Physik: Phasenraum

Gehört zu: Mechanik, Physik
Siehe auch: Newtonsche Mechanik, Lagrange-Formalismus
Benutzt: SVG-Grafiken aus Github

Stand: 06.04.2023

Quellen

Anregungen hierzu habe ich von Stefan Müllers Youtube-Video

erhalten.

Der Phasenraum

Im Phasenraum (auch Zustandsraum genannt) bezeichnen die Punkte die Zusände eines mechanischen Systems.

Der Zustand eines mechanischen Systems (zu einer Zeit t) kann durch Ort und Geschwindigkeit seiner Massepunkte beschrieben werden.

Dazu dienen sog. “generalisierten Koordinaten” (auch “verallgemeinerte Koordinaten” genannt).

Solche generalisierten Koordinaten werden meist geschreiben als:

  • Ortskoordinaten: \( q_1, q_2,…,q_i,…  \)
  • Geschwindigkeiskoordinaten:  \( \dot{q_1}, \dot{q_2},…, \dot{q_i},… \)

Den Physiker interessiert nun eine Zustandsveränderung mit der Zeit.
Möge ein Zustand 1 (Anfang) beschrieben sein durch \( q_i(t_1), \dot{q_i(t_1} \)
und ein Zustand 2 (Ende) beschrieben sein durch \( q_i(t_1), \dot{q_i(t_1} \).

Diese beiden Punkte im Phasenraum kann man in einem Diagramm des Phasenraums graphisch darstellen.

Es gibt viele Wege auf denen man vom Zustand 1 zum Zustand 2 kommen kann.

Abbildung 1: Wege in einem Phasenraum (Github: Phasenraum.svg)

Wege in einem Phasenraum

Auf jedem dieser Wege kann man das Integral entlang des Weges (nicht: Pfadintegral) der Engergie über die Zeit bilden. Diese Größe nennt man “Wirkung“.
Genaugenommen sind hier (infenitesimale) Energie-Unterschiede entlang des Weges gemeint.

Die Natur wählt nun denjenigen Weg, auf dem diese Wirkung minimal ist.
Hinter dem Begriff “minimal” steckt so eine Idee von “einfacher”, “ökonomischer”,  “sparsamer”,….

Um von so einem Integral das Minimum zu finden bedient man sich der mathematischen Methode der Variationsrechnung. Da werden “kleine” Differenzen betrachtet (geschrieben als kleiner Griechischer Buchstabe Delta) und  diese Differenzen werden dann als Taylorentwicklung dargestellt…

Aber welche “Energie” ist das, die wir da integrieren sollen? In der klassischen Sichtweise ist das die Lagrange-Funktion. Aber wo bekommen wir die denn her???

Wir haben da immer irgendein Kraftfeld, was zu Bewegungsgleichungen führt. Ähnlich wie wir statt eines konservativen Kraftfeldes auch das Potenzial als skalares Feld nehmen konnten, wollen wir nun statt des Potenzials die Lagrange-Funktion nehmen….

Warum ist das dann immer noch richtig?