Astronomie: IC 2944 Running Chicken

Gehört zu: Beobachtungsobjekte
Siehe auch: HII-Regionen, Filter, Nebel, Namibia, Meine Astrofotos
Benutzt: Fotos aus Google Drive

Stand: 21.12.2022

IC 2944 der Running-Chicken-Nebel ist ein klassisches Nebel-Objekt für Namibia.

Ein klassisches H-Alpha-Objekt für kleinere Teleskope.

  • Scheinbare Helligkeit von 4,5 mag
  • Scheinbare Ausdehnung von 40′ x 20′
  • IC 2944 ist ein Emissionsnebel und strahlt vorwiegend in H alpha.
  • Entfernung 6500 Lichtjahre.

Bei meinem Aufenthalt in Namibia im August 2019 habe ich endlich ein Foto vom Running Chicken Nebel erstellen können.

Abbildung 1: Running Chicken Nebula (Google Drive: 20190830_2949-2978_RunningChicken_5_beschriftet.jpg)

Diese Fotografie habe ich von Kiripotib, Namibia geschossen. Dabei hat ein Tri-Narrowband-Filter geholfen.

Astronomie: M8 und M20 Lagoon- und Trifid-Nebel

Gehört zu: Beobachtungsobjekte
Siehe auch: HII-Regionen, Filter, Nebel, Namibia, Meine Astrofotos
Benutzt: Fotos aus Google Drive

Stand: 21.12.2022

M8 und M20 (Lagoon-Nebel und Trifid-Nebel) sind zwei nahe beieinander liegende Emissionsnebel im Schützen (Sgr).

Ein klassisches H-Alpha-Objekt für kleinere Teleskope mit einem entsprechenden Gesichtsfeld.

  • Scheinbare Helligkeit von 6,0 und 6,3 mag
  • Scheinbare Ausdehnung von 60′ x 40′ und 28′ x 28′
  • M8 ist ein Emissionsnebel und strahlt vorwiegend in H alpha.
  • Entfernung 9500 Lichtjahre.

Bei meinem ersten Aufenthalt in Namibia im September 2017 habe ich erste Fotos von M8 und M20 erstellen können. Zwei Jahre später 2019 habe ich es dann noch schöner mit einem Tri-Narrowband-Filter gemacht:

Abbildung 1: Lagoon- und Trifid-Nebel mit Tri-Narrowband-Filter (Google Drive: 20190829_2983-3020_M8-M20_3_beschriftet.jpg)

Diese Fotografie habe ich von Kiripotib, Namibia geschossen. Dabei hat ein Tri-Narrowband-Filter geholfen.

Astronomie: NGC 6334 Katzenpfoten-Nebel

Gehört zu: Beobachtungsobjekte
Siehe auch: HII-Regionen, Eta-Carinae-Nebel, Filter, Nebel, Namibia, Meine Astrofotos
Benutzt: Fotos aus Google Drive

Stand: 22.12.2022

NGC 6334 den sog. Katzenpfoten-Nebel ist ein Emissionsnebel im Skorpion.

Er ein klassisches H-Alpha-Objekt für kleinere Teleskope.

  • Scheinbare Helligkeit von ??? mag
  • Scheinbare Ausdehnung von 35′ x 20′
  • NGC 6334 ist ein Emissionsnebel und strahlt vorwiegend in H alpha.
  • Entfernung 5500 Lichtjahre.

Bei meinem ersten Aufenthalt in Namibia im September 2017 habe ich ein erstes Foto von NGC 6334 erstellen können. Zwei Jahre später 2019 habe ich es dann noch schöner mit einem Tri-Narrowband-Filter gemacht:

Abbildung 1: NGC6334 Katzenpfoten-Nebel (Google Drive: 20190829_2867-2926_Katzenpfoten_5_beschriftet.jpg)

Diese Fotografie habe ich von Kiripotib, Namibia geschossen. Dabei hat ein Tri-Narrowband-Filter geholfen.

Astrofotografie: NGC 253 Silver Dollar Galaxie

Gehört zu: Welche Objekte?
Siehe auch: Galaxien, Deep Sky Objekte, Namibia, Meine Astrofotos
Benutzt: Fotos aus Google Drive

Stand: 22.12.2022

Die Silver Dollar Galaxis

NGC 253, genannt “Silver Dollar Galaxy”, im Sternbild Sculptor ist das klassische klassische “Anfängerobjekt” auf der Südhalbkugel.

Generelle Vorbereitungen für das Fotografieren von NGC 253

Der Standort für die Beobachtung ist Kiripotib in Namibia. Ich war dort vom 12. bis 18.9.2017.

Wann ist der günstigste Zeitpunkt; d.h. wann steht NGC 253 in Namibia schön hoch am Himmel?

  • In 2017 in Kiripotib: ab 12. September, 20:43 Uhr (h>30°)

Welche Ausrüstung soll eingesetzt werden?

  • Kamera: Canon EOS 600Da
  • Optik: APM APO 107/525 (mit Flattener/Reducer 0.85) also ein Öffnungsverhältnis von f/4.9
  • Montierung:  Fornax 51
  • Polar Alignment: vorhanden
  • Windows 10 Notebook-Computer
  • Aufnahme-Software: APT

Mit welchen Einstellungen sollen die Fotos geschossen werden?

  • Geplante Belichtungszeit: 30 x 240 Sekunden bei ISO 800
  • Probefotos ergaben, dass bei dieser Belichtung das Histogramm der Einzelfotos “gut” aussah; d.h. deutlich vom linken Rand abgesetzt und von rechten Rand noch sehr weit entfernt
  • Aufnahmeformat: Raw d.h. CR2
  • Auto Guiding mit PHD2 Guiding

Das Foto am 17.09.2017

Im Jahre 2017 war ich mit meinen astrofotografischen Übungen dann so weit und konnte in Kiripotib folgende Aufnahme gewinnen:

Abbildung 1: NGC 253 Silverdollar Galaxy im Sculptor (Google Drive: 20170917_Autosave_NGC253_SculptorGalaxy_6_beschriftet.jpg)

Astronomie: Backfokus für die ASI294MC Pro

Gehört zu: Astronomie
Siehe auch: ASI294MC Pro, Flattener, Liste meiner Astro-Geräte
Benutzt: Grafiken aus GitHub

Was ist Backfokus?

Als Backfokus bezeichnet man den genauen Abstand, den die Sensor-Ebene der Kamera vom Ende des Teleskops haben muss.

Meist ist das Endstück eines Teleskops ein Flattener/Reducer bzw. ein Koma-Korrektor.

Bei der Längenberechnung werden die Gewinde nicht mitgezählt, denn die sollten ja nach dem Reindrehen “verschwunden” sein. Also immer von Flansch zu Flansch zählen.

Ich habe einen Satz von Verlängerungshülsen gekauft, die M42-Gewinde (eins innen, eins außen) haben. Damit kann ich den erforderlichen Backfokus in aller Regel erreichen.

Backfokus für die Kamera ZWO ASI294MC Pro

Bei der Kamera selbst ist die Sensorfläche 6,5 mm hinter der Vorderkante der Kamera, wo sich direkt ein M42 Aussengewinde befindet.

Da man üblicherweise ein M42 Innengewinde kameraseitig benötigt, ist ein kleiner Adapter mit M42 Innengewinde vorn und hinten erforderlich. Dieser hat eine optische Länge von 11 mm.

Damit hat die so ausgestattete Kamera schon 6,5 mm + 11 mm = 17,5 mm optisch wirksamen Abstand vor der Sensorfläche.

Anschluss in Namibia an APM Apo 107/700 mit Riccardi-Reducer

Der Riccardi_Reducer hat kameraseitige ein M82-Gewinde.

Der Backfokus des Reducers ist 80 mm.

Dabei ist ein Adapter M82 -> M48 mit der Baulänge 3 mm

Dabei ist eine variable M48-Verlängerung mit der Baulänge 17-23 mm.

Soweit macht das zusammen 20-26mm; es fehlen also noch 54-60mm zum Backfokus.

Meine Kamera ZWO ASI294MC pro verfügt (s.u.) über Stücke der Gesamtlänge von 55mm. Das würde reichen…

Anschluss in Namibia an Foto-Newton mit Paracorr Komakorrektor

Der Paracorr hat kameraseitig ein M48*0,75 Aussengewinde.

Der Backfokus soll 55 mm betragen.

Anschluss in Namibia an TS APO 90/600 mit TS-Flattener 1.0x

Der TS-Flattener hat kameraseitig ein M48*0,75 Gewinde.

Der Backfokus soll 113.114 mm betragen.

Anschluss an mein Teleskop ED80/600 mit Flattener

Der Flattener hat kameraseitig ein M48*0,75-Aussengewinde.

Der Backfokus soll 55 mm betragen.

Anschluss an das Teleskop ggf. den Flattener/Reducer des Teleskops

Die Kamera ASI294MC Pro selbst hat einen M42*0.75-Aussengewinde (das wird auch T2-Gewinde genannt) als primären Anschluss.

Mit der Kamera kommen folgende Verlängerungsstücke bzw. Adapter mit:

  • M42/M42 Verlängerung um 11 mm (vor-eingebaut)
  • M42/M42 Verlängerung um 21 mm
  • M48/M42 Verlängerung um 16,5 mm

Backfocus der Kamera ohne alle Adapter: 6,5 mm
Insgesamt also 6,5 + 11 + 21 + 16,5  = 55 mm

Für alle Fälle habe ich mit zusätzlich einen Satz von M42-Verlängerungshülsen mit unterschiedlichen Längen gekauft.

Der Flattener/Reducer hat am kameraseitigen Ende ein M48*0,75 Aussengewinde…

Hinzu kommt der Adapter SKFlat von Teleskop-Service. Dieser 2-Zoll-Stutzen vorne ein M48x0.75 Innengewinde, in das man 2-Zoll-Filter schrauben kann.

Wo sollte ein Filter eingeschraubt werden?

Da mein Tri-Narrowband-Filter (2 Zoll astronomischer Filter) nicht für alle Beobachtungsobjekte verwendet werden soll, muss ich ihn immer wieder ausschrauben und einschrauben. Aber wo?

Vom Gewinde her würde der Filter zwischen Flattener und das 16.5 mm Verlängerungsstück passen. Aber das würde den Backfokus ruinieren. Der Filter muss also ganz vorne an den “Adapter SKFlat” geschraubt werden – oder wir haben eine Filterschublade (s.u.), die genau anstelle des 21mm-Stücks passt.

Das 11mm lange M42-Gewinde (s. Bild unten) scheint ziehmlich fest an der ASI-Kamera zu stecken.

Abbildung 1: Zusammenbau ASI294 mit Flattener (GitHub: Flattener02.svg)

Filterschubladen

Wenn ich in diesen Optical Train eine Filterschublade einbauen will, ohne den Backfokus zu zerstören, nehme ich am einfachsten eine sog. “ZWO-Filterschublade”, die hat dann eine optische LÄnge von genau 21mm. Die Frage ist dann noch, welchen vorderen Anschluss man hat.

Filterschublade zum Anschluss an Canon Foto-Objektive

An das M42-Innen-Gewinde des ersten (11mm) Adapters kommt dann gleich die EOS-Filterschublade, die vorne ein Canon-Bajonett hat…

Filterschublade zum Anschluss an M48-Gewinde

An das M42-Innen-Gewinde des ersten (11mm) Adapters kommt dann gleich die M48-Filterschublade, die vorne ein M48-Innen-Gewinde hat…

Astrofotografie: Lessons learned

Gehört zu: Astrofotografie
Siehe auch: Mein Workflow mit APT, Mein Beobachtungsbuch, Meine Astro-Geräteliste

Stand: 06.03.2025

Astrofotografie: Lessons learned 2020 und 2021 und 2024

Im Jahre 2020 hatte ich unter den leider gegebenen Umständen (Corona) mehr Zeit als sonst und habe mal einige Erkenntnisse zur Verbesserung meiner persönlichen Fertigkeiten bei der Astrofotografie aus meinem Beobachtungsbuch herausgeholt und hier zusammengefasst.
Vielleicht ist für den einen oder anderen auch ein Denkanstoss dabei – oder ein Punkt zur Diskussion…

Tabelle 1: Lessons learned

Astro-Kamera Meine DSLR (Canon EOS 600D) entwickelte hohe Sensor-Temperaturen (30 Grad und mehr), die zudem noch veränderlich waren.
Jetzt habe ich mir eine echte (dedizierte) Astro-Kamera (ZWO ASI294 Pro) zugelegt, die diese Temperaturprobleme löst (geregelte Kühlung) und auch über APT ansteuerbar ist.
Allerdings ist die Live-View-Funktion unter APT bei der ASI294 schlechter als mit der Canon-DSLR.
Die Kamera (ZWO ASI294 Pro) ruhig auf minus zehn Grad kühlen (mindestens Null Grad); dann geht das thermische Rauschen stark zurück.
Der Gain sollte schon über 120 (sog. Unity Gain) liegen, dann ist das Ausleserauschen extrem gering. Gain 300 geht auch gut.
Barlow-Linse Um die effektive Brennweite meines Refraktors Orion ED80/600 zu erhöhen und damit den Abbildungsmaßstab zu vergrößeren, habe ich eine Barlow-Linse erstanden.
Geplant war, den Merkurdurchgang im November 2020 damit zu fotografieren. Das fiel wegen schlechten Wetters aus.
Auch in der Marsopposition im Oktober 2020 wollte ich die Barlow-Linse ausprobieren.
Problem 1: Welchen Abstand soll das Barlow-Element von der Sensorebene meiner Kamera haben?
Problem 2: Welche effektive Brennweite hat dann mein Teleskop ED80/600 mit der so montieren Barlow-Linse? Dies muss ich nämlich für das Platesolving wissen.
Belichtung Die Gesamtbelichtungszeit bei Deep Sky Objekten (DSOs) sollte schon bei mindestens 2 Stunden liegen.
Die maximale Belichtungszeit der Einzelaufnahmen wird begrenzt durch zweierlei: (1) Himmelshelligkeit (2) Nachführgenauigkeit
Beide Grenzen müssen immer wieder durch praktische Versuche ermittelt werden.
Bei zu langen Einzel-Belichtungszeiten kann das gefürchtete AmpGlow stören.
Beobachtungsbuch Mein schon seit vielen Jahren geführtes Beobachtungsbuch in Excel habe ich ergänzt um einen zusammenfassenden Abschnitt: “Die schönsten Fotos aus diesem Jahr”
Auf dieser Basis habe ich ein Fotobuch mit den für mich eindruckvollsten “Pretty Pictures” erstellt. Als Vorstufe zu diesem Fotobuch habe ich zuerst ein Web-Album bei Flickr angelegt.
Bildbearbeitung: Stacken Die Software Astro Pixelprocessor (“APP”) ist noch etwas besser als der Deep Sky Stacker (“DSS”)
APP scheint das Stacken selbst etwas genauer zu machen als DSS.
Bildbearbeitung: Stretchen Beim Stretchen wird aus einem linearen Bild ein nicht-linerares Bild.
Beim Stretchen darf links im Histogramm nicht abgeschnitten werden. Der dunkle Himmel ist nicht schwarz (0,0,0), sondern sollte schwach grau sein: (25,25,25).
Durch das Stretchen wird die Farbsättigung geschwächt. Gegenmaßnahme: +30% nach dem Stretchen.
Bildbearbeitung:
Background Extraction
Mit APP wird dann auch gleich das erstellte Summenbild nachbearbeitet durch (1) Entfernen von Lichtverschmutzung und Gradienten (Background-Extraction) (2) Sternfarben-Kalibrierung (3) Farbsättigung
Software APP wird auch das PixInsight des kleinen Mannes genannt (geringere Kosten, schnellere Lernkurve).
Calibration Frames Darks zur Eliminierung des AmpGlow bei der ASI294 erforderlich (gleiche Temperatur kein Problem)
Flats zur Korrektur der Flecken (“Donuts”) erforderlich. Flatbox einsetzen.
Biases erforderlich, wenn ich Flats mache.
Flat Frames Flat Frames benötige ich immer. Damit das so einfach wie möglich geht, habe ich mir eine FlatBox angeschafft.
Die Belichtungszeiten sollten nicht zu kurz sein, dann könnte es Streifen geben. Etwas länger Belichten (z.B. 3 Sekunden) ist bei Flats besser, dazu muss ich die Helligkeit der Flats etwas herunterregeln.
Fokussieren Das manuelle Fokussieren hatte zwei Nachteile: (1) Beim manuellen Fokussieren zittert das Bild (2) Für einen Remote-Betrieb ist ein Motor-Fokusser erforderlich.
Ein Motor-Fokusser muss ganz fest am Okularauszug befestigt sein, ohne dass dabei Schrauben des OAZ verwendet werden, die am OAZ selbst eine wichtige Funktion haben.
Zum Fokussieren selbst benutze ich die Bahtinov-Masken nicht, sondern mache das auf Sicht: Also bei welcher Fokuseinstellung ist eine Sternenscheibchen am kleinsten und wo tauchen neben dem hellen Zielstern auf einmal viele schwächere Sternenpunkte auf?
Das mache ich mit der Software SharpCap, wo ich quasi ein Life-Bild habe und dieses auch schön vergrößern kann.
Voraussetzung: Ein heller Stern ist im Gesichtsfeld. Hell muss der Stern sein, wenn ich bereits einen Filter eingbaut habe oder auch wenn es noch nicht richtig dunkel ist.
Zur Einstellung so eines Sterns in Gesichtsfeld benutze ich zuerst ein Goto mit Cartes du Ciel. Zur Feineinstellung des Sterns in das Gesichtsfeld benutze ich mein sonst nutzloses Sucherfernrohr.
Das Sucherfernrohr justiere ich daher schon am Tage parallel zum Hauptrohr.
Der helle Zielstern darf nicht zu weit weg vom Fokus sein – Deshalb grobe Fokussierung schon am Tage an einem entfernten terrestischen Objekt.
Die Fokussierung muss mindestens so gut sein, dass ein Platesolving funktioniert.
Mit der Software N.I.N.A. habe ich sogar eine Auto-Fokus-Funktion, die mit einer V-Kurve arbeitet. Aber dann muss man N.I.N.A. ersteinmal lernen.
Lichtverschmutzung Tri-Narrowband-Filter in Hamburg sinnvoll auch mit Farbkamera (Beispiel: Pacman-Nebel) – schön lange belichten.
Da so ein Filter nur für Emissionsnebel sinnvoll ist, muss man in ausschrauben und wieder einschrauben – aber wo genau?
Plate Solving & Drehwinkel Das Plate Solving benötigt ein Foto mit einigermassen gut fokussierten Sternen. Es bestimmt dann die Koordinaten des Bildmittelpunkts und den Drehwinkel des Fotos gegenüber der Nordrichtung. Ich benutze die Funktion Plate Solving über meine Astro-Software APT.

Wenn erforderlich, muss ich den vom Platesolving ermittelten Drehwinkel per Hand in die gewünschte Position bringen.

Polar Alignment Polar Alignment mit SharpCap funktioniert genau und bequem mit vorhandenem Gerät (Guiding-Rohr). PoleMaster verkauft.

Bei N.I.N.A. gibt es jetzt ein neues Plugin “TPPA” (Three Point Polar Alignment). Das funktioniert richtig gut. Vorteile:
1) Es benutzt die Haupt-Optik; d.h. es ist kein zusätzliches Rohr (z.B. Guiding Teleskop) erforderlich
2) Es ist keine freie Sicht auf den Himmelspol erforderlich
3) Die Abweichung vom Himmelspol wird numerisch (Bogenminuten, Bogensekunden) angezeigt

SYNC Bei einer Teleskopsteuerung durch ASCOM hat man den SYNC-Befehl. Der Befehl heisst in voller Schönheit “SyncToCoordinates”.
Die ASCOM-Teleskopsteuerung hat immer eine “angenommene Teleskop-Position” (Rektaszension und Deklination). So eine “angenommene Teleskop-Position” ist beim allerersten Anschalten der Himmelspol und ansonsten die Position des letzten Gotos.
Der SYNC-Befehl sagt der ASCOM-Teleskopsteuerung, dass die “angenommene Teleskop-Position” auf einem bestimmten Wert (Zielwert) gesetzt werden soll.
Ich mache das immer im Zusammenhang mit Platesolving. Die durch Platesolving ermittelten Koordinaten des akutellen Bildes werden dann per SYNC-Befehl der ASCOM-Teleskopsteuerung mitgeteilt und von nun an auch als “angenommene Teleskop-Postion” benutzt. Damit wird die “angenommene Postion” identisch mit der tatsächlichen Position des Teleskops. Früher (bevor ich Platesolving machte) habe ich dafür ein Three Star Alignment gemacht.
Um ein SYNC mit APT auszulösen, muss die Montierung (Teleskop) “connected” sein.
Um ein SYNC mit CdC auszulösen, muss die Montierung (Telekop) “verbunden” sein.Weitere Voraussetzungen für einen erfolgreichen SYNC sind “Unpark” und “Tracking”
Teleskopsteuerung Die Erprobung eines Raspberry Pi mit Linux war für mich nicht richtig zufriedenstellend. Raspberry Pi verkauft.
Die von Windows her gewohnte Software musste teilweise ersetzt werden
Die Remote-Bedienung über VNC habe ich nach einigem Fummeln schon hinbekommen.
Auch gibt es PHD2 Guidung wohl auf Linux; aber mit KStars und Ekos und INDI konnte ich mich nicht anfreunden.
Goto Voraussetzung für das Funktionieren der motorischen Goto-Funktion ist ein “Alignment“. Nur dadurch weiss die Montierung ihre “Ist-Position” und kann von dieser “Ist-Position” aus auf die gewünschte “Soll-Position” fahren. Die Goto-Funktion ermittelt immer die Differenz zwischen Soll und Ist. Falls die Ist-Position schon falsch ist, bewegt sich die Goto-Funktion möglicherweise komplett falsch und es kann zu Kollisionen kommen.
Mit Cartes du Ciel kann man diese Ist/Soll-Positionen sehr gut visuell überwachen. Die Ist-Position ist beim Einschalten der Himmelspol, d.h. das Teleskop sollte beim Einschalten auch dahin zeigen.
Veränderungen der Teleskop-Position bei gelösten Klemmen werden von der Computersteuerung nicht wahrgenommen.
Nur Veränderungen der Teleskop-Position durch Goto (und Sync nach Plate Solving) registriert die Computersteuerung.
Also: Vor jedem Goto auf eine neue “Soll-Position” zuerst kontrollieren, ob die “Ist-Position” die richtige ist.
Wetter Gute astronomische Wetterberichte gibt es z.B. bei: http://clearoutside.com und bei Kachelmann

_._,_._,_

Astrofotografie: PegasusAstro FlatMaster

Gehört zu: Astrofotografie, Calibration Frames
Siehe auch: Meine Astro-GerätelisteWie mache ich Flat Frames?
Benutzt: Fotos aus Google Archiv

Stand: 22.12.2022

Flat Frames mit dem PegasusAstro FlatMaster

Am 26.9.2020 erhielt ich die PegasusAstro FlatMaster 120 mm aus den Niederlanden (http://www.ganymedes.nl) für Euro 169,–.
Dieses Modell war bei meinen Standard-Händlern vergriffen, weil PegasusAstro jetzt größere Modelle herstellt.

Ein dim-bares EL-Panel mit einem Durchmesser von 120mm. Es passt perfekt auf mein Teleskop Orion ED80/600.

Die Spannungsversorgung (5V) und Helligkeitssteuerung erfolgt über ein einziges Kabel, ein Standard USB ohne Inverter und ähnlichen Schnickschnack..

Mit diesem Teil kann ich endlich ganz bequem gute Flat Frames zum Kalibrieren meiner Astro-Fotos (der Light Frames) machen.

Die Helligkeitssteuerung kann über eine vom Hersteller gelieferte Windows-Software (Standalone Software) erfolgen. Alternativ kann ich über ASCOM die Helligkeit steuern z.B. mit meiner Aufnahme-Software APT und auch mit N.I.N.A.

Abbildung 1: PegasusAstro FlatMaster 120 (Google Drive: PegasusFlatMaster-00.jpg)

Computer: Astrofotografie (aus Wiki)

Astrofotografie (aus Wiki)

Gehört zu: Astronomie

Übersicht

Wenn man Interesse für Astronomie hat, kommt ganz schnell der Moment, wo man Beobachtungen auch fotografisch festhalten möchte

Was benötigt man, um Fotografien des Sternenhimmels zu machen?

  • Eine geeignete Kamera
  • Einen Himmelsatlas, um interessante Objekte und deren zeitliche Sichtbarkeit heraus zu finden
  • Ein Stativ
  • Software zum bearbeiten der Bilder (addieren von Einzelbildern)

Belichtungszeiten

Erste Ideen:

  • Weitwinkel (dann ist die Lichtstärke maximal und die Brennweite minimal und man kann länger belichten, ohne dass die Sterne zu Strichen werden)
  • Belichtungszeit: ca. 10 sec (ausrechnen wann die Erdrotation von einem Pixel zum nächsten springt)

Software

Ein Baumstativ

— Dkracht 23:10, 19 July 2009 (CEST)

Retrieved from my Wiki

Astrofotografie: Wie mache ich Flat Frames?

Gehört zu: Bildbearbeitung
Siehe auch: Problme lösen mit Stacking, Astro-Geräteliste, PegasusAstro FlatMaster, ZWO ASI294MC Pro, Belichtungszeiten, Flat Frames mit N.I.N.A.
Benutzt: Fotos aus Google Drive

Stand: 11.05.2023  (Bit-Tiefe, N.I.N.A., Full Well Capacity, Quanten-Effizienz, Gain, Cleaning, PegasusFlatMaster)

Wie mache ich gute Flat Frames zur Kalibrierung meiner Astrofotos?

Wir machen neben den Nutz-Fotos (den sog. Light Frames) zur Korrektur (zum Kalibrieren) noch folgende zusätzlichen “Frames”:

  • Dark Frames
  • Light Frames
  • Bias Frames (manchmal auch Offset Frames genannt)

Eine Stacking-Software, wie z.B. Deep Sky Stacker oder Astro Pixel Processor verarbeitet diese Frame-Typen zu einem Summenbild.

Die prinzipielle Vorgehenweise ist wie folgt:

  • Die Darks werden von den Lights abgezogen.
  • Da diese Darks bereits das Bias enthalten, ist damit auch schon das Bias vom Light abgezogen.
  • Es bleibt das Flat. Bevor durch das Flat dividiert wird, muss also noch aus dem Flat das Bias abgezogen werden.

Welche Kalibrierungs-Frames brauche ich?

Das Wichtigste sind die Flat Frames.

Wenn ich eine Kamera mit Amp Glow habe, sind Dark Frames erforderlich.

Kalibrieren mit Flat Frames

Flat-Frames sollen theortisch ein gleichmäßig weisses Feld zeigen, Abweichungen von der Gleichmäßigkeit können sein:

  • Randverdunkelung (sog. Vignettierung)
  • Schatten von Staubpartikeln (sog. Donuts)
  • Helligkeitsstrahlen durch Wärme in der Kamera in Sensornähe (sog. Ampglow)  – So ein “Ampglow” wird aber erst bei längerer Belichtungszeit sichtbar

Wenn das Bild (Light Frames) einen nicht ganz gleichmäßigen Hintergrund hat, wird das beim Stretchen schnell zu einem Problem. Also brauche ich Flats, wenn ich ein Bild stark stretchen will z.B. bei einem feinen Nebel…

Ich versuche mich erst seit neuester Zeit mit Flat Frames (T-Shirt-Methode und Flat-Frame-Folie). Manchmal waren die Ergebnisse richtig gut, manchmal hatte ich eine hässliche Überkorrektur. Deswegen beschäftige ich mich jetzt etwas detaillierter mit dem Thema “Flats”.

Am 26.9.2020 erhielt ich die Flat-Field-Box PegasusAstro FlatMaster 120 mm.

Falls es um sog. Donuts (Schatten von Staubpartikeln) geht, ist es sicher besser, das Über bei der Wurzel zu packen und die Partikel von den optischen Flächen zu entfernen. Ich war sehr erfolgreich beim Reinigen des AR-Glases vor dem Sensor meiner Kamera ASI294MC Pro. Ich benutzte dazu ein Zeiss Billen Reinigungstuch (alkoholfrei), Web-LInk: http://www.zeiss.com/cleaning.

Welche Einstelungen nehme ich für Flat Frames?

Teleskop und Kamera genauso wie bei der Aufnahme der Light Frames – also auch ggf. mit der Taukappe…

Die ISO-Einstellung bzw. die Gain-Einstellung sollte bei den Flats identisch sein zu den Lights. Wenn man die Flats mit anderen ISO-/Gain-Einstellungen machen sollte, benötigt man zusätzlich DarkFlats mit dieser anderen ISO/Gain-Einstellung.

Belichtungszeit (und Gain bzw. ISO) so, dass nichts soll “ausgebrannt” ist und die kleinen Helligkeitsunterschiede im Bild gut sichtbar sind.

Vom “Ausbrennen” spricht man, wenn bei einem Pixel die sog. “Full Well Capacity” (in Anzahl Elektronen) erreicht ist; d.h. zusätzliche Photonen können keine zusätzlichen Elektronen in diesem Pixel erzeugen und damit auch kein zusätzliches Signal (also ADUs) bewirken.

Quanten-Effizienz der ZWO ASI294MC Pro

Die Quanten-Effizienz (“QE“) wird meist vom Hersteller des Sensors angegeben und nicht vom Hersteller der Kamera. Bei meiner ASI294MC Pro ist es der Sensor: Sony 4/3″ CMOS Color Sensor IMX294CJK.

Siehe auch: Belichtungszeiten

Auf der Web-Seite https://www.flir.de/discover/iis/machine-vision/how-to-evaluate-camera-sensitivity/ finden wir folgendes Bild:

Abbildung 1: Signalverarbeitung in einer CMOS-Kamera (Copyright: www.flir.de)

Quanteneffizienz

Die sog. Quanten-Effizienz gibt den Zusammenhang zwischen ankommenden Photonen und Elektronen-Anzahl in Prozent an. Also wie gut (Ausbeute in Prozent) der Sensor aus den ankommenden Licht-Quanten (Photonen) Elektronen macht. Im Bild werden aus 6 Photonen drei Elektronen gemacht; also eine QE von 50%.

Full Well Capacity der ZWO ASI294MC Pro

Die Full Well Capacity (Sättigungskapazität) sagt, wieviele Elektronen ein Photoelement des Sensors (ein Pixel) maximal aufnehmen kann. Wenn die auftreffenden Photonen mehr Elektronen erzeugen, könnte das Photoelement im Sensor das nicht mehr aufnehmen. Es wäre, wie man sagt, “ausgebrannt”.

Die Full Well Capacity ist bei meiner ZWO ASI294MC Pro ganz unterschiedlich, je nach dem welcher Gain (Vorverstärkung) eingestellt ist:

Tabelle 1: Full Well Capacity der ZWO ASI294MC Pro

         
Gain dB
Full Well Capacity 14 Bit ADU Max
e-/ADU (14 Bit)
0 0 63700e- 16384 3,89
100 10 20000e- 16384 1,22
120 12 17200e- 16384 1,05
200 20 6000e- 16384 0,37
300 30 2000e- 16384 0,12

Quelle: https://astronomy-imaging-camera.com/product/asi294mc-pro-color

Wichtig ist, dass jeder Farbkanal für sich genommen (R-G-B) im Histogramm weder links und rechts angeschnitten wird.

Auslesen des Signals und Gain bei der ASI294MC Pro

Am Ende der Belichtungszeit wird aus jedem Pixel das dort gespeicherte “Signal” ausgelesen. Damit meint man die Ladung in Anzahl Elektronen (e-). Diese gemessene Signalstärke (Ladungsmenge) ist noch analog. Sie wird dem ADC (=Analog-Digital Converter) zugeführt und dort in einen digitalen Wert konvertiert, den man auch “Graustufen” nennen kann.  Diese einzelnen Graustufen nennt man auch ADUs (Analog Digital Units).

Bevor das Signal dem ADC zugeführt wird kann noch eine Vorverstärkung erfolgen. Die Größe dieser Vorverstärkung nennt man Gain und der Gain-Wert kann bei der Aufnahme an der Kamera eingestellt werden – ähnlich dem ISO-Wert bei herkömmlichen Digitalkameras. Der Gain bestimmt also den Eingangspegel des ADC.

Dieser Gain-Wert wird von den Kameraherstellern unterschiedlich gemessen. Ein EMVA1288-Standard versucht eine für alle Hersteller geltenden Definition des Gain-Werts: Anzahl Elektronen (e-) pro ADU bei einem 16-Bit-ADU. Trotzdem macht es jeder Hersteller anders.

Der Gain-Parameter gemäß EMVA1288-Standard (auch “System-Gain” genannt) ist nicht zu verwechseln mit der Vorverstärkung am Analog-Digital-Wandler, der von den Kamera-Herstellern auch gerne “Gain” genannt wird. Es kommt daurch zu sehr skurrilen Achsenbeschriftungen z.B. bei ZWO, wo der Gain in Anhängigkeit vom Gain dargestellt wird.

Der Hersteller ZWO misst die Vorverstärkung seiner Kameras in Einheiten von 0,1 dB. Beispiel: Eine Vorverstärkung vom Gain 100 bedeutet bei ZWO also 10 dB; d.h. der Signalpegel wird verzehnfacht (10 dB = 1 Bel, 1 = lg 10).

Eine Vorverstärkung von 120 bedeutet also 12 dB. Bei dieser Vorverstärkung haben wir den sog. Unity Gain von 1 e-/ADU.

Eine bestimmte Vorverstärkung wird allgemein als “Unity Gain” bezeichnet, bei dieser Vorverstärkung wird ein Elektron (e-) in eine ADU gewandelt. Ob damit auch ein ggf. fiktiver 16-Bit-ADU gemeint ist oder der tatsächliche ADU (im Beispiel: 14 Bit) bleibt dahingestellt.

Die ADU-Werte der ASI294MC Pro

Der Helligkeitswert eines Pixels im Bild wird so von einer analogen Signalstärke (Ladungsmenge) in einen digtialen sog. ADU-Wert (ADU = Analog Digital Unit) gewandelt. Je nach der Bit-Tiefe des  ADC (Analog-Digital-Converter) hätten wir unterschiedliche Maximalwerte, wo bei jedes Sensor-Fabrikat eine andere Bit-Tiefe haben kann:

Tabelle 2: Bit-Tiefe und maximale ADU-Werte

Bit-Tiefe Maximaler ADU-Wert Halbes Maximum ADU
16 216 65536 32768
14 214 16384 8192
12 212 4096 2048
8 28 256 128

Flat Frames: Mono oder One Shot Color (“OSC”)?

Wenn man mit einer Mono-Kamera und Rot-Grün-Blau-Filtern arbeitet, muss man für jede Farbe extra ein Flat machen – sagen die Experten.

Ich habe “nur” OSC (= One Shot Colour), da sieht das anders aus. Ich habe ich ja immer diese Bayer-Matrix vor dem Sensor und kann aus jeder Aufnahme durch de-bayern ein Farbfoto gewinnen.

Die ganze Kalibierung soll aber immer mit den noch nicht de-bayerten Original-Fotos geschehen – sagen einige Experten…

Wie mache ich nun Flat-Frames?

T-Shirt-Methode

Nach der Aufnahme-Nacht am nächsten Tage ein sauberes T-Shirt doppelt oder vierfach über das Objektiv bzw. die Taukappe.

Das wird meistens zu hell.

Flat-Field-Box (EL-Leuchtfolie)

EL-Leuchtfolie von Gerd Neumann vor dem Objektiv. (T-Shirt wird meist zu hell.)

Dafür benötigt man eine gute Spannungsversorgung (bei mir 12V) und die Hellikeit der Folie sollte dimmbar sein…

Flat-Field-Boxen gibt es von mehreren Herstellern; z.B. unterstützt N.I.N.A. folgende Modelle:

  • All-Pro Sike-a Flat Flied: 12-Zoll im Quadrat. USD 250 + 140 für USB-Dimmer – ASCOM?
  • Almitak Flip-Flat: EUR 800,–    190mm – 206 mm
  • Artesky USB Flat Box: EUR 369,–    250mm   USB   Italy
  • PegasusAstro FlatMaster

z.B. unterstützt APT folgende Modelle:

Meine Zwo ASI294MC Pro

Meine Kamera ZWO ASI294MC Pro hat folgende relevante Daten:

  • Bit-Tiefe: 14 bit
  • Quanteneffizienz: 75% (bei 530 nm)

Experten empfehlen, Flat Frames so zu belichten, dass im Bild die hellsten Bereiche nur die Hälfte des maximal möglichen Wertes erreichen. Also die Hälfte der “Full Well Capacity“. Die Full Well Capacity wird in Anzahl Elektronen (e-) gemessen. Einfach messen können wir aber nur den ADU-Wert. Die Frage ist also: wie entsteht aus der Anzahl Elektronen (e-) der ADU-Wert?

Für meiner Kamera ergibt sich:

Tabelle 3: ZWO ASI294MC Pro

Gain Full Well Capacity Empfohlen für Flats (65%) Max. ADU bei 14 Bit ADU für Flats
0 63700e- 41495e- 16384 31121
100 20000e- 13000e- 16384 9750 ADU
120 17200e- 11180e- 16384 8385
200 6000e- 3900e- 16384 2925
300 2000e- 1300e- 16384 975

Interessante Ratschläge finde ich auch bei:

Ein Experte (bei: http://www.telescopesupportsystems.com/thrushobservatory.org/Tips/Digital%20Imaging/flatfieldcalc.htm) rät: Exposure levels – each flat should have an avg e-count of about 60-70% full-well capacity

Demnach hätten wir bei Gain=100: 65% von 20000e- = 13000e-
und bei einer Quanteneffizienz von 75% wären das so 9750 ADU

Und bei Gain 120 hätten wir eine Full Well Capacity von 17200e-. Mit einer QE von 75% wären das 12900 ADU

Und bei Gain 200 hätten wir eine Full Well Capacity von 6000e-. Mit einer QE von 75% wären das 4500 ADU…

Flats und Software

Meine Astro-Aufnahme-Software unterstützt das Aufnehmen von Flats in unterschiedlicher Weise:

Flats mit N.I.N.A.

Wie ich mit dem N.I.N.A. Flat Wizard meine Flat Frames mache habe ich ein einem separaten Blog-Beitrag beschrieben.

Flats mit SharpCap

In SharpCap muss man eine Kamera connecten und dann in der Menüleiste auf “Capture” und “Capture Flats…” klicken.

Dann stellen wir rechts in SharpCap Exposure und Gain so ein, dass im Bild ein wenig zu sehen ist.

Mit Menüleiste “Tools” und “Histogram” schalten wir noch das Histogramm dazu…

Abbildung 2: SharpCap – Capture Flats (Google Drive: SharpCap-Flats-02)

Da bin ich also mit dem Mittelwert bei 31805.6 ADU, was so ungefähr den Empfehlungen entspricht. Manche Experten halten das schon zu hell und meinen 28000 oder 25000 ADU wären besser. Die Software SharpCap meckert aber, wenn auch nur ein kleines bisschen unter 20% sinkt.

Flats mit APT

Die Software APT hat die Möglichkeit mit Hilfe der “CCD Flats Aid” eine gute Belichtungszeit für die Flats zu ermitteln und damit einen Flats-Plan zu erzeugen.

Bildbeschreibung: APT Reiter “Tools” dort Schaltfläche “Extra Devices”

Abblidung 3: APT – Tools – Extra Devices – Flats (Google Drive: PegasusFlatMaster-01.jpg)

Die APT “CCD Flats Aid” geht aus von einer ADU-Zahl, die man erreichen möchte und ermittelt dazu die erforderliche Belichtungszeit. Ich muss mich also fragen, welche ADU-Zahl ich für meine Flats erreichen will.

 

 

Computer: Astrofotografie (aus Wiki)

Astrofotografie (aus Wiki)

Gehört zu: Astronomie
Siehe auch: DSLR, Belichtungszeiten

Übersicht zur Astrofotografie

Wenn man Interesse für Astronomie hat, kommt ganz schnell der Moment, wo man Beobachtungen auch fotografisch festhalten möchte

Was benötigt man, um Fotografien des Sternenhimmels zu machen?

  • Eine geeignete Kamera
  • Einen Himmelsatlas, um interessante Objekte und deren zeitliche Sichtbarkeit heraus zu finden
  • Ein Stativ
  • Software zum bearbeiten der Bilder (addieren von Einzelbildern = Stacking) z.B. Deep Sky Stacker (DSS)

Meine Kameras

Ich habe zur Zeit (April 2021) folgende Kameras, die ich für astronomische Zwecke benutze:

Dateiformate

Beim Fotografieren (egal ob per Hand oder mit Hilfe einer Software) entstehen die Fotos als Dateien auf einer Speicherkarte oder gleich in einem Ordner auf der Festplatte meines Computers.

Dabei werden in diesen Dateien nicht nur die eigentlichen Bilder gespeichert, sondern auch sog. Metadaten, z.B. Datum und Uhrzeit der Aufnahme, verwendete Belichtungszeit etc.

Bei der Astrofotografie unterscheiden wir bewegte Bilder (Filmchen, Videos) und “normale” Einzelfotos (Still Images). Datei-Formate für “normale” Fotos sind:

  • JPG
  • FITS
  • RAW (Kamera-spezifisch, z.B. CR2 bei Canon)

Das bekannte FITS wird sehr häufig in der Astrofotografie verwendet. Dabei steht FITS für “Flexible Image Transport System” und wurde offiziel von der IAU FITS Working Group verabschiedet. Das FITS-Format ist z.B. in der Wikipedia https://en.wikipedia.org/wiki/FITS beschrieben.

Das Auslesen der Metadaten bei JPG-Dateien funktioniert gut mit dem Exif-Tool.

Zum Auslesen der Metadaten bei FITS-Dateien versuche ich es mit Python.

Belichtungszeiten

Erste Ideen:

  • Weitwinkel (dann ist die Lichtstärke maximal und die Brennweite minimal und man kann länger belichten, ohne dass die Sterne zu Strichen werden)
  • Belichtungszeit: ca. 10 sec (ausrechnen wann die Erdrotation von einem Pixel zum nächsten springt)

Software

Ein Baumstativ

— Dkracht 23:10, 19 July 2009 (CEST)