Computer: Mathematik – Algebren

Gehört zu: Mathematik
Siehe auch: Vektorräume

Algebren

Ein Vektorraum V über einem Körper K zusammen mit einer bilinearen Abbildung:

\(  V \times V \to V \)

wird eine Algebra genannt.

Die bilineare Abbildung wird “Produkt” (auch: Multiplikation) genannt und auch so wie ein Produkt hingeschrieben; also:  a · b  oder einfach ab. In dieser Schreibweise bedeutet die Bilinearität einfach folgendes:

\(   (x + y) \cdot z = x \cdot z + y \cdot z  \\ \)
\(   x \cdot (y + z)  = x \cdot y + x \cdot z  \\ \)
\( a (x \cdot y) = (ax) \cdot y = x \cdot (ay) \\ \)

Dabei sind x,  y und z Vektoren aus V und a ein Skalar aus K.

Das “besondere” an Algebren ist die “Multiplikation”. Deswegen unterscheidet man  Algebren auch nach den Eigenschaften dieser Multiplikation:

Kommutative – nicht-kommutative Algebren: Ist immer \( a \cdot b  =  b \cdot a \) oder nicht?

Assoziative – nicht-assoziative Algebren: Ist immer \( a \cdot (b \cdot c) = (a \cdot b) \cdot c \) oder nicht?

Beispiele für Algebren:

Die n × n Matrizen über einem Körper mit der gewöhnlichen Matrizenmultiplikation als “Multiplikation” bilden eine assoziative Algebra.

Ein Vektorraum V mit dem Kreuzprodukt als Multipikation bildet eine nicht-assoziative Algebra.

Lie-Algebren

Bestimmte Algebren heissen “Lie-Algebren”, dort wird das Produkt meist als [x,y] geschrieben und “Lie-Klammer” genannt.
Eine Lie-Algebra ist eine Algebra, in der die beiden folgenden Bedingungen gelten:

  • [x,x] = 0
  • [x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0 (“Jacobi-Identität”)

Beispiel für eine Lie-Algebra:

Ein Vektorraum V mit dem Kreuzprodukt als Multipikation bildet eine Lie-Algebra.

Kommutator

Im allgemeinen definiert man als Kommutator: [a,b] = ab – ba
So ein Kommutator kann in bestimmten Algebren als Lie-Klammer fungieren. Beispielsweise kann man aus der oben erwähnten Algebra der n x n Matrizen mit der gewöhnlichen Matrixmultiplikation eine Lie-Algebra machen, indem man den Kommutator der Matrixmultiplikation als Lie-Klammer nimmt.