Astrofotografie: Sternhaufen

Gehört zu: Welche Objekte
Siehe auch: Galaxien, Nebel, Kugelsternhaufen
Benutzt: Fotos aus Google Drive

Stand: 17.07.2024

Warum Sternhaufen?

Als Astro-Anfänger im lichtverschmutzen Eimsbüttel möchte ich mit meiner Ausrüstung Astrofotos von Objekten machen, die trotzdem Eindruck schinden (zumindest bei mir selbst). Als ich mich fragte, welche Objekte ich aus der lichtverschmutzten Großstadt Hamburg heraus mit meinen bescheidenen Mitteln fotografieren könnte, blieb eines als gut möglich übrig: Sterne  (also keine Nebel, keine Galaxien).

Als für mich lohnenswerte Beobachtungsobjekte kommen also schöne Sternhaufen und Doppelsterne infrage. Sternhaufen kann ich mit der Digitalkamera (kürzere Brennweiten) gut fotografieren; Doppelsterne werden meist erst im Teleskop mit längerer Brennweite gut getrennt.

Einige “Experten” empfahlen auch den Einsatz von Filtern gegen die Lichtverschmutzung, was sich bisher als kaum erfolgreich herausstellte.

Liste von für meine Ausrüstung interessanten Offenen Sternhaufen

Meine Kriterien: Größer als 10′ und heller als 8,0 mag

Lfd.Nr. Kurzbezeichnung Ausdehnung Helligkeit Sternbild Erläuterungen Sichtbarkeit auf meiner Terrasse
 M39  32′  4,6 mag  Cyg  Aug.
 NGC 457  20′   6,4 mag  Cassiopea  ET- oder Eulen-    Haufen  Aug.-März
 NGC 7789  16′  6,7 mag  Cassiopea  Herschels Spiralhaufen  Aug.-Jan.
 NGC 663  15′  7,1 mag  Cassiopea  Aug.-Feb.
 NGC869 & NGC884  30′ / 30′  5,3 / 6,1 mag  Perseus  Chi und h im Perseus, auch Caldwell 14  Aug.-Feb.
 M34  35′  5,5 mag  Perseus   unscheinbar  Sep.-Nov.
 NGC 1502  20′  6,9 mag Camelopadalis  Kemble’s Cascade läuft durch NGC1502  Sep.-Mai
 Mel 20  180′  1,2 mag  Perseus Alpha Persei und Umgebung  Sep.-Nov.
 M45  110′  1,6 mag  Taurus  Plejaden, Siebengestirn, Six Sisters  Okt.-Nov.
C 41 330′ 0,5 mag  Taurus  Hyaden – Sternbild Stier  Okt.
 M35  28′  5,3 mag  Gemini  großer, heller, weit versprengter Haufen Lassell’s Delight
Herrlicher offener Sternhaufen bei Eta Geminorum
 Nov.
 M36  12′  6,0 mag Auriga  Nov-Apr
 M37  24′  5,6 mag Auriga  Hellster Haufen im Auriga  Nov.-Dez.
 M38  21′  7,4 mag Auriga  Nov-Apr
 NGC 2244  24′  4,8 mag  Mon  Offener Sternhaufen im Rosetten-Nebel  Ende Nov. (knapp)
 NGC 2264  10′ x 7′  3,9 mag  Mon  Der Weihnachtsbaum-Sternhaufen  Ende Nov. (knapp)
 M44  95′  3,1 mag  Cancer  Praesepe, Krippe, Bienenstock – zweithellster offener Sternhaufen  Dez.-Jan.
 M67  30′  6,9 mag  Cancer  Ende Jan. – Anfang Feb.
 Coma Berenice  Com  ist ein komplettes Sternbild  Feb.-März
 Mel 111  270′  1,8 mag  Com  Coma Berenices  Feb.-März
 NGC 1528  18′  6,4 mag  Perseus m&m Doppelhaufen  Feb.-März
 M6  33′  4,2 mag Skorpion   Dekl=-32° Schmetterlingshaufen nie
 M7  80′  3,3 mag  Skorpion   Dekl=-34°, der dritthellste Fleck der ganzen Milchstraße nie
 M11  14′  5,8 mag  Scutum   Dekl=-6°, Wildentenhaufen nie
 M18  10′  7,1 mag  Sgr  Dekl.=-17° nie
 M23  27′  5,5 mag  Sgr  Dekl.=-19° nie
 M25  32′  4,6 mag  Sgr  Dekl.=-19° nie
 M41  38′  4,5 mag  CMa  Unterhalb von Sirius
Dekl.=-21°
nie
 M46  27′  6,1 mag  Pup  Dekl=-15°  nie
 M47  30′  4,4 mag  Pup  Dekl.=-14°  nie
 M48  54′  5,8 mag  Hydra  Dekl.=-6°  nie
 M50  16′  5,9 mag  Mon  Dekl.=-8°  nie
 NGC 2232  45′  4,2 mag  Mon  Dekl.=-5°  nie
 IC 4756  40′  4,6 mag  Serpens  Graff’s Cluster
Dekl.=5°
 nie

Kugelsternhaufen

Dazu habe ich einen separaten Blog-Artikel geschrieben.

Meine Fotos von Offenen Sternhaufen

26.9.2015 Die Plejaden M45

Ich hatte gerade ein schönes altes Objektiv Takumar 1:3,5/135 mit M42-Gewinde bekommen. Das musste ich sofort mit meiner Kamera Sony NEX-5R ausprobieren.

Abbildung 1: Die Plejaden (Google Drive: DK_20150926_Plejaden2_beschriftet.jpg)


Foto: Plejaden (M45)

Astrofotografie: Die Grosse Magellansche Wolke – GMW – LMC

Gehört zu: Beobachtungsobjekte
Siehe auch:  Galaxien, Namibia, Kagga Kamma
Benutzt: Fotos aus Google Archiv

Stand: 17.01.2021

Eine Reise in den Süden…

Anlässlich meiner touristischen Reisen nach Südafrika, wollte ich ein paar Besonderheiten des südlichen Sternhimmels fotografisch festhalten.

Fotos von der Großen Magellanschen Wolke

Am 12.6.2018 auf Kiripotib in Namibia

Da ich nun regelmäßig in Namibia bin, war auch dieses Paradeobjekt des südlichen Sternhimmels auf meiner Liste.

Abbildung 1: Die Grosse Magellansche Wolke (Google Drive: 20180612_LMC-RGB-session_1-lpc-cbg-St.jpg)


LMC Large Magellanic Cloud, Kiripotib

Am 8.2.2016 in Kagga Kamma, Südafrika

Am 8.2.2016 habe ich auf unserer touristischen Südafrikareise von Kagga Kamma aus bei Neumond einige Aufnahmen machen können.

Ausser der LMC habe ich von Kagga Kamma aus auch die Milchstraße fotografiert.

Standort Kagga Kamma: http://www.google.de/maps?q=-32.745637,19.561748

Kamera: Sony NEX-5R mit Objektiv Olympus G.ZUIKO f=50mm auf Fotostativ mit dem NanoTracker als Nachführung.
Stack aus 10 Aufnahmen a 30 sec bei ISO 800

Abbildung 2: Die Grosse Magellansche Wolke in Kagga Kamma (Google Drive: LMC_20160208_0243-0252_LMC_Streched.jpg)


LMC Large Magellanic Cloud 2016 in Kagga Kamma

Am 1.3.2014 in Trafalgar, Südafrika

Am 1.3.2014 habe ich meine erste Aufnameserie von Trafalgar, Kwa-Zulu-Natal,  aus gemacht:
Kamera: Sony NEX-5R, Olympus f=50mm, f/2,8, ISO 400, 7×30 sec

Standort Trafalgar: http://www.google.de/maps?q=-30.960956, 30.295530

Abbildung 3: Die Grosse Magellansche Wolke in Trafalgar (Google Drive: DK_20140301_lmc2_3_beschriftet.jpg)


LMC Large Magellanic Cloud from Trafalgar, South Africa

Das Foto aus Trafalgar

  • Zeigt die Große Magellansche Wolke (Bildfeld:17 x 26 Grad, Südpol in Richtung 8 Uhr)
  • Ist eine Addition von 7 Aufnahmen je 30 sec bei ISO 400 und Blende 2,8.
  • Aufgenommen am 1.3.2014  von der Terrasse der “Days at Sea” Lodge in Trafalgar, Südafrika.
  • Kamera: Sony NEX-5R mit Olympus Zuiko f=50mm
  • Nachführung: Nano Tracker   (bei 30 sec sind die Sterne sonst kleine Striche)

 Was ist die Große Magellansche Wolke?

Die Magellanschen Wolken sind zwei irreguläre Zwerggalaxienin nächster Nachbarschaft zur Milchstraße. Die Große Magellansche Wolke (GMW) in rund 163.000 Lichtjahren Entfernung enthält ungefähr 15 Milliarden Sterne, die Kleine Magellansche Wolke (KMW) in rund 209.000 Lichtjahren Entfernung 5 Milliarden Sterne.

Unsere Heimatgalaxie, die Milchstraße, ist eine große Spiral-Galaxie mit einem Durchmesser von ca. 100.000 Lichtjahren und 100 bis 200 Milliarden Sternen.

Die GMW ist relativ hell (0.9 mag) und kann sehr gut mit dem bloßen Auge beobachtet werden (KMW 2.7 mag, Andromedanebel 3.5 mag).

Für einen irdischen Beobachter erstreckt sich die GMW über eine Durchmesser von etwa 6º ; das ist 12 mal der Durchmesser des Vollmonds.

Den Bewohnern der Südhalbkugel waren die beiden Magellanschen Wolken wohl schon seit prähistorischer Zeit durch Beobachtungen mit dem bloßen Auge bekannt, erstmalige schriftliche Erwähnung fanden sie jedoch durch den persischen Astronomen Al Sufi in seinem Buch der Fixsterne im Jahr 964. Der erste Europäer, der die beiden Wolken beschrieb, war Ferdinand Magellan bei seiner Weltumsegelung 1519. Im Fernrohr zeigt sich ihr Charakter als Galaxie, die aus Sernen, Nebeln, Sternhaufen und anderen Objekten zusammengesetzt ist.

Neben den Magellanschen Wolken sind die Canis-Major-Zwerggalaxie (25.000 Lichtjahre entfernt) und Sagitarirus-Zwerggalaxie (70.000 Lichtjahre entfernt) die nächsten Nachbarn der Michstraße. Diese gehören mit insgesamt ca. 27 kleineren Galaxien zur sog. Milchstraßen-Untergruppe der Lokalen Gruppe.
Der etwas entferntere Andromedanebel (2.5 Mio Lichtjahre entfernt) gehört zusammen mit unserer Milchstraße zu den größten Galaxien der Lokalen Gruppe.

Quelle: Wikipedia

Lage der Magellanschen Wolken relativ zur Milchstraße

Abbildung 4: Lage der Magellanschen Wolken (Google Drive: LageDerMagellanschenWolken.jpg)


Lage der Magellanschen Wolken (Wikipedia)

Abkürzungserklärungen:

• GMW –  Große Magellansche Wolke
• KMW –  Kleine Magellansche Wolke
• GSP –  Galaktischer Südpol
• MSI –  Erste Wasserstoffverdichtung im Magellanschen Strom
• 3 –  30 Doradus
• W –  Flügel (Wing) der KMW

Der grüne Pfeil deutet die Umlaufrichtung der Magellanschen Wolken um das Milchstraßenzentrum an.

Quelle: Wikipedia

Astrofotografie: Der Mond

Gehört zu: Das Sonnensystem
Siehe auch: Der Supermond, Mondfinsternisse, Welche Objekte?
Benutzt: Fotos von Google Drive

Stand: 12.09.2021

Was gibt der Mond als Beobachtungsobjekt her?

Vom Mond kan man beeindruckende Fotos machen, wobei man dafür aber schon etwas Brennweite braucht. Ein Teleobjektiv mit f=300mm geht so gerade, das LidlScope 70/700 wäre besser.

Ein besonderes Phänomen sind diverse Arten von Mondfinsternissen (siehe weiter unten).

Der Mond kann auch als Einstieg in die Planetenfotografie gesehen werden; soll heissen, man macht “Lucky Imaging” mit Videos und hat das Thema “Schärfen“….

Beobachtungsplanung

Beobachtungsort

Zur Zeit (2024) kommt für mich aus persönlichen Gründen nur meine heimische Terrasse in Hamburg-Einmsbüttel infrage.

Für die Beobachtung besonderer Erscheinungen am Mond (Mondfinsternis, Haloerscheinung,…) würde ich vielleicht zu einen anderen Standort fahren.

Beobachtungszeiten

Meine Planetariums-Software Stellarium zeigt mir Beobachtungsmöglichkeiten von Mitte Oktober bis Mitte Februar an.
Zu anderen Zeiten ist die Ekliptik nicht hoch genug. um über die Häuserdächer zu steigen.

Gesichtsfeld – Optik – Kamera

Mein kleiner Refraktor Orion ED80/600 mit meiner Astrokamera ASI294MC Pro ergäbe ein Geichtsfeld von 109′ x 74′. Da wäre die Barlow-Linse angezeigt, um ein größeres Bild zu erhalten. Das Gesichtsfeld mit Barlow-Linse wäre 55′ x 37′, was für den Mond mit seiner scheinbaren Größe von ca. 30′ ganz passend wäre.

Aufnahme – Belichtung

So ein helles und flächiges Objekt wie den Mond (oder später vielleicht auch Planeten) kann man als Standfoto oder als Video aufnehmen.

Standfotos mache ich mit der Software N.I.N.A.  Dabei nehme ich sehr kurze Belichtungszeiten und ein mittleres Gain, wobei ich das Histogramm zu Hilfe nehme.

Videos mache ich mit der Software SharpCap.

Software

  • Virtual Moon Atlas: Zur Orientierung
  • Aufnahme-Software: N.I.N.A. bzw. SharpCap.
  • AutoStakkert: Für “Lucky Imaging” d.h. Bearbeiten von AVI-Videos: Multi-Point-Alignment etc.
  • registax: Zum Schärfen
  • Super: Zum konvertieren von DSLR-Videos von MOV in uncompressed AVI

Einfache Fotos vom Mond

Beispiel 1: Skywatcher Explorer f=650mm

Für meine erste parallaktische Goto-Montierung (Celestron Advanced GT Montierung (CG5) ) hatte ich mir ein  kleines Newton-Spiegelteleskop   (Skywatcher Explorer-130PDS 130mm 650mm 5,1” f/5 Photo-Newton )  gekauft.

In Handeloh konnte ich damit am 21.8.2015 um 19:55 UT ganz kurz mit meiner Sony NEX-5R in der Fokalebene ein Foto vom Mond schiessen mit ISO 6400, Belichtung 1/1250 sec

Abbildung 1: Der Mond in Handeloh (Google Drive: DK_20150821_05784_4_beschriftet.jpg)


Mond mit Skywatcher Explorer 130PDS von Handeloh

Foto 2: LidlScope f=700

Das Skywatcher-Teleskop 130PDS habe ich zurückgegeben, weil es zusammen mit der Montierung nicht so richtig funtionierte. Später habe ich mir dann doch ein gebrauchtes LidlScope (aus Spass) zugelegt. Am 10.3.2017 habe ich mit dem LidlScope Testfotos von meiner Terrasse in Hamburg-Eimsbüttel geschossen.   Sony NEX-5R fokal an LidlScope f=700mm:

xxx   iPhone 5S afokal an LidlScope f=700mm mit Meade 13,8mm Okular

Abbildung 2: Der Mond mit iPhone (Google Drive: DK_20170310_Mond-01.jpg)


Mond mit Lidl-Teleskop

Das Skywatcher-Teleskop 130PDS habe ich zurückgegeben, weil es zusammen mit der Montierung nicht so richtig funtionierte. Ich wollte ersteinmal mit der Sony DLSR arbeiten. Später habe ich mir dann doch ein gebrauchtes LidlScope (aus Spass) zugelegt.

Foto 3: DLSR mit Teleobjektiv f=300mm

Ohne Teleskop, nur mit einem 300mm-Teleobjektiv geht es auch.

Am 11.3.2017 habe ich dieses Testfoto von meiner Terrasse in Hamburg-Eimsbüttel geschossen – Sony NEX-5R mit Zeiss Jena Sonnar f=300mm (fokal).

Abbildung 3: Der Mond mit Teleobjektiv (Google Drive: DK_20170311_Mond-02.jpg)


Mond mit 300mm Tele

Der Mond mit “Lucky Imaging”

Statt “Still Images” kann man ja auch kurze Videos aufnehmen und mal ausprobieren wie das vielgenante “Lucky Imaging” funktioniert. Als ersten Versuch habe ich mein iPhone benutzt. Das erste Problem ist dann das Video-Format. Die Videos werden nämlich als .MOV (also Quicktime) gespeichert. Die Software (z.B. avistack, autostakkert,…) möchte aber “uncompressed AVI” als Eingabe haben. Zum Konvertieren von Videos gibt es unendlich viel Software; ein Astro-Fan hat mir “SUPER” von eRightSoft empfohlen. Video konvertieren mit SUPER:

Wichtig ist, dass man beim Konvertieren mit SUPER als Video-Codec ‘uncompressed (raw)’ auswählt. Für das eigentliche Lucky Imaging zeigt AstroHardy auf einem YouTube-Video wie das genau geht. Youtube-Video   Mit autostakkert machen wir also folgende Schritte:

  1. AVI-Video laden
  2. Image Stabilization Anchor setzen (zum Vorzentrieren)
  3. Schaltfläche “Analyse”
  4. Prozentsatz der “guten” bestimmen und eingeben
  5. Alignment Points (AP) setzen
  6. Schaltfläche “Stack”

Ergebnis so drehen, dass Norden oben ist.

Foto 4: Lucky Image aus Video mit iPhone

Mein Erstlingswerk mit autostakkert (281 frames mit iPhone 5S afokal an LidlScope 70/700mm):

Abbildung 4: Der Mond mit Lucky Imaging (Google Drive: DK_20170310_1331.MOV_g4_ap189_conv_ROT.jpg)


Mond afokal mit Autostakkert

Aufgenommen am am 10.03.2017

Schärfen

AstroHardy empfiehlt, dass Schärfen (was bei Mond und Planeten ganz wichtig ist) nicht in autostakkert zu machen, sondern dafür registax zu benutzen:

  • YouTube registax: https://www.youtube.com/watch?v=XdA5l8OwOCU

Astrofotografie: Neptun mit Geostationären Erdsatelliten

Gehört zu: Das Sonnensysten
Siehe auch: Künstliche Erdsatelliten
Benutzt: Grafiken von GitHub, Fotos von Google Drive

Stand: 13.07.2021

Geostationäre Erdsatelliten

Fotoserie auf Neptun

Am 29.8.2016 habe ich von Kollase aus mehrer Fotoreihen geschossen. Zum Schluss wollte ich auch mal in Richtung Neptun zielen.

Das war von 20:45 bis 20:47 UT eine Serie von 8 Aufnahmen mit je 15 sec Belichtung mit dem Takumar 135mm bei ISO 3200 und f/3.5.

Dabei habe ich zufällig eine Gegend mit geostationären Erdsatelliten getroffen (Deklination ca. -7 Grad). Da die Aufnahmen auf die Sterne nachgeführt waren, sind die geostationären Satelliten nun zu kleinen Strichen geworden (siehe Foto unten). Dabei besteht jede Satellitenspur aus 8 kleinen Segmenten.

Deklination geostationärer Satelliten

Geostationäre Satelliten haben eine Umlaufzeit von 24 Stunden und befinden sich in einer Kreisbahn 35.786 km über der Erdoberfläche mit einer Bahnneigung von 0° immer über dem Erdäquator. Wenn wir von Hamburg (53,5° geografischer Breite) beobachten, müssen wir also etwa 7,6 Grad unterhalb des Himmeläquators schauen, wenn wir genau nach Süden schauen. Da Neptun nicht genau im Süden steht, wären die geostationären Satelliten in dieser Gegend etwas weniger als 7,6 Grad unterhalb des Erdäquators zu sehen. Contine reading

Astrofotografie: Iridium Flash

Gehört zu: Das Sonnensystem
Siehe auch: Künstliche Erdsatelliten, Fotobuch
Benutzt: Fotos von Google Drive

Stand: 14.09.2012

Iridium Flash: Erdsatelliten mit hellem Flash

Die sog. Iridium-Erdsatelliten fabrizieren helle Lichtblitze, sog. Flashs, weil sie plane Oberflächen haben mit denen sie die Sonne spiegeln können.

Aufnahme am 25.3.2012 um 20:12:37 Uhr mit der Panasonic Lumix DMC FZ28 bei Blende f/3,4 mit ISO 100 und Zoom auf f=15mm sowie 30sec Belichtungszeit ohne Nachführung. Contine reading

Astrofotografie: Beobachtung der totalen Sonnenfinsternis vom 15.2.1961

Gehört zu: Das Sonnensystem
Siehe auch: Die Sonne, Fotobuch, Sonnenkorona
Benutzt: Fotos von Google Drive

Stand:   14.09.2021

Beobachtung der totalen Sonnenfinsternis vom 15.2.1961 in Jugoslawien

Eine totale Sonnenfinsternis konnte ich zusammen mit meinem Schulfreund Hajo Siebenhüner am 15.2.1961 auf der Vidova Gora im damaligen Jugoslawien  beobachten.

Die Totalitätszone (ausgeschnitten aus: http://eclipse.gsfc.nasa.gov/SEgoogle/SEgoogle1951/SE1961Feb15Tgoogle.html )

Abbildung 1: Die Totalitätszone (Google Drive: 19610215_Sonnenfinsternis_Google.jpg)


Sonnenfinsternis Totalitätszone – Copyright Google

Die Sonnenfinsternisexpedition

Wir konnten uns einer deutsch-österreichischen Sonnenfinsternisexpedition in Salzburg anschießen und fuhren dann zusammen mit dem Zug über Villach, Ljublana nach Split, wo wir auf die Insel Brac übersetzten. Im Hauptort der Insel, Supetar, war unser Quartier. Am Vorabend der Sonnenfinsterniss fuhren wir zu einer Hütte beim Beobachtungsgelände, auf der Vidova Gora.

Beobachtungsort:

Google Maps: https://maps.google.com/maps?t=k&z=12&q=43.291035,16.668781

Für unser Fernrohr, ein Kosmos E68 Refraktor, musste aus Steinen eine kleine Säule gemauert werden, da das E68 nur ein Tischstativ hatte.

Mit dem E68 Teleskop machten wir die Sonnenfotos, wofür eine Kamera der Marke Pentacon mit einem Adapterring in der Fokalebene (f=900mm) montiert war.

Die Totalität hat 137 sec gedauert – von 07:41 bis 07:43

Ergebnisse: Fotos von der Sonnenfinsternis

Aufnahmedaten: E68-Refraktor, f=900, f/13, Film Agfa Isopan Record 34 DIN, Belichtung 1/5 sec

Abbildung 2: Die Korona ist sichtbar (Google Drive: 19610215_SoFi-02_beschriftet.jpg)


Sonnenfinsternis mit Korona

Abbildung 3: Ende der Totalität (Google Drive: 19610215_SoFi-03_beschriftet.jpg)


Sonnenfinsternis 1961: Ende der Totalität

Bericht: Ein Vortrag für die Olbersgesellschaft

Nach der Rückkehr zu unsererm damaligen Wohnort Bremen, haben wir für die Olbers-Gesellschaft im Vortragssaal der Seefahrtsschule gemeinsam einen Vortrag über unsere Beobachtung der totalen Sonnenfinsternis gehalten.

Unser Fernrohr Kosmos E68

In den 60er Jahren hatten wir (Hajo, Peter und ich – mit Unterstützung von Tante Berta) das Teleskop Kosmos E68 zusammengespart. Dieses Telekop wurde zur Beobachtung der Sonnenfinsternis 1961 benutzt.

Quelle: http://www.astrotech-hannover.de/amateurteleskope/downloads/kosmos.pdf

Abbildung 4: Unser Fernrohr damals (Google Drive: Kosmos_E68.jpg)


Unser Fernrohr Kosmos E68 – Copyright Kosmos

Astronomie in Namibia: Zodiakallicht und Gegenschein

Gehört zu: Welche Objekte?
Siehe auch: Das Sonnensystem, Namibia, Gegenschein
Benutzt: Fotos von Google Drive

Stand: 25.1.2022

Was ist das Zodiakallicht, was ist der Gegenschein?

Das Zodiakallicht entsteht durch Reflexion und Streuung von Sonnenlicht an Partikeln der interplanetaren Staub- und Gaswolke, die als dünne Scheibe in der Planetenebene die Sonne ringförmig umgibt (Wikipedia). Der zodiakale Lichtschein umspannt den gesamten Himmel entlang der Ekliptik und hat an der der Sonne gegenüberliegenden Stelle noch einmal einen größeren und leicht helleren Fleck, welchen man auch den “Gegenschein” nennt.

Alexander von Humboldt hat auf seiner Reise nach Südamerika (1799-1803) auch das Zodiakallicht beschrieben.

Wann und wo kann man das Zodiakallicht beobachten?

Um das Zodiakallicht zu sehen bedarf es eines dunklen Himmels; d.h. ganz wenig Lichtverschmutzung und in etwa ab/bis astronomische Dämmerung.

Da sich das Zodiakallicht in der Ebene der Ekliptik befindet und nur in Sonnennähe (bis max. 40 Grad Elongation) einigermassen hell ist, ist die Stellung der Ekliptik bei Dämmerungsbeginn/Dämmerungsende maßgeblich für eine gute Sichtbarkeit.

Faustregel in unseren Breiten (53°): Im Oktober morgens, im März abends.

Die Stellung der Ekliptik in Hamburg

Die Ekliptik ist 23 Grad gegen den Himmelsäquator geneigt.

Der Himmelsäquator in Hamburg (53 Grad Breite) hat eine Neigung von 37 Grad gegenüber dem Horizont (im Westen bzw. Osten).

Im ungünstigsten Fall ist die Ekliptik also 37 – 23 = 14 Grad  flach am Horizont.

Im günstigsten Fall ist die Ekliptik also  37 + 23 = 60 Grad steil gegen den Horizont.

Die steile Ekliptik sieht man im Herbst am Morgen und im Frühling am Abend.

Beispiel: Guide zeigt für den 23.9.2016 morgens im Osten:

Abbildung 1: Steile Ekliptik morgens im Osten (Google Drive: Ekliptik_Herbst_Morgens.jpg)


Ekliptik im Herbst morgens – Zodiakallicht

Beispiel: Guide zeigt für den 21.3.2017 abends im Westen:

Abbildung 2: Steile Ekliptik abends im Westen (Google Drive: Ekliptik_Frühling_Abends.jpg)


Ekliptik Frühling abends

Das Zodiakallicht in Tivoli, Namibia

Tivoli ist eine sehr beliebte Astro-Farm in Namibia….

Geografische Koordinaten:  23°28’60” S und 18°1’0″ E   bzw. -23.4833 und 18.0167 (in Dezimalgrad)

Neigung des Himmelsäquators gegen den Horizot:   90 – 23,5 = 66,5 Grad

Neigung der Ekliptik:  66,5  – 23,5 / 66,5 +23,5  ==>  43 / 90 Grad

Am 17.9.2016 war Neumond. Wie sah das mit der Ekliptik da aus?

Stellarium zeigt eine 90° Ekliptik abends am 17.9.2016

Abbildung 3: Stellarium zeigt die Ekliptik (Google Drive: Ekliptik_Tivoli_17.9.2016.jpg)


Ekliptik in Tivoli

Beobachtung des Zodiakallichts auf Kiripotib, Namibia

Ich konnte am 13.6.2018 morgens früh das Zodiakallicht in Namibia selbst beobachten.
Blick nach Osten, Sternbild Fische. Ganz links über dem Dach sieht man den Andromedanebel M31.

Abbildung 4: Das Zodiakallicht in Namibia (Google Drive: Single__0323_ISO3200_30s__22C_ZodiacLight_Beschriftet.jpg)


Zodialkallicht auf Kiripotib

Astrofotografie: ASCOM Plattform, ASCOM Treiber

Gehört zu: Astro-Software
Siehe auch: ASCOM-Treiber EQMOD, Cartes du Ciel, APT, SharpCap, N.I.N.A.
Benutzt: Fotos von Google Drive

Stand: 09.12.2022

Die ASCOM-Platform – ASCOM-Treiber

Die Idee von ASCOM ist, für diverse astronomische Geräte (z.B. Video-Kamera, Teleskop-Steuerung, Filterrad, Fokussierer,…) nicht die proprietären Windows-Treiber einzusetzen, sondern sog. ASCOM-Treiber zu verwenden, so dass eine Astro-Software auch “nur” ASCOM zu unterstützen braucht und nicht diverse herstellerabhängige Geräte. Voraussetzung für solche ASCOM-Treiber ist die Installation einer sog.  ASCOM-Platform.

Download und Installation der ASCOM-Platform

Download-Link:  http://ascom-standards.org/

Nach der Installation der ASCOM-Platform hat man drei neue Programme:

  • Profile Explorer  (damit können die mit der ASCOM-Platform verbundenen Geräte angezeigt werden)
  • ASCOM Diagnostics    (damit können Verbindungen zu ASCOM-Geräten aufgebaut und konfiguriert werden)

Voraussetzungen

  • Microsoft .NET-Framework 3.5 Service Pack 1   (muss separat vorher installiert werden, bzw. als Windows-Feature aktiviert werden)
  • Visual C++ Runtime v15.2 (wird  ggf. automatisch mit-installiert)

Versionen der ASCOM-Platform

  • 2022-08-17  Version 6.6 SP1   (installiert)
  • 2020-12-23  Version 6.5 SP1 – 6.5.1.3234
  • 2020-07-16  Version 6.5
  • 2018-09-24  Version 6.4 SP1
  • 2018-06-XX  Version 6.4

Download von: https://ascom-standards.org/Downloads/Index.htm

Die neue Version 6.5 hatte zuerst noch Probleme mit APCC (traten bei mir nicht auf). Diese Probleme sollen mit dem Service Pack 1 (SP1) behoben sein.

Es gibt einige Neuerungen in der Version 6.5. Diese kann man in den Release Notes nachlesen. Einige für mich wichtige sind:

  • POTH ist ein Auslaufmodell und wird durch “Device Hub” ersetzt
  • ASCOM Remote Clients sind enthalten (sog. dynamische)
  • Ein ASCOM Remote Server (Alpaca) muss separat installiert werden

In der Version 6.6 gab es viel kleine Verbesserungen, die nicht besonders auffällig sind.

ASCOM-Treiber für meine Geräte: Montierungen, Kameras, Motor-Fokusser etc.

Ich verwende ASCOM-Treiber für folgende Geräte:

Diese Geräte sind dann per ASCOM durch die von mir verwendete Astro-Software ansprechbar. Teilweise arbeitet die eine oder andere Astro-Software auch ohne ASCOM also über dem native Treiber (native driver) mit einem Gerät.

Mit den Geräten eingesetzte Astro-Software

  • N.I.N.A.
    • Gerät-1: Kamera ZWO ASI294MC Pro zwecks Fotografieren und ggf. Plate Solving
    • Gerät-2: Motor-Fokusser ZWO EAF zwecks Auto-Fokus (ASCOM Driver)
    • Gerät-3: Montierung Skywatcher HEQ5 Pro zwecks GOTO und SYNC  (ASCOM Driver: EQMOD)
    • Gerät-4: Montierung Skywatcher AZ GTi zwecks GOTO und SYNC  (ASCOM Driver: EQMOD)
    • Gerät-5: Flatfield Box Pegasus Flatmaster 120
  • APT:
    • Gerät-1: Kamera ZWO ASI294MC Pro zwecks Fotografieren und ggf. Plate Solving
    • Gerät-2: Motor-Fokusser ZWO EAF zwecks manuellem Fokussieren per ???  (ASCOM Driver)
    • Gerät-3: Montierung Skywatcher HEQ5 Pro zwecks GOTO und SYNC  (ASCOM Driver: EQMOD)
  • SharpCap
    • Gerät-1: Kamera Altair GPCAM zwecks Polar Alignment   (native driver)
    • Gerät-2: Kamera ZWO ASI294MC Pro zwecks Fokussieren im Live View mit Zoom (native driver)
    • Gerät-3: Motor-Fokusser ZWO EAF zwecks manuellem Verstellen der Fokus-Position (ASCOM Driver)
  • PHD2 Guiding
    • Gerät-1: Kamera Altair GPCAM als Guiding Cam (native Driver)
    • Gerät-2: Montierung Skywatcher HEQ5 Pro zwecks GOTO und SYNC  (ASCOM Driver: EQMOD)
  • Cartes du Ciel
    • Gerät-1: Montierung Skywatcher HEQ5 Pro zwecks GOTO und SYNC (ASCOM Driver: EQMOD)

Meine ASCOM-Treiber je Gerät

ASCOM-Treiber für die Montierung Sykwatcher HEQ5 Pro

Für meine Montierung Skywatcher HEQ5 Pro verwende ich als ASCOM-Treiber EQMOD V200q, den Green Swamp Server “GSS” oder die SynScan App.

Einzelheiten zu GS Server.

Einzelheiten zu EQMOD.

Einzelheiten zu SynScan App.

Nach der Installation findet man den EQMOD-ASCOM-Treiber für die Montierung HEQ5 Pro in der Systemsteuerung unter “Programme und Features”.

Abbildung 1: Windows Systemsteuerung –> Programm deinstallieren oder ändern (Google Drive: EQMOD-Driver.jpg)


EQMOD ASCOM Driver

Durch die Installation entsteht auf dem Desktop auch ein Shortcut  EQASCOM Toolbox.
Diese Toolbox ist eine einfache Möglichkeit EQMOD aufzurufen ohne eine richtige (große) Anwendung wie z.B. Guide oder Cartes du Ciel dazu bemühen zu müssen.

Wenn jetzt die SynScan-Handbox der HEQ5 Pro-Montierung per seriellem Kabel (siehe: Skywatcher HEQ5 Pro) mit dem Windows-Computer verbunden ist, kann man auf diesen Shortcut klicken, um die Verbindung herzustellen.

ASCOM-Treiber für die Montierung iOptron SmartEQ Pro

Für meine Montierung iOptron SmartEQ Pro finden wir auf der Website des Herstellers  den ASCOM-Treiber für die SmartEQ:

Der Treiber unterstützt nicht die Funktion “ASCOM Pulse Guiding”  was für PHD2 Guiding wichtig wäre.
Siehe dazu: http://www.iceinspace.com.au/forum/showthread.php?t=116706

Nach der Installation findet man den ASCOM-Treiber für die SmartEQPro in der Systemsteuerung unter “Programme und Features”.

Abbildung 2: Installierte ASCOM-Treiber (Google Drive: ASCOM_Treiber_iOptron_SmartEQPro.jpg)


ASCOM-Treiber für iOptron SmartEQ Pro

Durch die Installation entsteht auf dem Desktop auch ein Shortcut  iOptron Commander 2013.

Wenn jetzt die Go2Nova-Handbox der SmartEQ-Montierung per seriellem Kabel (siehe: iOptron SmartEQ Pro) mit dem Windows-Computer verbunden ist, kann man auf diesen Shortcut klicken, um die Verbindung herzustellen.

Abbildung 3:  iOptron Commander –> Communication Port Settings (Google Drive: iOptronCommander.jpg)


iOptron Commander: Port Stettings

In Planetarium software, select “iOptron ASCOM Driver for 2013 and Earlier Mount”

ASCOM-Treiber für die Kamera ZWO ASI294MC Pro

Für meine Kamera ASI294MC Pro finden wir auf der Website des Herstellers:

Nach der Installation findet man den ASCOM-Treiber für die Altair GPCAM in der Systemsteuerung unter “Programme und Features”.

ASCOM-Treiber für die Kamera Altair GPCAM

Für meine Kamera Altair GPCAM finden wir auf der Website des Herstellers:

Nach der Installation findet man den ASCOM-Treiber für die Altair GPCAM in der Systemsteuerung unter “Programme und Features”

Abbildung 4: Windows Systemsteuerung –> Programm deinstallieren oder ändern (Google Drive: ASCOM_Treiber_Altair_GPCAM.jpg)


ASCOM-Treiber für Altair Camera

Wenn jetzt die Altair GPCAM per USB-Kabel mit dem Windows-Computer verbunden ist, kann man eine Kamera-Software, die ASCOM-Kameras unterstützt  (z.B. myCam, Altair Capture, ShapCap,…)  aufrufen, um das Bild zu testen und Aufnahmen zu machen.

ASCOM-Treiber für den Motor-Focusser “Pegasus Astro”

Als Motor-Fokusser habe ich einen Pegasus Astro erworben (neu aber: ZWO EAF), der ebenfalls per ASCOM angesprochen werden kann…

Für meinen Motor-Fokusser Pegasus Astro finden wir auf der Website des Herstellers:

Nach der Installation findet man den ASCOM-Treiber für den Pegasus Astro Motor Focusser in der Systemsteuerung unter “Programme und Features”

Abbildung 5: Windows Systemsteuerung –> Programm deinstallieren oder ändern (Google Drive: PegasusAstroMotorFocusser-00.jpg)


Pegasus Astro Motor-Focus ASCOM-Treiber

Windows-Treiber (native drivers)

Die ASCOM-Treiber stehen in dem Ruf, nicht alle Funktionen der Geräte gut zu unterstützen. Delshalb arbeitet manche Astro-Software alternativ zu den ASCOM-Treibern auch gerne mit sogenannten “native” Treibern.

Windows-Treiber für die ZWO ASI294MC Pro

Von der Web-Seite des Herstellern ZWO kann man sich auch die sog. native Treiber (Windows Treiber) für die Kamera ASI294MC Pro herunterladen.

Download Link: https://astronomy-imaging-camera.com/software-drivers

Installiert: ZWO_ASI_Cameras_Driver 3.0.0.11   (21. Sept. 2020)

Windows-Treiber für die Altair GPCAM

Zusätzlich zu den o.g. ASCOM-Treibern kann man für die Kamera Altair GPCAM auch den “Windows-Treiber” installieren. Zur Kontrolle kann man den Windows-Geräte-Manager aufrufen, wo Kameratreiber unter “Bildverarbeitungsgeräte angezeigt werden…

Abbildung 6: Windows Gerätemanager –> Bildbearbeitungsgeräte (Google Drive: Altair_GPCAM_Geraetemanager.jpg)


GPCAM Native Driver im Geräte-Manager

Astronomie: LOFAR Station in Norderstedt – Digitale Radioastronomie

Gehört zu: Astronomie
Benutzt:  Fotos aus Google Drive

Stand: 25.04.2023

LOFAR – Digitale Radioastronomie

Vortrag zu LOFAR

17.6.2015 Sternwarte Bergedorf, Prof. Brüggen: Radioastronomie mit LOFAR

17.8.2016 Sternwarte Bergedorf, Dr. Engels

Was ist LOFAR?

LOFAR = Low Frequency Array

LOFAR-Zentrum: Firma Astron in den Niederlanden

LOFAR-Stationen in England, Frankreich, Schweden und Deutschland

Abbildung 1: Landkarte der LOFAR Teleskope (Google David: LOFAR-international-stations-on-map-Europe.jpg)


LOFAR Stationen in Europa (Cpoyright: Astron)

Eine LOFAR-Station besteht aus einem Feld von kleinen einfachen Dipol-Antennen. LOFAR-Stationen sind über ganz Europa verteilt, wodurch  eine Basis von vielen hundert Kilometern entsteht.

Die Signale der Stationen werden zusammen mit exakten Timestamps von Rubidium-Atom-Uhren digitalisiert  und über 10 Gbit/s Glasfaser über Jülich zur Zentrale in den Niederlanden geschickt, wo sie real-time mit Hilfe eines Supercomputers “BlueGene” von IBM ( PetaFLOP-Bereich) per Software ausgewertet werden.

Die inferometrische Auswertung per Software setzt die Signale der Stationen unter Berücksichtigung der verschiedenen Laufzeiten phasengerecht zu einem Signal zusammen, das von der  Auflösung einem Teleskop der Größe der Basis entspricht. Das nennt das auch “Aperture synthesis”. Dadurch wird  eine Auflösung (Bildschärfe) im Bereich einer Bogensekunde erreicht, was vor LOFAR bei diesen Wellenlängen (Bereich von 1,5 Metern oder mehr) nicht möglich war.

Obwohl die Dipol-Antennen eine feste Ausrichtung haben (keine beweglichen Teile), können verschiedene Richtungen am Himmel über software-mäßige Verarbeitung des digitalen Signals angepeilt werden (sog. “Multi Beaming”).

https://lofar.physik.uni-bielefeld.de/index.php/en/

https://www.glowconsortium.de/index.php/en/lofar-about

http://www.astro.ru.nl/~falcke/LOFAR/lofar_artikel.htm

LOFAR-Station Norderstedt

Die LOFAR-Station in Norderstedt befindet sich in der keinen Straße Harthagen und ist seit Januar 2015 in Betrieb.

Die Einweihungsfeier soll am 9.9.2015 um 11 Uhr stattfinden.

Abbildung 2: LOFAR Station in Norderstedt (Google Drive: Lofar_20150618_05475_stitch.jpg)


LOFAR Norderstedt

LOFAR-Station in Effelsberg

Besuch beim Radioteleskop Effelsberg

LOFAR Forschungsauftrag – Key Science Projects

Epoch of Reionization  ––  Die sog. Epoch of Reionization (EoR) begann vor 13,2 GigaYears mit einer Rotverschiebung von  z=10. Das heisst, die 21cm Radiostrahlung des neutralen Wasserstoffs  kommt mit einer Wellenlänge von 2,1m bei uns an.

Deep Extragalactic Surveys – Hochempfindliche Kartierung aller Radioquellen (Galaxien, Schwarze Löcher etc.) am Himmel

Transient Sources – Radioquellen, die eine kurzzeitliche Variabilität aufweisen

Kosmische Magnetfelder – Stellare und galaktische Magnetfelder

Ulta high cosmic rays – Partikel mit hoher Energie (1015 – 1020 eV), die auch sog. “Air Shower” hervorrufen (Synchrotron Strahlung, Elektronen mit fast Lichtgeschwindigkeit (relativistisch))

Solar Physics and Space Weather – Die Sonne als Radioquelle mit e.g. Flares, Coronar Mass Ejections etc.

Hintergrund: Epochen der Entwicklung des Universums

  • Urknall
  • Inflation
  • Dark Ages – noch keine Sterne, “nur” neutraler Wasserstoff mit 21cm Radio-Strahlung
  • Epoch of Reionization  – erste Sterne d.h. erstmals Licht im Universum, die Strahlung ionisiert den Wasserstoff
  • Development of Galaxies

http://www.lofar.org/astronomy/eor-ksp/epoch-reionization

http://www.weltderphysik.de/gebiet/astro/teleskope-und-satelliten/lofar/

http://map.gsfc.nasa.gov/media/060915/index.html

Andere Projekte

  • Südafrika: SALT = Southern African Large Telescope  in Sutherland
  • SKA: Square Kilometre Array  (LOFAR sollte ein vorbereitendes Projekt für SKA sein)
    • Teil in Westaustralien
    • Teil in Südafrika