Astronomie: Asteroiden

Gehört zu: Astronomie
Siehe auch: Sonnensystem, IAU, Bahnelemente

Stand: 26.06.2024

Asteroiden kann man entdecken und dann kann der Entdecker einen Namesvorschlag beim Minor Planet Center der IAU einreichen.

Asteroiden entdecken

Mein Bruder Rainer Kracht, Jost Jahn, etc.

Dazu benötigt man mehrere Beobachtungen mit guten Koordinaten und Zeiten, sodass Bahnelemente ermittelt werden können.

Namen für Asteroiden

Nach einer bestätigten Entdeckung wird des Objekt numeriert; z.B. (499367) 2010 AB, was in einem elektronischen Zirkular “MPEC” veröffentlicht wird.

Der Entdecker kann dann einen Namensvorschlag machen.

Die Regeln der WGSBN (Working Group Small Body Nomenclature)  sind folgende:
https://www.wgsbn-iau.org/documentation/NamesAndCitations.pdf

Dazu bräuchten wir eine sog. “citation”

Liste von Asteroiden-Namen

(499367) 2010 AB       Monikasirp

16.01.2024 2010 AB = KRA037 = 499367 has been named Monikasirp

(499367) Monikasirp = 2010 AB
Discovery: 2010-01-05 / R. Kracht * / Sierra Stars / G68
Monika Sirp (b. 1958) was drawn to physics and mathematics from Asimov’s science-
fiction novels. In her professional life, she has worked in the energy field, focusing on
fossil-free possibilities. Monika supports her husband, Dietrich Kracht, a German amateur
astronomer

(331105)    Gieselher

14.04.2017 2009 XG9 = KRA033 = 331105 has been named Giselher (orbit diagram and citation):

(331105) Giselher = 2009 XG9 Discovered 2009 Dec. 13 by R. Kracht at Sonoita (IRO).
Dietrich Giselher Kracht (b. 1944) is the elder brother of the discoverer,
who introduced him to astronomy at the observatory of the Olbers-Gesellschaft in Bremen.

(464150) 2014 YN5  Kresken

08.11.2023 2010 AA = KRA036 = 2014 YN4 = 454150 has been named Kresken:

(464150) Kresken = 2014 YN5
Discovery: 2010-01-04 / R. Kracht * / Sierra Stars / G68
Rainer Kresken (b. 1962) is a German amateur astronomer and a professionnal space flight
engineer with ESA. He discovered more than 10 asteroids and is very active in astro clubs in
Germany. He introduces and teaches kids and amateurs in practical astronomical topics. Rainer is
one of the leaders of the public observatory at Heppenheim.

10.12.2011 2010 EQ45 = KRA052 = 301638 has been named Kressin (orbit diagram and citation):

(301638) Kressin Discovered 2010 Mar. 14 by R. Kracht at the Iowa Robotic Observatory, Sonoita.
     Named after the old Pomeranian family Kressin.  Margarete Kressin
(1891-1980) was the grandmother of the discoverer and taught him the
star names.

233967 Vierkant Discovered 2010 Jan. 24 by R. Kracht at the Sierra Stars Observatory.
Gisela Vierkant (b. 1919), mother of the discoverer, lived for many years in the city of Bremen, where
Wilhelm Olbers discovered (2) Pallas and (4) Vesta at the Lilienthal Observatory.

 

 

Raumsonden: SOHO

Gehört zu: Raumsonden
Siehe auch: Sonne, Lagrange-Punkte, Mindmap Sonnensystem

Stand: 19.06.2024

Die Raumsonde SOHO

Im Dezember 1995 startete das SOHO (Solar and Heliospheric Observatory). Es ist ein Gemeinschaftsprojekt von NASA und ESA und soll die Sonne unterbrechungsfrei beob­achten. Deshalb wurde SOHO nicht in eine Erdumlaufbahn geschossen, sondern auf dem Langrange-Punkt L1 des Sonne-Erde-Systems geparkt. L1 liegt ca 1,5 Mio km (1/100 AE) von der Erde in Richtung Sonne. Das besondere ist, dass obwohl dieser Punkt näher an der Sonne liegt, die Umlaufzeit trotzdem auch genau ein Jahr beträgt.

Genaugenommen befindet sich SOHO nicht direkt auf dem Lagrange-Punkt L1, der ja instabil ist, sondern auf einer sog. Halo-Bahn um den L1.

SOHO beobachtet die Sonne mit mehreren Instrumenten, dazu gehören:

  • EIT (Extreme ultraviolet Imaging Telescope) 304, 195 und 171
  • LASCO (Large Angle and Spectrometric Coronagraph) C2 und C3
  • MDI/SOI (Michelson Doppler Imager/Solar Oscillations Investigation)

http://sohowww.nascom.nasa.gov/data/realtime-images.html

SOHO Kometen

Die Bilder des Instruments LASCO werden auch von Sternfreunden benutzt, um darauf Kometen in der Sonnenumgebung zu finden.

Für eine “offizielle” Kometen-Entdeckung muss man die Bahnelemente bestimmen.

Typisch für diese SOHO-Kometen ist, dass sie in sog. Gruppen auftreten:

  • Kreutz-Gruppe
  • Meyer-Gruppe
  • Marsden-Gruppe
  • Kracht-Gruppe

So eine Kometen-Gruppe zeichnet sich durch ähnliche Bahnelemente aus. Man nimmt an, dass es sich bei so einer Gruppe um Fragmente eines früheren, größeren Objekts handelt.

Mathematik: Singularität

Gehört zu: Mathematik
Siehe auch: Koordinatensysteme, Schwarzes Loch, Kosmologie, Einsteinsche Feldgleichungen

Stand: 12.06.2024

Der Begriff  Singularität wird ein wenig unterschiedlich verstanden. Beispielsweise soll der Urknall eine Singularität gewesen sein. Auch in Schwarzen Löchern spricht man gern über Singularitäten

Singularität im engeren Sinne

Im engeren Sinne hat eine Funktion f(x) eine Singulatität an einem Punkt x1, wenn sich  der Funktionswert dem Unendlichen nähert, wenn der x-Wert sich dem Punkt x1 nähert.

\( \lim  \limits_{x \to x_1} f(x) = \infty \\\)

So eine mathematische Singularität würde zur Beschreibung physikalischer Zusammenhänge ungeeignet sein, da es soetwas in der physikalischen Wirklichkeit nicht gibt.

Außerdem wird hier mit kontinuierlichen Variablen gearbeitet, obwohl hier eine quantenpysikalische Betrachtung erforderlich wäre.

Singularität im weiteren Sinne

Im weiteren Sinne versteht man als Singularität einfach einen Ort (oder Zeitpunkt), wo ein “ungewöhnliches”, besonderes Verhalten zu beobachten ist; also eine Einzigartigkeit…

Eine Frage ist dabei auch, “wer” sich da ungewöhnlich verhält. Um sich genauer auszudrücken, sollte man das adjektivisch formulieren; z.B.

  • eine Funktion ist singulär
  • eine Raumzeit ist singulär (z.B. die Raumkrümmung wird irgendwo unendlich)

Unter “eine Raumzeit” versteht man eine Lösung der Einsteinschen Feldgleichungen; also beipielsweise die Schwarzschild-Lösung oder die Kerr-Lösung….

Nackte Singularität

Wenn man unter einer Singularität einen Punkt einer Raumzeit mit unendlicher Raumkrümmung meint, kann man noch unterscheiden, ob sich ein Ereignishorizont bildet oder nicht. Letzteres, also eine singuläre Raumkrümmung ohne Ereignishorizont, nennt man “Nackte Singularität”.

Beides ist nach der Allgemeinen Relativitätstheorie (theoretisch) möglich.

Für die SEO-Optimierung

Da soll mehr Text sein in so einem Artikel. Also labern wir da noch etwas dazu. Die Beantwortung der Frage, ob es in einem Schwarzen Loch eine Sigularität gibt, hängt davon ab, wie man den Begriff Singulatität eigentlich definiert. Roger Penrose und Stephen Hawking sollen da etwas mit Geodäten gemacht haben…

Es sollen mindestens 300 Zeichen sein. Also müssen wir ein wening herumlabern.

Astronomie: Bahnelemente

Gehört zu: Himmelsmechanik
Siehe auch: Sonnensystem

Benutzt: Fotos von Astrodictum Simplex

Stand: 11.06.2024

Was sind Bahnelemente?

Bahnelemente sind Werte, die die Bahn eines Körpers im Sonnensystem (Planet, Komet, Asteroid,…) beschreiben sollen.

Statt “im Sonnensystem” kann man auch analog andere himmelsmechanische Systeme betrachten z.B. den Jupiter mit seinen Monden, die Sterne, die um das Galaktische Zentrum kreisen etc.

Im Sonnensystem nimmt man gern die Bahn der Erde (Ekliptik) um die Sonne als Referenzobjekt. Dabei werden folgende Begriffe verwendet:

  • Knotenlinie: Schnittline der Bahnebene zur Ekliptikebene (Erdbahnebene)
  • Perihel bzw. Aphel: Sonnennächster bzw. sonnenfernster  Punkt der Bahn
  • Apsidenlinie: Verbindungslinie Perihel-Aphel

Als Bahnelemente bezeichnet man dann:

  • Lage der Bahn im Raum
    • Inklination: Neigung der Bahnebene gegen die Ekliptikebene
    • Länge des aufsteigenden Knotens: Heliozentrischer Winkel zwischen aufsteigendem Knoten und dem Frühlingspunkt (gemessen in der Ekliptikebene)
    • Perihellänge (auch: Argument des Perihels): Heliozentrischer Winkel zwischen Perihel und aufsteigendem Knoten (gemessen in der Bahnebene)
  • Gestalt der Bahn
    • Länge der großen Halbachse der Ellipsenbahn
    • Exzentrizität der Ellipsenbahn
  • Zeitpunkt eines Periheldurchgangs

Zur Bestimmung der Bahn benötigt man sechs Bahnelemente. Carl Friedrich Gauß (1777-1855) hat gezeigt, wie aus drei vollständigen Positionsbestimmungen diese sechs Bahnelemente gefunden werden können.

Zur Verdeutlichung, was “Lage im Raum” bedeutet, finden wir bei Astrodictum Simplex  folgende schöne Diagramme:

Copyright: http://www.astrodicticum-simplex.de/wordpress/2008/02/04/basics-bahnelemente/

Abbildung 1: Inklination (Astrodictum Simplex)

Abbildung 2: Länge des Aufsteigenden Knotens (Astrodictum Simplex)

Abbildung 3: Perihel (Astrodictum Simplex)

Astronomie: Dunkle Materie

Gehört zu: Kosmologie
Siehe auch: Standardmodell der Kosmologie

Stand: 06.06.2024

Die Idee: Dunkle Materie

Der Begriff “Dunkle Materie” wird benutzt um Materie zu bezeichnen, die Gravitation verursacht, aber nicht sichtbar ist; also nicht durch elektromagnetische Wechselwirkungen (z.B. Licht) bemerkbar ist.

Gravitation

Große Massen irgendwo im Kosmos beeinflussen die Bewegung anderer Massen durch ihre Gravitation.

Dazu haben wir die Keplerschen Gesetze und das Newtonsche Gravitationsgesetz.

Nach dem Dritten Keplerschen Gesetz gilt für die Umlaufszeiten Ti und die großen Halbachsen ai:

\( \Large \frac{T_1^2}{T_0^2} = \frac{a_1^3}{a_0^3} \\\)

Für unser Sonnensystem können wir die Erdbahn mit a = 1 AE und T = 1 Jahr nehmen und bekämen:

\( \Large T = a^{1.5} \\ \)

Die Bahngeschwindigkeit in einer Kreisbahn wäre:

\(  \Large v = \frac{2 \pi a}{T} = 2 \pi a^{-0.5}\\ \)

Abblidung 1: Kreisbahngeschwindigkeit (GitHub: Kepler.svg)

Der Coma Galaxienhaufen

Fritz Zwicky (1898-1974): Coma-Haufen

  • Schon 1930 hat Fritz Zwicky bei der Untersuchung des Coma Galaxienhaufens festgestellt, dass sich dort die Galaxien viel schneller bewegen als es nach der Abschätzung der Gesamtmasse des Galaxienhaufens sein sollte.
  • Zwicky postulierte deshalb die Anwesenheit von unsichtbarer Materie im Coma-Haufen.
  • Der Begriff „Dunkle Materie“ wurde geprägt.

Rotationskurven in Spiralgalaxien

Vera Rubin (1928-2016): Rotationskurve M31

Dieses berühmte Diagramm stammt aus der Arbeit Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions, die Rubin im Jahr 1970 veröffentlichte.
Die x-Achse zeigt den Abstand zum Zentrum der Galaxie; die Einheiten sind oben in Kiloparsec angegeben und unten in Bogenminuten. Und man erkennt deutlich, dass die Kurve im rechten Bereich des Diagramms nicht – wie zu erwarten wäre – nach unten abfällt, sondern im Wesentlichen gerade verläuft.

Abbildung 2: Rubins Rotationskurve M31 (scr3.golem.de/screenshots/1701/verarubin/thumb620/rubin_1.jpg)

)

Credit: V. Rubin and K. Ford, Astrophysical Journal, vol. 159, p.379 (February 1970).

Astronomie: Observatorien

Topic: Astronomische Observatorien
Gehört zu: Astronomie

Stand: 17.02.2024

Astronomische Observatorien

Professionelle Observatorien – Amateur Observatorien – Observatorien zur Miete (Feriensternwarten, Remote Teleskope) – Volkssternwarten

Ergebundene Observatorien – Weltraum-Teleskope

Weltraum-Telesope

Kepler (außer Betrieb 2018)

Spitzer (außer Betrieb 2020)

Hubble Space Telecope “HST”

James Web Space Telescope “JWST”

Euclid

Erdgebundende Observatorien in Chile

Cerro Parenal:

ALMA: Atacama Large Millimeter/Submillimeter Array

ELT: Extremly Large Telescope (in Bau, First Light geplannt für 2028)

  • Ort: Cerro Armazones ist ein Berg in der Atacama Wüste, some 130 kilometres south of the town of Antofagasta and about 20 kilometres from Cerro Paranal, home of ESO’s Very Large Telescope (VLT).  Google Maps
  • Teleskope: 39 m Durchmesser
  • Betreiber: ESO European Southern Observatory
  • URL: https://elt.eso.org/

La Silla: Das erste Observatorium der ESO

Gemini Süd

Erdgebundene Observatorien sonstwo

Hawaii, Kanarische Inseln, Südafrika, Australien, Mount Palomar, Mount Wilson, Effelsberg, Paris, Uranienborg, Altona, Bergedorf

Hawaii: Keck, Mouna Kea

Hawaii: Gemini North, Mouna Kea

Amateur Observatorien

Mein privates Observatorium

 

Astronomie: Annotations mit N.I.N.A.

Gehört zu: N.I.N.A.
Siehe auch: Fotografieren mit N.I.N.A., Platesolving mit N.I.N.A.
Benutzt:Fotos von Google Drive

Stand: 12.02.2024

Annotations – was ist das?

In einem Astro-Foto sind meist viele Sterne und manchmal auch Nebel, DSOs etc. zu sehen.

Annotationen sind einfach Beschriftungen im Astro-Foto.

Beispielsweise könnte ich DSO-Objekte mit ihrer Katalog-Nummer (Messier, NGC etc.) beschriften. Das macht in einem gewissen Umfang die Platesolving-Funktion.

Annotiations mit N.I.N.A. (ohne Hocus Focus)

N.I.N.A. kann diverse Beschriftungen zu einem Foto hinzufügen (und auch wieder ausblenden); beispielsweise:

  • HFR (Half Flux Radius) von Sternen
  • Star Detection

Im N.I.N.A.-Tab “Imaging” kann man die Annotationen an- und ab-schalten mit einem Klick auf das Stern-Symbol. Dann wird jedes neu aufgenommene Foto von N.I.N.A. untersucht; d.h. Star Detection (mit Kringel) und HFR (mit kleiner Zahl).

Abbildung 1:  Star Detection in N.I.N.A. (Google Drive: 20240212_NINA_Annotations_01.jpg)

Voraussetzung ist aber, dass zunächst die “Annotations” generell eingeschaltet sind.  Das machen wir im N.I.N.A.-Tab “Options – Imaging”. Dort schalten wir im Abschnitt “Image Options” den Schalter “Annotate image” auf “ON”.

Auch in der Kachel “Statistics” sieht man einiges: 152 Sterne wurden im (ganzen) Foto entdeckt mit einem durchnittlichen HFR von 3,46 Pixels wobei die Helligkeiten im Foto von minimal 1842 ADUs (2 Pixel) bis maximal 65532 ADUs (1361 Pixel) gingen.

Mehr Annotations mit Hocus Focus

Wenn ich in N.I.N.A. das Plugin “Hocus Focus” installiere, gibt bei den Annotations zusätzliche Möglichkeiten.

Nach der Installation des Plug-Ins “Hocus Focus” gehen wir zunächst auf den  N.I.N.A.-Tab “Options – Imaging” in stellen dort im Abschnitt “Images Options” ein: “Star Detector: Hocus Focus” und “Star Annotator: Hocus Focus”.

Dann gehen wie auf den N.I.N.A.-Tab “Imaging”. Aber bevor wir ein neues Foto aufnehmen, machen wir noch in dem durch das Hocus Focos neu entstandene Symbol “Stern mit Bleistift” (dicker Kringel) die für Hocus Focus gewünschten Einstellungen: Ich möchte blaue Quadrate um ausgebrannte Sterne haben. Also “Show saturated”. Dann nehmen wir ein neues Foto auf, denn nur neu aufgenommene Fotos werden von N.I.N.A. gemäß den von uns gesetzten Angaben analysiert.

Abbildung 2: N.I.N.A.-Annotations mit Hocus Focus (Google Drive: 20240212_NINA_Annotations_02.jpg)

Im Bildausschnitt sehen wir vier ausgebrannte Sterne in blau markiert.

Astronomie: Filterschublade für die ASI294MC Pro

Gehört zu: Astronomie, Astrofotografie
Siehe auch: Liste meiner Astro-Geräte, Backfokus, Filterschublade für Canon Bajonett

Stand: 16.03.2025

Am 5.11.2021 habe ich bei Teleskop-Service eine ZWO Filterschublade für 2″ Filter – Länge 21 mm gekauft (ZWO-FD-M42 – “FD” steht für “Filter Drawer”, nicht für Canon).

  • Anschluss Teleskopseite: M48x0,75 Innengewinde – kann auf T2 Gewinde reduziert werden (T2 = M42*0,75)
  • Anschluss Kameraseite: T2 Außengewinde (T2 = M42*0,75) – kann auf M48x0,75 Gewinde erweitert werden

Die ist speziell für meine Kamera ZWO ASI294MC Pro gedacht.

Mit einer optischen Länge von 21mm passt das Teil perfekt mit meiner Astro-Kamera ZWO ASI294MC Pro zusammen. Allerdings ist es ein rein mechanischer Adapter, der also keine Elektronik enthält mit der man z.B. fokusieren könnte (im Gegensatz zum AstroMechanics-Teil).

Mit einem zusätzlichen Adapter passen auch andere Optiken  (z.B. Foto-Objektive, Teleskope) an diese Filterschublade:

  • mit einem kurzen Adapter OM-EOS mein Foto-Objektiv Olympus 135mm
  • mit einem Adapter T2-Canon mein “großes” Teleskop ED80/600,

Ich habe dann zwar keine Elektronik aber einen mechanischen Anschluss und den Vorteil der Flexibilität einer Filterschublade.

Link: https://www.teleskop-express.de/shop/product_info.php/info/p11885_ZWO-Filter-Drawer-for-2–filters—M48-and-T2-connection—length-21-mm.html

Backfokus

Diese Filterschublade passt ja exakt mit ihren 21mm Länge zu meiner Kamera ASI294MC Pro wo sie zusammen mit den mit der Kamera mitgelieferten Teilen genau den für den Flattener/Reducer erforderlichen Backfokus von 55mm herstellt.

Allerdings gilt das nur dann, wenn ich in die Filterschublade keine Filter schiebe. Jeder dort eingeschobene Filter würde den Backfokus ein klein wenig verändern.

Da ich ohnehin maximal mit einem Filter arbeiten will (entweder der UV-IR-Cut oder mein Tri Narrowband), kann ich diesen einen Filter auch vorne in den Stuzen schrauben. Die Filterschublade baue ich also wieder aus und benutze anstelle das 21mm Stück von ZWO.

 

Astronomie: Der Rotationswinkel bei N.I.N.A.

https://drive.google.com/file/d/1yxKsLbxKEMoKsrHq6O7BXbbbhp5tAWxK/export/pngTopic: Rotationswinkel bei N.I.N.A.
Gehört zu: Astrofotografie
Siehe auch: N.I.N.A., Polar Alignment mit N.I.N.A., N.I.N.A. Advanced Sequencer, Platesolving mit N.I.N.A.
Benutzt: Fotos von Google Drive

Stand: 28.01.2024

Der Rotationswinkel bei N.I.N.A.

Ich möchte meine Astrofotos nach den äquatorialen Koordinatenlinien ausrichten, meistens so, dass Norden oben ist.

Da ich das bei meiner Astro-Kamera ASI294MC Pro nicht so genau sehen kann, bemühe ich das N.I.N.A. Platesolving dafür.

Bei jedem Platesolving werden ja nicht nur die Koordinaten des Bildmittelpunkts bestimmt, sondern auch der Rotationswinkel des Bildes gegen die Nordrichtung – das ist ja quasi ein “Abfallprodukt”.

Ich kann meinen Okularauszug (OAZ) dann manuell so rotieren, dass der gewünsche Winkel (hier Null Grad) erreicht wird.

Einstellen des Rotationswinkels bei N.I.N.A.

Der Rotationswinkel bei N.I.N.A. kann auf einen bestimmen gewünschten Wert eingestellt werden. Das geht auch ohne motorischen Rotator und ist dann eine recht mühsame, meist iterative, Prozedur.

Als einmalige Aktion versuche ich nun den Rotationswinkel meiner Kamera auf Null Grad (Norden oben) manuell einzustellen.

Abbildung 1: Plate Solving shows Rotation (Orientation)  (Google Drive: NINA-Rotation-02.jpg)

Auf obigen Bild sieht man die Schritte:

  • Iterativ erfolgte Platesolving und manuelle Rotation des OAZ
  • So konnte der Rotationswinkel von 22.29° über die Schritte 7.60°, 4,72°, 0.64° schließlich auf 0.18° gestellt werden.

SEO Blah Blah

Der Suchmaschinen-Optimierer möchte mehr Text haben. Also schreiben wir hier noch ein bisschen Blah-Blah.
Ein fest eingestellter Rotationswinkel ist eigentlich nicht schlecht; denn nach jeder Veränderung des Rotationswinkels müsste ich neu Flatframes machen.
Flatframes sind ja ganz wichtig bei der Astrofotografie und sollten keinesfalls vergessen werden.

Es soll aber immer noch mehr Text in diesem Artikel stehen, also labern wir weiter. Norden oben ist bei einer zylinderförmigen Astrokamera wie meiner, nicht ganz trivial einzustellen. Ich müsste eine Markierung an der Kamera anbringen. Das mache ich mal mit meinem weißen Edding-Stift. Wichtig ist einzig und allein die Markierung auf der Kamera selbst; ein Strich auf den Hülsen des Okluarauszugs wird letztlich nicht gebraucht.