Physik: Elektrische Felder – Coulomb

Gehört zu: Elektrodynamik
Siehe auch: Gravitation, Magnetisches Feld, Vektoren, SI-System, Niels Bohr
Benutzt: WordPress-Plugin Latex

Stand: 22.08.2021

Ruhendes Elektrisches Feld

In der Elektrostatik werden ruhende und zeitlich unveränderliche Elektrische Felder beschrieben.

Die physikalische Größe elektrische Feldstärke (E) beschreibt die Stärke und Richtung eines elektrischen Feldes, also die Fähigkeit dieses Feldes, Kraft (F) auf Ladungen (q) auszuüben. Sie ist ein Vektor und ist in einem gegebenen Punkt definiert durch:

\( \Large \vec{E} =  \frac{\vec{F}}{q} \\\ \)

Die Maßeinheit der Elektrische Feldstärke ist also Newton / Coulomb, was das Gleiche ist wie V / m.

Bewegtes Elektrisches Feld

Laut Wikipedia ist die klassische Elektrodynamik (auch Elektrizitätslehre) das Teilgebiet der Physik, das sich mit bewegten elektrischen Ladungen und mit zeitlich veränderlichen elektrischen und magnetischen Feldern beschäftigt. Die Elektrostatik als Spezialfall der Elektrodynamik beschäftigt sich mit ruhenden elektrischen Ladungen und ihren Feldern. Die zugrundeliegende Grundkraft der Physik heißt elektromagnetische Wechselwirkung.

Analogie: Gravitationsfeld

Analog müssten wir für das Gravitationsfeld einer Punktmasse M die Gravitationskraft (F) durch die “Probemasse” m dividieren, um die “Gravitationsfeldstärke” g zu erhalten:

\( \Large \vec{g} = \frac{\vec{F}}{m} = G \frac{M}{r^2} \\\ \)  (in radialer Richtung)

Diese “Gravitationsfeldstärke” wird aus historischen Gründen “Gravitationsbeschleunigung” genannt.

Analogie: Magnetisches Feld

Auch beim Magnetismus stellt man sich ein Kraftfeld vor: das Magnetische Feld

Elektrostatik: Coulombsches Gesetz

Das Elektrische Feld einer Punktladung q ist:

\( \Large E = \frac{1}{4 \pi \epsilon_0} \frac{q}{r^2} \\\ \) (in radialer Richtung)

Daraus ergibt sich das sog. Coulombsche Gesetz für die Anziehungskraft zweier elektrischer Ladungen:

\( \Large F = \frac{1}{4 \pi \epsilon_0} \frac{q_1 \cdot q_2}{r^2} \\\ \)

Bohrsches Atommodell

Siehe: Niels Bohr