linear im zweiten Argument:
\( <x, \lambda y> = \lambda <x,y> \)
Hermitisch:
\( <x,y> = \overline{<y,x>} \)
Positiv definit:
<x,x> ≥ 0
<x,x> = 0 genau dann, wenn x=0
Das komplexe Skalarprodukt ist also eine positiv definite, hermitische Sesquillinearform.
Existenz eines Skalarprodukts bei endlicher Dimension
Soweit ist dies eine axiomatische Definition von Eigenschaften, welche ein Skalarprodukt erfüllen muss. Die Frage ist allerdings, für einen bestimmten Vektorraum, ob dort auch tatsächlich ein solches Skalarprodukt definiert werden kann.
Aus unserem Vektorraum V über K nehmen wir zwei Vektoren \(\vec{x}\) und \(\vec{y}\) und versuchen deren Skalarprodukt zu definieren. Im Falle einer endlichen Dimension des Vektorraums dim(V)=n können wir das leicht über die Komponentendarstellung dieser Vektoren zu einer ausgewählten Vektorbasis erreichen:
Die Vektorbasis sei: \( \vec{g}_i (i=1,2,…,n) \)
Die Komponentendastellungen sind:
\( \vec{x} = x^i \vec{g}_i \) und \( \vec{y} = y^i \vec{g}_i \)
Das Skalarprodukt der beiden Vektoren müsste dann eigentlich sein:
\( \vec{x} \cdot \vec{y} = x^i y^j (\vec{g}_i \cdot \vec{g}_j) \)Wir könnten das Skalarprodukt zweier beliebiger Vektoren also definieren, wenn wir nur das Skalaprodukt von je zwei Basisvektoren so definieren, dass dann die Axiome des Skalarprodukts eingehalten würden. Mit anderen Worten: Bei geeigneter Festlegung einer Matrix:
\( g_{ij} = \vec{g}_i \cdot \vec{g}_j \tag{1}\)Könnten wir das Skalarprodukt einfach definieren als:
\( \vec{x} \cdot \vec{y} = g_{ij} x^i y^j \tag{2}\)Wir bekommen also ein Objekt aus zweifach indizierten Skalaren (genannt Metrik-Koeffizienten). Diese Metrik-Koeffizienten bilden also eine quadratische Matrix, die wir später auch gerne “Metrik-Tensor” nennen werden.
Der Metrik-Tensor besteht also aus den paarweisen Skalarprodukten der verwendeten Basisvektoren.
Beispiel:
Wie nehmen einen euklidischen Vektorraum: \(\mathbb{R}^3\)
mit der Vektorbasis: \( \vec{e}_i = (\delta_{i}^j) \)
Wir nehmen als Metrik-Tensor: \( \eta_i^j = \left( \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right) \)
Aus Gleichung (2) mit dem obigen Metrik-Tensor ergibt sich als Skalarprodukt:
\( \vec{a} \cdot \vec{b} = \sum\limits_{i=1}^3 a^i b^i \)Nun müssen wir nur noch überprüfen, ob die Skalarprodukt-Axiome gelten:
Welcher Metrik-Tensor erfüllt die Skalarprodukt-Axiome?
Das erste zu überprüfende Axiom wäre die Linearität des so definierten Skalarprodunkts in beiden Argumenten.
Zur Überprüfung der Linearität im ersten Argument müssen wir folgenden Ausdruck berechnen:
\( \langle a_1 \vec{x1} + a_2 \vec{x_2} , \vec{y} \rangle = ? \)Das erste Argument ist also:
\( \vec{x} = a_1 \vec{x_1} + a_2 \vec{x_2} \)Um hier das Skalarprodukt auszurechnen nach Gleichung (2) müssen wir die Komponenten der Vektoren bestimmen. Dazu nehmen wir ersteinmal die Komponenten der einzelnen Vektoren:
\( \vec{x_1} = x_1^i \vec{g_i} \) und \( \vec{x_2} = x_2^i \vec{g_i} \)
Dann ist also:
\( \vec{x} = a_1 (x_1^i \vec{g_i}) + a_2 (x_2^i \vec{g_i}) \\ \)und:
\( x^i = a_1 x_1^i + a_2 x_2^i \tag{3}\\\)Nach der Definition des Skalarprodukts nach Gleichung (2) bekommen wir:
\( \langle a_1 \vec{x_1} + a_2 \vec{x_2} , \vec{y} \rangle = x^i y^j g_{ij} \\ \)Wenn wir nun hier Gleichnug (3) einsetzen, erhalten wir:
\( \langle a_1 \vec{x_1} + a_2 \vec{x_2} , \vec{y} \rangle = (a_1x_1^i + a_2 x_2^i) y^j g_{ij} = a_1 x_1^i y^j g{ij} + a_2 x_2^i y^j g_{ij}\)und schließlich:
\( \langle a_1 \vec{x_1} + a_2 \vec{x_2} , \vec{y} \rangle = a_1 \langle\vec{x_1}, \vec{y} \rangle + a_2 \langle \vec{x_2}, \vec{y} \rangle \\ \)Somit ist das Skalarprodukt im ersten Argument linear unabhängig von der Wahl des Metrik-Tensors.
Das Skalarprodukt ist auch im zweiten Argument linear, wenn der Skalaren-Körper \(\mathbb{R}\) ist – dann gilt die obige Herleitung identisch.
Das zweite zu überprüfende Axiom wäre die Symmetrie
Nach unserer Definition des Skalarprodukts in Gleichung (2) gilt:
\( \langle x, y \rangle = x^i y^j g_{ij} \)und
\( \langle y, x \rangle = y^j x^i g_{ji} = x^i y^j g_{ji}\)Wir sehen also, dass wenn der Metrik-Tensor symmerisch ist (gij = gji), dann ist auch das damit definierte Skalarprodukt symmetrisch.
Das dritte zu überprüfende Axiom wäre die Positive Definitheit
Dies ergibt sich auch ganz einfach.
Skalarprodukt bei nicht-endlicher Dimension
Ein Vektorraum nicht-endlicher Dimension über K ist so etwas wie ein Funktionenraum. Für \( f \in V \text{ und } g \in V \) definieren wir das Innere Produkt (Skalarprodukt) als:
\(\langle f,g \rangle = \Large \int \normalsize \overline{f(t)} g(t) dt \)Die komplexe Konjugation wird hier u.a. benötigt, damit die Länge eines Vektors (s.u.) eine reele Zahl wird.
Unitäre Abbildung (Unitäre Transformation)
Eine Abbildung (auch Transformation genannt) von einem Vektorraum V in einen anderen W wird “unitär” genannt, wenn sie das Skalarprodukt “erhält” (Da die Länge eines Vektors über das Skalarprodukt definiert ist, ist eine unitäre Abbildung längentreu)
Nehmen wir zwei Vektorräume V und W, jeweils mit einem Skalarprodukt, sowie eine Abbildung:
\( f: V \to W \)Dann soll für je zwei Vektoren u und v aus V gelten:
\( <f(u),f(v)> = <u,v>\\ \)Man kann zeigen, dass solche unitären Abbildungen auch stets lineare Abbildungen sind.
Ein klassisches Beispiel ist die Gruppe U(1) der komplexer Zahlen vom Betrag Eins, wobei die Gruppen-Verknüpfung die Multiplikation der komplexen Zahlen (also die Drehung) ist. Diese Gruppe spielt bei dem Standardmodell der Teilchenphysik eine wichtige Rolle. Die Gruppe U(1) bildet ein mathematisches Modell der Elektrostatischen Wechselwirkung in der Quanten-Elektrodynamik mit dem Photon als Austauschteilchen.
Länge eines Vektors
Der Begriff “Metrik-Tensor” hat schon einen Sinn, wenn wir sehen, dass damit auch die Länge eines Vektors definiert werden kann:
\( | \vec{a} | = \sqrt{\vec{a} \cdot \vec{a}} = \sqrt{g_{ij} a^i a^j} \)Zu jedem Skalarprodukt in einem R-Vektorraum oder C-Vektorraum kann man eine Norm definieren, die man “induzierte Norm” nennt:
\( ||\vec{x}|| = \sqrt{\vec{x} \cdot \vec{x}} \)Abstand zweier Punkte
Mittels der sich aus dem Skalarprodukt ergebenden Norm, definieren wir dann eine Metrik (Anstandsbegriff):
Zu einem Vektorraum der Dimension n über \(\mathbb{R} \) können wir \(\mathbb{R}^n \) als Metrischen Raum definieren:
d(x,y) := || y – x ||
Die Metrik-Axiome werden erfüllt.
Dadurch werden Grenzwert-Konstruktionen möglich z.B. die Konvergenz einer Folge (vgl. Cauchy-Folge), Differentialquotienten etc.