Mathematik: Gruppentheorie

Gehört zu: Mathematik
Siehe auch: Standardmodell der Elementarteilchenphysik, Symmetrien, Äquivalenzrelation, Algebren
Benutzt: Latex-Plugin für WordPress

Stand: 24.8.2025

Was ist eine Gruppe?

Warnung / Disclaimer

Diesen Blog-Artikel schreibe ich ausschließlich zu meiner persönlichen Dokumentation; quasi als mein elektronisches persönliches Notizbuch. Wenn es Andere nützlich finden, freue ich mich, übernehme aber kleinerlei Garantie für die Richtigkeit bzw. die Fehlerfreiheit meiner Notizen. Insbesondere weise ich darauf hin, dass jeder, der diese meine Notizen nutzt, das auf eigene Gefahr tut. Wenn ich Podukteigenschaften beschreibe, sind dies ausschließlich meine persönlichen Erfahrungen als Laie mit dem einen Gerät, welches ich bekommen habe.

Bei meiner Beschäftigung mit dem Standardmodell der Elementarteilchen bin ich auf das klassische Thema der Gruppentheorie gestoßen.

Eine Gruppe in der Mathematik ist eine Menge mit einer “inneren” Verküpfung (die man gerne mit dem Symbol “+” schreibt) und die bestimmten, unten aufgeführten Axiomen genügt.

Die Verknüpfung

Die Menge bezeichnen wir mal mit M und nehmen dann zwei Elemente aus dieser Menge:

\( a \in M \) und \( b \in M \)

Dann soll die Verknüpfung (geschieben als +) von a und b wieder in der Menge M liegen:

\( a + b \in M \)

Die Axiome

Damit das ganze dann eine Gruppe ist, müssen folgende Axiome gelten:

Assoziativgesetz:

\( (a + b) + c = a + (b + c) \\ \)

Existenz eines “neutralen Elements” e, sodass:

\( \exists e \in M \space \forall a \in M: a + e = a \\\)

Existenz eines inversen Elements zu jedem Element der Gruppe:

\( \forall a \in M \space \exists b \in M : a + b = e \\ \)

Beispiel 1: Die ganzen Zahlen

Die Menge der ganzen Zahlen \(\mathbb{Z}\) mit der Addition als Verknüpfung bildet eine Gruppe.

Beispiel 2: Die Kleinsche Vierergruppe

Die Kleinsche Vierergruppe (nach Felix Klein 1849-1925) besteht aus vier Elementen, wobei jedes Element mit sich selbst invers ist.

Die Menge schreiben wir als:
V = {e, a, b, c}

Die Verknüpfung definieren wir über eine Verknüpfungstafel (auch Cayley Table genannt):

e a b c
e e a b c
a a e c b
b b c e a
c c b a e

Wie man leicht sieht, werden mit der so definierten Verknüpfung die Gruppenaxiome erfüllt.

Beispiel 3: Die komplexen Zahlen auf dem Einheitskreis

In der komplexen Zahlenebene \(\mathbb{C}\) ist er Einheitskreis einfach die Teilmenge S der komplexen Zahlen, die wir definieren als:

\(S = \{ z \in \mathbb{C} \space : \space  |z| = 1  \} \\ \)

Als Verknüpfung auf dieser Menge nehmen wir die Multiplikation der komplexen Zahlen; geometrisch können wir uns das als Drehungen vorstellen.

Damit wird das Ganze eine Gruppe.

Symmetrien und Drehungen

Gruppen kann man also ganz axiomatisch Definieren, wie oben; in der Praxis sind die Elemente einer Gruppe typischerweise die Symmetrien eines Objekts.

Ganz allgemein bilden die Symmetrien eines “Objekts” eine Gruppe. Eine speziell Art von Symmetrien sind Drehungen. Wir betrachten solche “Objekte” als Teilmengen eines Vetorraums; wobei wir uns auf Vektorräume über dem Körper der Reellen Zahlen oder dem Körper der Komplexen Zahlen konzentrieren. Weiterhin sollte die Dimesion des Vektorraums angegeben werden.

Die Leute, die sich mit den verschiedenen Arten von “Drehungsgruppen” als Spezialgebiet beschäftigen, bezeichnen die Gruppe der komplexen Zahlen auf dem Einheitskreis auch gerne als U(1); wobei die “1” bedeuten soll, dass wir nur eine Drehachse haben und das “U” steht für “unitär”, was man gerne zu einer Verknüpfung (Abbildung) sagt, wenn die Länge gleich bleibt (“längentreu”) – allerdings müsste man dann den Begriff “Länge” noch definieren.

Solche Gruppen, die aus Drehungen bestehen, spielen später im Standardmodell der Elementarteilchenphysik eine wichtige Rolle. Wobei eine Drehung auch als sog. “kontinuierliche Symmetrie” bezeichnet wird.

Da solche Drehungen ja “kontinuierlich” (im Gegensatz zu Spiegelungen) um auch beliebig kleine Winkel stattfinden können, kommt man damit auch in das Gebiet der Differentialgeometrie und letztlich zum Begriff der Lie-Gruppen (s.u.).

Für Drehungen in der reellen Ebene kann man eine reelle Dreh-Matrix nehmen:

\( M_\alpha = \left( \begin{matrix} \cos{\alpha} & -\sin{\alpha}  \\ \sin{\alpha} & \cos{\alpha}  \\ \end{matrix} \right)\\ \)

Vergleiche hierzu auch das YouTube-Video von Josef Gassner: https://www.youtube.com/watch?v=zFhjF6sfY4o

Nur für Mathematiker:
Drehungen im n-dimensionalen komplexen Raum sind lineare Abbildungen und damit als eine spezielle Art von nxn-Matrizen darstellbar.
\(U(n) = \{ U \in \text{ nxn Matrix } | \space U^\dagger U = I \} \)
Die nxn-Matrizen werden auch “General Linear Group” genannt und man schreibt sie als: \(GL(n,\mathbb{C}) \), wobei man zusätzlich fordert: det(U)>0 damit jede Matrix U invertierbar ist und so \(GL(n,\mathbb{C}) \) eine Gruppe ist.

Direktes Produkt von Gruppen

Wenn wir zwei Gruppen G und H haben, können wir das sog. “Direkte Produkt” dieser zwei Gruppen bilden, indem wir von den Mengen das cartesische Produkt \(G \times H\) nehmen und eine Verknüpfung auf diesem cartesischen Produkt komponentenweise definieren.
Wenn wir die Verknüpfungen mit dem Zeichen “+” schreiben, wäre das also:

\((g_1,h_1) + (g_2,h_2) = (g_1+g_2,h_1+h_2) \text{ wobei } g_1, g_2 \in G \text{ und } h_1,h_2 \in H\\\)

Wobei uns klar ist, dass das Symbol “+” hier für drei verschiedene Verknüpfungen benutzt wird.
Die Menge \(G \times H\) ausgestattet mit der so definierten Verknüpfung bezeichnet man als “Direktes Produkt” der Gruppen G und H und schreibt das als \(G \oplus H\).

Lie-Gruppen

Sophus Lie (1842-1899) beschäftigte sich mit besonderen Gruppen, man nun Lie-Gruppen  nennt. Es gibt auch den Begriff der Lie-Algebren, die aber etwas anderes sind.

Eine Lie-Gruppe ist eine mathematische Struktur, die sowohl eine Gruppe als auch eine differenzierbaren Mannigfaltigkeit ist.